1
|
Zhang R, Chen J, Chen Y, Li Y. SIRT7 promotes dental pulp stem cells replicative senescence through desuccinylation of ROCK1. Tissue Cell 2025; 92:102636. [PMID: 39616832 DOI: 10.1016/j.tice.2024.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/15/2024]
Abstract
The therapeutic effectiveness of dental pulp stem cells (DPSCs) is limited. Sirtuin 7 (SIRT7) has been reported to be associated with a variety of age-related diseases. We aimed to identify the regulatory role of SIRT7 in DPSC senescence and investigate the underlying mechanism. DPSCs were isolated from healthy adults, the stem markers were verified by flow cytomerty analysis. Replicative senescence was induced in DPSCs by serial passage and cells were analyzed at PD16 and 54. DPSC senescence was evaluated by observing senescence-associated β-galactosidase (SA-β-gal) and telomerase reverse transcriptase (TERT) activity. Meanwhile, the markers of senescence levels were monitored by western blotting assay. SIRT7 protein was pulled-down, and the binding relationship between SIRT7 and ROCK1 was verified by immunoprecipitation and western blotting methods. Replicative senescence was induced in DPSCs at PD54. The number of SA-β-gal stained DPSCs significantly increased in the PD54 group while the level of TERT activity was decreased. The cyclin-dependent kinase inhibitors p53, p21, and p16, which are markers of senescence, were markedly up-regulated at PD54. SIRT7 was also found to be lowly expressed at PD54. Inhibition of SIRT7 significantly accelerated the senescence of DPSCs. Moreover, SIRT7 can bind with ROCK1, and SIRT7 could lead to ROCK1 desuccinylation at K520. Inhibited ROCK1 significantly reversed the effects of SIRT7 knockdown on regulating DPSCs senescence. Our results demonstrate that the SIRT7/ROCK1 axis plays a key role in the regulation of DPSC senescence and provide a candidate target to improve the functional and therapeutic potential of DPSCs.
Collapse
Affiliation(s)
- Rui Zhang
- Department of endodontics, Changsha Stomatological Hospital, No. 389, Youyi Road, Tianxin District, Changsha 410008, China
| | - Jie Chen
- Department of endodontics, Changsha Stomatological Hospital, No. 389, Youyi Road, Tianxin District, Changsha 410008, China
| | - Yuanyuan Chen
- Department of endodontics, Changsha Stomatological Hospital, No. 389, Youyi Road, Tianxin District, Changsha 410008, China
| | - Yangyang Li
- Department of orthodontics, Changsha Stomatological Hospital, No.844, Wuyi Road, Furong District, Changsha 410001, China.
| |
Collapse
|
2
|
Zgutka K, Tkacz M, Grabowska M, Mikołajek-Bedner W, Tarnowski M. Sirtuins and Their Implications in the Physiopathology of Gestational Diabetes Mellitus. Pharmaceuticals (Basel) 2025; 18:41. [PMID: 39861104 PMCID: PMC11768332 DOI: 10.3390/ph18010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Gestational diabetes mellitus (GDM) imposes serious short- and long-term health problems for the mother and her child. An effective therapeutic that can reduce the incidence of GDM and improve long-term outcomes is a major research priority and is very important for public health. Unfortunately, despite numerous studies, the molecular mechanisms underlying GDM are not fully defined and require further study. Chronic low-grade inflammation, oxidative stress, and insulin resistance are central features of pregnancies complicated by GDM. There is evidence of the involvement of sirtuins, which are NAD+-dependent histone deacetylases, in energy metabolism and inflammation. Taking these facts into consideration, the role of sirtuins in the pathomechanism of GDM will be discussed.
Collapse
Affiliation(s)
- Katarzyna Zgutka
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, 70-210 Szczecin, Poland
| | - Marta Tkacz
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, 70-210 Szczecin, Poland
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, 71-210 Szczecin, Poland
| | - Wioletta Mikołajek-Bedner
- Department of Obstetrics and Gynecology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, 70-210 Szczecin, Poland
| |
Collapse
|
3
|
Sun J, Li Y, Meng M, Zeng X, Wang Q, Li W, Luo Y, Chen H, Dong Q. SIRT7 inhibits the aging and inflammatory damage of hPDLFs by suppressing the AKT/mTOR. Int Immunopharmacol 2024; 143:113300. [PMID: 39378651 DOI: 10.1016/j.intimp.2024.113300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Periodontitis seriously affects oral health worldwide. Despite extensive efforts in prevention and treatment methods over the years, the prevalence of periodontitis in the population has not decreased. DNA damage-induced cellular senescence may be one of the mechanisms underlying periodontitis.Sirtuin7 (SIRT7) has deacetylase activity and regulates a variety of biological processes, including cell proliferation, death, and DNA damage repair.Increasing evidence confirms the crucial role of SIRT7 in age-related and inflammatory diseases. However, the mechanism of action of SIRT7 in periodontitis remains unclear. Our study demonstrates that SIRT7 is downregulated in human periodontal ligament fibroblasts induced by Porphyromonas gingivalis lipopolysaccharide (Pg-LPS). Overexpression of the SIRT7 gene significantly reduces the production of senescence-related molecules P53, P21, P16, as well as inflammatory cytokines IL-1β and TNF-α stimulated by Pg-LPS. Furthermore, overexpression of the SIRT7 gene significantly decreases the phosphorylation levels of AKT and mTOR in Pg-LPS-treated hPDLFs. Conversely, SIRT7 gene knockdown exhibits opposite effects compared to overexpression in Pg-LPS-treated hPDLFs. In conclusion, our findings indicate that SIRT7 can inhibit Pg-LPS-induced senescence and consequently suppress the secretion of inflammatory cytokines through the AKT/mTOR pathway. As a result, SIRT7 could be regarded a viable pharmaceutical target for clinical periodontitis treatment.
Collapse
Affiliation(s)
- Jinyi Sun
- School of Stomatology, Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Ying Li
- Department of Prosthodontics, The Affiliated Stomatology Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Maohua Meng
- Department of Prosthodontics, The Affiliated Stomatology Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Xiao Zeng
- Department of Prosthodontics, The Affiliated Stomatology Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Qinying Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong Province, PR China
| | - Wenjie Li
- School of Stomatology, Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Yuncai Luo
- School of Stomatology, Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Helin Chen
- School of Stomatology, Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China; Department of Prosthodontics, The Affiliated Stomatology Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Qiang Dong
- School of Stomatology, Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China; Department of Prosthodontics, The Affiliated Stomatology Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China.
| |
Collapse
|
4
|
Calubag MF, Robbins PD, Lamming DW. A nutrigeroscience approach: Dietary macronutrients and cellular senescence. Cell Metab 2024; 36:1914-1944. [PMID: 39178854 PMCID: PMC11386599 DOI: 10.1016/j.cmet.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Cellular senescence, a process in which a cell exits the cell cycle in response to stressors, is one of the hallmarks of aging. Senescence and the senescence-associated secretory phenotype (SASP)-a heterogeneous set of secreted factors that disrupt tissue homeostasis and promote the accumulation of senescent cells-reprogram metabolism and can lead to metabolic dysfunction. Dietary interventions have long been studied as methods to combat age-associated metabolic dysfunction, promote health, and increase lifespan. A growing body of literature suggests that senescence is responsive to diet, both to calories and specific dietary macronutrients, and that the metabolic benefits of dietary interventions may arise in part through reducing senescence. Here, we review what is currently known about dietary macronutrients' effect on senescence and the SASP, the nutrient-responsive molecular mechanisms that may mediate these effects, and the potential for these findings to inform the development of a nutrigeroscience approach to healthy aging.
Collapse
Affiliation(s)
- Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Paul D Robbins
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
5
|
Sazdova I, Hadzi-Petrushev N, Keremidarska-Markova M, Stojchevski R, Sopi R, Shileiko S, Mitrokhin V, Gagov H, Avtanski D, Lubomirov LT, Mladenov M. SIRT-associated attenuation of cellular senescence in vascular wall. Mech Ageing Dev 2024; 220:111943. [PMID: 38762036 DOI: 10.1016/j.mad.2024.111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
This review focuses on the vital function that SIRT1 and other sirtuins play in promoting cellular senescence in vascular smooth muscle cells, which is a key element in the pathogenesis of vascular aging and associated cardiovascular diseases. Vascular aging is a gradual process caused by the accumulation of senescent cells, which results in increased vascular remodeling, stiffness, and diminished angiogenic ability. Such physiological alterations are characterized by a complex interplay of environmental and genetic variables, including oxidative stress and telomere attrition, which affect gene expression patterns and trigger cell growth arrest. SIRT1 has been highlighted for its potential to reduce cellular senescence through modulation of multiple signaling cascades, particularly the endothelial nitric oxide (eNOS)/NO signaling pathway. It also modulates cell cycle through p53 inactivation and suppresses NF-κB mediated expression of adhesive molecules at the vascular level. The study also examines the therapeutic potential of sirtuin modulation in vascular health, identifying SIRT1 and its sirtuin counterparts as potential targets for reducing vascular aging. This study sheds light on the molecular basis of vascular aging and the beneficial effects of sirtuins, paving the way for the development of tailored therapies aimed at enhancing vascular health and prolonging life.
Collapse
Affiliation(s)
- Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia 1504, Bulgaria
| | - Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje 1000, North Macedonia
| | - Milena Keremidarska-Markova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia 1504, Bulgaria
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Ramadan Sopi
- Faculty of Medicine, University of Prishtina, Prishtina 10 000, Kosovo
| | - Stanislav Shileiko
- Department of Fundamental and Applied Physiology, Russian States Medical University, Moscow 117997, Russia
| | - Vadim Mitrokhin
- Department of Fundamental and Applied Physiology, Russian States Medical University, Moscow 117997, Russia
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia 1504, Bulgaria
| | - Dimitar Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Lubomir T Lubomirov
- Vascular Biology Research Group (RenEVA), Research Institute, Medical University-Varna, Varna, Bulgaria; Institute of Physiology and Pathophysiology, Faculty of Health - School of Medicine, Biomedical Center for Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Mitko Mladenov
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje 1000, North Macedonia; Department of Fundamental and Applied Physiology, Russian States Medical University, Moscow 117997, Russia.
| |
Collapse
|
6
|
Wu X, Yuan C, Pan J, Zhou Y, Pan X, Kang J, Ren L, Gong L, Li Y. CXCL9, IL2RB, and SPP1, potential diagnostic biomarkers in the co-morbidity pattern of atherosclerosis and non-alcoholic steatohepatitis. Sci Rep 2024; 14:16364. [PMID: 39013959 PMCID: PMC11252365 DOI: 10.1038/s41598-024-66287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a hepatocyte inflammation based on hepatocellular steatosis, yet there is no effective drug treatment. Atherosclerosis (AS) is caused by lipid deposition in the endothelium, which can lead to various cardiovascular diseases. NASH and AS share common risk factors, and NASH can also elevate the risk of AS, causing a higher morbidity and mortality rate for atherosclerotic heart disease. Therefore, timely detection and diagnosis of NASH and AS are particularly important. In this study, differential gene expression analysis and weighted gene co-expression network analysis were performed on the AS (GSE100927) and NASH (GSE89632) datasets to obtain common crosstalk genes, respectively. Then, candidate Hub genes were screened using four topological algorithms and externally validated in the GSE43292 and GSE63067 datasets to obtain Hub genes. Furthermore, immune infiltration analysis and gene set variation analysis were performed on the Hub genes to explore the underlying mechanisms. The DGIbd database was used to screen candidate drugs for AS and NASH. Finally, a NASH model was constructed using free fatty acid-induced human L02 cells, an AS model was constructed using lipopolysaccharide-induced HUVECs, and a co-morbidity model was constructed using L02 cells and HUVECs to verify Hub gene expression. The result showed that a total of 113 genes common to both AS and NASH were identified as crosstalk genes, and enrichment analysis indicated that these genes were mainly involved in the regulation of immune and metabolism-related pathways. 28 candidate Hub genes were screened according to four topological algorithms, and CXCL9, IL2RB, and SPP1 were identified as Hub genes after in vitro experiments and external dataset validation. The ROC curves and SVM modeling demonstrated the good diagnostic efficacy of these three Hub genes. In addition, the Hub genes are strongly associated with immune cell infiltration, especially macrophages and γ-δ T cell infiltration. Finally, five potential therapeutic drugs were identified. has-miR-185 and hsa-miR-335 were closely related to AS and NASH. This study demonstrates that CXCL9, IL2RB, and SPP1 may serve as potential biomarkers for the diagnosis of the co-morbidity patterns of AS and NASH and as potential targets for drug therapy.
Collapse
Affiliation(s)
- Xize Wu
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
- Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, 226000, Jiangsu, China
| | - Changbin Yuan
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
| | - Jiaxiang Pan
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, Liaoning, China
| | - Yi Zhou
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
| | - Xue Pan
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
- Dazhou Vocational College of Chinese Medicine, Dazhou, 635000, Sichuan, China
| | - Jian Kang
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
| | - Lihong Ren
- Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, 226000, Jiangsu, China.
| | - Lihong Gong
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China.
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, Liaoning, China.
- Liaoning Provincial Key Laboratory of TCM Geriatric Cardio-Cerebrovascular Diseases, Shenyang, 110847, Liaoning, China.
| | - Yue Li
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, Liaoning, China.
- Liaoning Provincial Key Laboratory of TCM Geriatric Cardio-Cerebrovascular Diseases, Shenyang, 110847, Liaoning, China.
| |
Collapse
|
7
|
Anastasio C, Donisi I, Colloca A, D’Onofrio N, Balestrieri ML. MiR-148a-3p/SIRT7 Axis Relieves Inflammatory-Induced Endothelial Dysfunction. Int J Mol Sci 2024; 25:5087. [PMID: 38791128 PMCID: PMC11121049 DOI: 10.3390/ijms25105087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
In endothelial cells, miR-148a-3p is involved in several pathological pathways, including chronic inflammatory conditions. However, the molecular mechanism of miR-148a-3p in endothelial inflammatory states is, to date, not fully elucidated. To this end, we investigated the involvement of miR-148a-3p in mitochondrial dysfunction and cell death pathways in human aortic endothelial cells (teloHAECs) treated with interleukin-6 (IL-6), a major driver of vascular dysfunction. The results showed that during IL6-activated inflammatory pathways, including increased protein levels of sirtuin 7 (SIRT7) (p < 0.01), mitochondrial stress (p < 0.001), and apoptosis (p < 0.01), a decreased expression of miR-148a-3p was observed (p < 0.01). The employment of a miR-148a mimic counteracted the IL-6-induced cytokine release (p < 0.01) and apoptotic cell death (p < 0.01), and ameliorated mitochondria redox homeostasis and respiration (p < 0.01). The targeted relationship between miR-148a-3p and SIRT7 was predicted by a bioinformatics database analysis and validated via the dual-luciferase reporter assay. Mechanistically, miR-148a-3p targets the 3' untranslated regions of SIRT7 mRNA, downregulating its expression (p < 0.01). Herein, these in vitro results support the role of the miR-148a-3p/SIRT7 axis in counteracting mitochondrial damage and apoptosis during endothelial inflammation, unveiling a novel target for future strategies to prevent endothelial dysfunction.
Collapse
Affiliation(s)
| | | | | | - Nunzia D’Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (C.A.); (I.D.); (A.C.); (M.L.B.)
| | | |
Collapse
|
8
|
Yan R, Zhang X, Xu W, Li J, Sun Y, Cui S, Xu R, Li W, Jiao L, Wang T. ROS-Induced Endothelial Dysfunction in the Pathogenesis of Atherosclerosis. Aging Dis 2024; 16:AD.2024.0309. [PMID: 38502586 PMCID: PMC11745424 DOI: 10.14336/ad.2024.0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/08/2024] [Indexed: 03/21/2024] Open
Abstract
Various signaling pathways are regulated by reactive oxygen species (ROS), which are radical oxygen intermediates under normal physiological conditions. However, when the buffering capacity of antioxidant enzymes is exceeded by the accumulation of ROS, oxidative stress, and endothelial cell dysfunction occur, which have been recognized as key contributors to the development of atherosclerosis. In this review, an overview is provided on mechanisms underlying ROS generation in endothelial cells and the involved regulatory pathways. Further, we discuss the ROS induced endothelial cell dysfunction and its relationship with atherosclerosis. Current knowledge on ROS-induced endothelial impairment is presented, characterized by decreased NO bioavailability, intracellular dysfunction and ox-LDL accumulation. Furthermore, biomarkers such as oxidative products of lipid, protein, and nucleotide are discussed as measurements for ROS levels. Novel interventions targeting oxidative stress are listed as potential pharmacotherapies in clinical practice. In conclusion, this review presents a systematic analysis of the mechanisms underlying ROS generation and elucidates how manipulation of these mechanisms can safeguard endothelial cell function.
Collapse
Affiliation(s)
- Ruiyi Yan
- Eight-year Medical Doctor Program, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Wenlong Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Jiayao Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Yixin Sun
- First Hospital, Peking University, Beijing, China.
| | - Shengyan Cui
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
- Department of Interventional Neuroradiology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| |
Collapse
|
9
|
Jin Q, Ma F, Liu T, Yang L, Mao H, Wang Y, Peng L, Li P, Zhan Y. Sirtuins in kidney diseases: potential mechanism and therapeutic targets. Cell Commun Signal 2024; 22:114. [PMID: 38347622 PMCID: PMC10860260 DOI: 10.1186/s12964-023-01442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/12/2023] [Indexed: 02/15/2024] Open
Abstract
Sirtuins, which are NAD+-dependent class III histone deacetylases, are involved in various biological processes, including DNA damage repair, immune inflammation, oxidative stress, mitochondrial homeostasis, autophagy, and apoptosis. Sirtuins are essential regulators of cellular function and organismal health. Increasing evidence suggests that the development of age-related diseases, including kidney diseases, is associated with aberrant expression of sirtuins, and that regulation of sirtuins expression and activity can effectively improve kidney function and delay the progression of kidney disease. In this review, we summarise current studies highlighting the role of sirtuins in renal diseases. First, we discuss sirtuin family members and their main mechanisms of action. We then outline the possible roles of sirtuins in various cell types in kidney diseases. Finally, we summarise the compounds that activate or inhibit sirtuin activity and that consequently ameliorate renal diseases. In conclusion, targeted modulation of sirtuins is a potential therapeutic strategy for kidney diseases. Video Abstract.
Collapse
Affiliation(s)
- Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
10
|
Jiang D, Xu Y, Yang L, Li P, Han X, Li Q, Yang Y, Chao L. Identification and validation of senescence-related genes in polycystic ovary syndrome. J Ovarian Res 2024; 17:7. [PMID: 38184636 PMCID: PMC10770899 DOI: 10.1186/s13048-023-01338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is an exceedingly intractable issue affecting female endocrine and reproductive health. However, the etiology and intricate pathological mechanisms of PCOS remain unclear. Nowadays, aging was found to share multiple common pathological mechanisms with PCOS, which causes probing into the pathogenesis of PCOS from senescence. However, no bioinformatics analyses have specifically focused on connection between PCOS and ovarian aging. METHODS Differentially expressed aging-related genes in PCOS were identified and then analyzed using function enrichment method. Hub genes were determined based on multiple algorithms, and expression validation of hub genes was performed in both datasets and experiments (human granulosa-like tumor cell line, KGN; human Granulosa Cell, hGCs). Finally, a transcription factor-miRNA-gene network of hub genes was constructed. RESULTS Here, we identified 73 aging-related differential expression genes (ARDEGs) by intersecting DEGs in PCOS and senescence-related gene set. Furthermore, we performed biological functions and potential pathways of ARDEGs and potential hub genes were also screened by multiple algorithms. From the perspective of immune dysfunction, we analyzed the correlation between PCOS and immune cells. Finally, TF-miRNA-gene networks were constructed. Finally, TF-miRNA-gene networks were constructed. CONCLUSIONS Our work aimed to elucidate the relation between PCOS and cellular senescence based on bioinformatics strategy, deepening the understanding of mechanisms and to seek for novel therapy strategies for improving reproductive lifespan and female health. Exploring the potential molecular mechanism of cell aging in PCOS is expected to bring a new breakthrough for PCOS diagnosis and therapy strategies. And this, might deepen our understanding about intricate mechanisms of ovarian aging.
Collapse
Affiliation(s)
- Danni Jiang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Yang Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
- Department of Reproductive Medicine, Linyi People's Hospital, Shandong University, Linyi, China
| | - Lin Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Pengfei Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Xiaojuan Han
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Qianni Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Yang Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Lan Chao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
11
|
Raza U, Tang X, Liu Z, Liu B. SIRT7: the seventh key to unlocking the mystery of aging. Physiol Rev 2024; 104:253-280. [PMID: 37676263 PMCID: PMC11281815 DOI: 10.1152/physrev.00044.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023] Open
Abstract
Aging is a chronic yet natural physiological decline of the body. Throughout life, humans are continuously exposed to a variety of exogenous and endogenous stresses, which engender various counteractive responses at the cellular, tissue, organ, as well as organismal levels. The compromised cellular and tissue functions that occur because of genetic factors or prolonged stress (or even the stress response) may accelerate aging. Over the last two decades, the sirtuin (SIRT) family of lysine deacylases has emerged as a key regulator of longevity in a variety of organisms. SIRT7, the most recently identified member of the SIRTs, maintains physiological homeostasis and provides protection against aging by functioning as a watchdog of genomic integrity, a dynamic sensor and modulator of stresses. SIRT7 decline disrupts metabolic homeostasis, accelerates aging, and increases the risk of age-related pathologies including cardiovascular and neurodegenerative diseases, pulmonary and renal disorders, inflammatory diseases, and cancer, etc. Here, we present SIRT7 as the seventh key to unlock the mystery of aging, and its specific manipulation holds great potential to ensure healthiness and longevity.
Collapse
Affiliation(s)
- Umar Raza
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, China
| | - Xiaolong Tang
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
12
|
Bu LL, Yuan HH, Xie LL, Guo MH, Liao DF, Zheng XL. New Dawn for Atherosclerosis: Vascular Endothelial Cell Senescence and Death. Int J Mol Sci 2023; 24:15160. [PMID: 37894840 PMCID: PMC10606899 DOI: 10.3390/ijms242015160] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Endothelial cells (ECs) form the inner linings of blood vessels, and are directly exposed to endogenous hazard signals and metabolites in the circulatory system. The senescence and death of ECs are not only adverse outcomes, but also causal contributors to endothelial dysfunction, an early risk marker of atherosclerosis. The pathophysiological process of EC senescence involves both structural and functional changes and has been linked to various factors, including oxidative stress, dysregulated cell cycle, hyperuricemia, vascular inflammation, and aberrant metabolite sensing and signaling. Multiple forms of EC death have been documented in atherosclerosis, including autophagic cell death, apoptosis, pyroptosis, NETosis, necroptosis, and ferroptosis. Despite this, the molecular mechanisms underlying EC senescence or death in atherogenesis are not fully understood. To provide a comprehensive update on the subject, this review examines the historic and latest findings on the molecular mechanisms and functional alterations associated with EC senescence and death in different stages of atherosclerosis.
Collapse
Affiliation(s)
- Lan-Lan Bu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Huan-Huan Yuan
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Ling-Li Xie
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Min-Hua Guo
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Duan-Fang Liao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Xi-Long Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
13
|
Zhang S, Wang X, Chen G, Tong L, Dai T, Wang L, Zhu L, Zhang H, Du D. CircRNA Galntl6 sponges miR-335 to ameliorate stress-induced hypertension through upregulating Lig3 in rostral ventrolateral medulla. Redox Biol 2023; 64:102782. [PMID: 37315345 PMCID: PMC10363431 DOI: 10.1016/j.redox.2023.102782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023] Open
Abstract
Rostral ventrolateral medulla (RVLM) is thought to serve as a major vasomotor center that participates in controlling the progression of stress-induced hypertension (SIH). Circular RNAs (circRNAs) perform important functions in the regulation of diverse physiological and pathological processes. However, information concerning the functions of RVLM circRNAs on SIH remains limited. RNA sequencing was performed to profile circRNA expression in RVLMs from SIH rats, which were induced by electric foot shocks and noises. The functions of circRNA Galntl6 in reducing blood pressure (BP) and its potential molecular mechanisms on SIH were investigated via various experiments, such as Western blot and intra-RVLM microinjection. A total of 12,242 circRNA transcripts were identified, among which circRNA Galntl6 was dramatically downregulated in SIH rats. The upregulation of circRNA Galntl6 in RVLM effectively decreased the BP, sympathetic outflow, and neuronal excitability in SIH rats. Mechanistically, circRNA Galntl6 directly sponged microRNA-335 (miR-335) and restrained it to reduce oxidative stress. Reintroduction of miR-335 observably reversed the circRNA Galntl6-induced attenuation of oxidative stress. Furthermore, Lig3 can be a direct target of miR-335. MiR-335 inhibition substantially increased the expression of Lig3 and suppressed oxidative stress, and these favorable effects were blocked by Lig3 knockdown. CircRNA Galntl6 is a novel factor that impedes SIH development, and the circRNA Galntl6/miR-335/Lig3 axis represents one of the possible mechanisms. These findings demonstrated circRNA Galntl6 as a possibly useful target for the prevention of SIH.
Collapse
Affiliation(s)
- Shuai Zhang
- International Cooperation Laboratory of Molecular Medicine, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Xueping Wang
- College of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Gaojun Chen
- College of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lei Tong
- College of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Tengteng Dai
- College of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Linping Wang
- College of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Liucun Zhu
- College of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Haili Zhang
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, 274015, China
| | - Dongshu Du
- College of Life Sciences, Shanghai University, Shanghai, 200444, China; College of Agriculture and Bioengineering, Heze University, Heze, Shandong, 274015, China; Shaoxing Institute of Shanghai University, Shaoxing, Zhejiang, 312000, China.
| |
Collapse
|
14
|
Liu YP, Wen R, Liu CF, Zhang TN, Yang N. Cellular and molecular biology of sirtuins in cardiovascular disease. Biomed Pharmacother 2023; 164:114931. [PMID: 37263163 DOI: 10.1016/j.biopha.2023.114931] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023] Open
Abstract
Sirtuins (SIRTs) are a nicotinic adenine dinucleotide (+) -dependent histone deacetylase that regulates critical signaling pathways in prokaryotes and eukaryotes. Studies have identified seven mammalian homologs of the yeast SIRT silencing message regulator 2, namely, SIRT1-SIRT7. Recent in vivo and in vitro studies have successfully demonstrated the involvement of SIRTs in key pathways for cell biological function in physiological and pathological processes of the cardiovascular system, including processes including cellular senescence, oxidative stress, apoptosis, DNA damage, and cellular metabolism. Emerging evidence has stimulated a significant evolution in preventing and treating cardiovascular disease (CVD). Here, we review the important roles of SIRTs for the regulatory pathways involved in the pathogenesis of cardiovascular diseases and their molecular targets, including novel protein post-translational modifications of succinylation. In addition, we summarize the agonists and inhibitors currently identified to target novel specific small molecules of SIRTs. A better understanding of the role of SIRTs in the biology of CVD opens new avenues for therapeutic intervention with great potential for preventing and treating CVD.
Collapse
Affiliation(s)
- Yong-Ping Liu
- Department of Pediatric, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China
| | - Ri Wen
- Department of Pediatric, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China
| | - Chun-Feng Liu
- Department of Pediatric, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China
| | - Tie-Ning Zhang
- Department of Pediatric, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Ni Yang
- Department of Pediatric, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| |
Collapse
|
15
|
Minjares M, Wu W, Wang JM. Oxidative Stress and MicroRNAs in Endothelial Cells under Metabolic Disorders. Cells 2023; 12:1341. [PMID: 37174741 PMCID: PMC10177439 DOI: 10.3390/cells12091341] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Reactive oxygen species (ROS) are radical oxygen intermediates that serve as important second messengers in signal transduction. However, when the accumulation of these molecules exceeds the buffering capacity of antioxidant enzymes, oxidative stress and endothelial cell (EC) dysfunction occur. EC dysfunction shifts the vascular system into a pro-coagulative, proinflammatory state, thereby increasing the risk of developing cardiovascular (CV) diseases and metabolic disorders. Studies have turned to the investigation of microRNA treatment for CV risk factors, as these post-transcription regulators are known to co-regulate ROS. In this review, we will discuss ROS pathways and generation, normal endothelial cell physiology and ROS-induced dysfunction, and the current knowledge of common metabolic disorders and their connection to oxidative stress. Therapeutic strategies based on microRNAs in response to oxidative stress and microRNA's regulatory roles in controlling ROS will also be explored. It is important to gain an in-depth comprehension of the mechanisms generating ROS and how manipulating these enzymatic byproducts can protect endothelial cell function from oxidative stress and prevent the development of vascular disorders.
Collapse
Affiliation(s)
- Morgan Minjares
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA;
| | - Wendy Wu
- Vera P Shiffman Medical Library, Wayne State University, 320 E Canfield St., Detroit, MI 48201, USA;
| | - Jie-Mei Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA;
- Center for Molecular Medicine and Genetics, Wayne State University, 320 E Canfield St., Detroit, MI 48201, USA
- Barbara Ann Karmanos Cancer Institute, 4100 John R St., Detroit, MI 48201, USA
| |
Collapse
|
16
|
E3 ligase adaptor FBXO7 contributes to ubiquitination and proteasomal degradation of SIRT7 and promotes cell death in response to hydrogen peroxide. J Biol Chem 2023; 299:102909. [PMID: 36646384 PMCID: PMC9971319 DOI: 10.1016/j.jbc.2023.102909] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Parkinson's disease (PD) is a degenerative disorder of the central nervous system that affects 1% of the population over the age of 60. Although aging is one of the main risk factors for PD, the pathogenic mechanism of this disease remains unclear. Mutations in the F-box-only protein 7 (FBXO7) gene have been previously found to cause early onset autosomal recessive familial PD. FBXO7 is an adaptor protein in the SKP1-Cullin-1-F-box (SCF) E3 ligase complex that facilitates the ubiquitination of substrates. Sirtuin 7 (SIRT7) is an NAD+-dependent histone deacetylase that regulates aging and stress responses. In this study, we identified FBXO7 as a novel E3 ligase for SIRT7 that negatively regulates intracellular SIRT7 levels through SCF-dependent Lys-48-linked polyubiquitination and proteasomal degradation. Consequently, we show that FBXO7 promoted the blockade of SIRT7 deacetylase activity, causing an increase in acetylated histone 3 levels at the Lys-18 and Lys-36 residues and the repression of downstream RPS20 gene transcription. Moreover, we demonstrate that treatment with hydrogen peroxide triggered the FBXO7-mediated degradation of SIRT7, leading to mammalian cell death. In particular, the PD-linked FBXO7-R498X mutant, which reduced SCF-dependent E3 ligase activity, did not affect the stability of SIRT7. Collectively, these findings suggest that FBXO7 negatively regulates SIRT7 stability and may suppress the cytoprotective effects of SIRT7 during hydrogen peroxide-induced mammalian cell death.
Collapse
|
17
|
Lagunas-Rangel FA. SIRT7 in the aging process. Cell Mol Life Sci 2022; 79:297. [PMID: 35585284 PMCID: PMC9117384 DOI: 10.1007/s00018-022-04342-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/19/2022] [Accepted: 05/02/2022] [Indexed: 12/20/2022]
Abstract
Aging is the result of the accumulation of a wide variety of molecular and cellular damage over time. This has been associated with a number of features termed hallmarks of aging, including genomic instability, loss of proteostasis, telomere attrition, dysregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and impaired intercellular communication. On the other hand, sirtuins are enzymes with an important role in aging and life extension, of which humans have seven paralogs (SIRT1 to SIRT7). SIRT7 is the least studied sirtuin to date, but it has been reported to serve important functions, such as promoting ribosomal RNA expression, aiding in DNA damage repair, and regulating chromatin compaction. Several studies have established a close relationship between SIRT7 and age-related processes, but knowledge in this area is still scarce. Therefore, the purpose of this review was to analyze how SIRT7 is associated with each of the hallmarks of aging, as well as with some of age-associated diseases, such as cardiovascular diseases, obesity, osteoporosis, and cancer.
Collapse
|
18
|
Li XT, Zhang YP, Zhang MW, Zhang ZZ, Zhong JC. Sirtuin 7 serves as a promising therapeutic target for cardiorenal diseases. Eur J Pharmacol 2022; 925:174977. [PMID: 35513019 DOI: 10.1016/j.ejphar.2022.174977] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/06/2022] [Accepted: 04/22/2022] [Indexed: 12/25/2022]
Abstract
Cardiovascular disorders and associated renal diseases account for the main cause of morbidity and mortality worldwide, necessitating the development of novel effective approaches for the prevention and treatment of cardiorenal diseases. Mammalian sirtuins (SIRTs) function as nicotinamide adenine dinucleotide (NAD+)-dependent protein/histone deacetylases. Seven members of SIRTs share a highly invariant catalytic core domain responsible for the specific enzymatic activity. Intriguingly, the broad distribution of SIRTs and alternative isoforms implicate its distinct functions in diverse cardiac and renal cells and tissue types. Notably, SIRT7 has been shown to exert beneficial effects in cardiorenal physiology and pathophysiology via modulation of senescence, DNA damage repair, ribosomal RNA synthesis, protein biosynthesis, angiogenesis, apoptosis, superoxide generation, cardiorenal metabolism, and dysfunction. Furthermore, SIRT7 has emerged as a critical modulator of a broad range of cellular activities including oxidative stress, inflammation response, endoplasmic reticulum stress, and mitochondrial homeostasis, which are all of great significance in postponing the progression of cardiorenal diseases. More importantly, SIRT7 has been implicated in cardiorenal hypertrophy, fibrosis, remodeling, heart failure, atherosclerosis as well as renal acid-base and electrolyte homeostasis as an essential regulator. In this review, we focus on the involvement in cardiorenal physiology and pathophysiology, diverse actions and underlying mechanisms of the SIRT7 signaling, highlighting its updated research progress in heart failure, atherosclerosis, diabetic nephropathy and other cardiorenal diseases. Targeting SIRT7 signaling could be potentially exploited as a therapeutic strategy aiming to prevent and treat cardiorenal diseases.
Collapse
Affiliation(s)
- Xue-Ting Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China; Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ye-Ping Zhang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Mi-Wen Zhang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China; Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zhen-Zhou Zhang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China; Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China; Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|