1
|
Xu G, Li W, Zhao Y, Fan T, Gao Q, Wang Y, Zhang F, Gao M, An Z, Yang Z. Overexpression of Lias Gene Alleviates Cadmium-Induced Kidney Injury in Mice Involving Multiple Effects: Metabolism, Oxidative Stress, and Inflammation. Biol Trace Elem Res 2024; 202:2797-2811. [PMID: 37804446 DOI: 10.1007/s12011-023-03883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/23/2023] [Indexed: 10/09/2023]
Abstract
Oxidative stress is an important mechanism underlying toxicity induced by cadmium (Cd) exposure. However, there are significant differences of the antioxidant baseline in different populations. This means that different human has different intensity of oxidative stress in vivo after exposure to toxicants. LiasH/H mouse is a specific model which is created by genetically modifying the Lias 3'-untranslated region (3'-UTR). LiasH/H mice express high levels of LA and have high endogenous antioxidant capacity which is approximately 150% higher than wild-type C57BL/6 J mice (WT, Lias+/+). But more importantly, they have dual roles of metal chelator and antioxidant. Here, we applied this mouse model to evaluate the effect of endogenous antioxidant levels in the body on alleviating Cd-induced renal injury including Cd metabolism, oxidative stress, and inflammation. In the experiment, mice drank water containing Cd (50 mg/L), for 12 weeks. Many biomarkers of Cd metabolism, oxidative stress, inflammation, and major pathological changes in the kidney were examined. The results showed overexpression of the Lias gene decreased Cd burden in the body of mice, mitigated oxidative stress, attenuated the inflammatory response, and subsequent alleviated cadmium-induced kidney injury in mice.
Collapse
Affiliation(s)
- Guangcui Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China.
| | - Weibing Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Yingzheng Zhao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Ting Fan
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Qiyu Gao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Yongbin Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Fengquan Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Mingjing Gao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Zijiang Yang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China.
| |
Collapse
|
2
|
Omar EM, El-Sayed NS, Elnozahy FY, Hassan E, Amr A, Augustyniak M, El-Samad LM, El Wakil A. Reversal Effects of Royal Jelly and Propolis Against Cadmium-Induced Hepatorenal Toxicity in Rats. Biol Trace Elem Res 2024; 202:1612-1627. [PMID: 37500819 PMCID: PMC10859352 DOI: 10.1007/s12011-023-03775-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
Heavy metal toxicity is an exponentially growing health problem. In this study, we aimed to assess the protective properties of propolis and royal jelly against cadmium adverse effects. Thirty-two adult male rats were included in our study; kidney and liver functions, histopathological changes, and the level of oxidative stress were evaluated in rats exposed to a daily dose of 4.5 mg cadmium per kilogram of body weight for 1 month and those cotreated simultaneously with either propolis (50 mg/kg/day) or royal jelly (200 mg/kg/day) with cadmium compared to control animals. Cadmium-mediated hepatorenal toxicity was manifested as per the increased oxidative stress, function deterioration, and characteristic histopathological aberrations. The supplementation of royal jelly or propolis restores most of the affected parameters to a level similar to the control group. However, the parameters describing the grade of DNA damage and the interleukin-1β expression in the liver, as well as the levels of malondialdehyde and metallothionein, were slightly elevated compared to controls, despite the regular use of royal jelly or propolis. It is worth noting that better results were found in the case of royal jelly compared to propolis administration. Most likely, the ability of both products to chelate cadmium and contribute in reducing oxidative stress is of great importance. However, further investigations are needed to complement the knowledge about the expected nutritional and medicinal values.
Collapse
Affiliation(s)
- Eman M Omar
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, 21519, Egypt
| | - Norhan S El-Sayed
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, 21519, Egypt
| | - Fatma Y Elnozahy
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, 21519, Egypt
| | - Eman Hassan
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria, 21526, Egypt
| | - Alaa Amr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21568, Egypt
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21568, Egypt
| | - Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria, 21526, Egypt.
| |
Collapse
|
3
|
Yang S, Li Y, Wheldon CW, Prosperi M, George TJ, Shenkman EA, Wang F, Bian J, Guo Y. The Burden of Cancer and Pre-cancerous Conditions Among Transgender Individuals in a Large Healthcare Network. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.24.24304777. [PMID: 38585849 PMCID: PMC10996763 DOI: 10.1101/2024.03.24.24304777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The current study aimed to examine the prevalence of and risk factors for cancer and pre-cancerous conditions, comparing transgender and cisgender individuals, using 2012-2023 electronic health record data from a large healthcare system. We identified 2,745 transgender individuals using a previously validated computable phenotype and 54,900 matched cisgender individuals. We calculated the prevalence of cancer and pre-cancer related to human papillomavirus (HPV), human immunodeficiency virus (HIV), tobacco, alcohol, lung, breast, colorectum, and built multivariable logistic models to examine the association between gender identity and the presence of cancer or pre-cancer. Results indicated similar odds of developing cancer across gender identities, but transgender individuals exhibited significantly higher risks for pre-cancerous conditions, including alcohol-related, breast, and colorectal pre-cancers compared to cisgender women, and HPV-related, tobacco-related, alcohol-related, and colorectal pre-cancers compared to cisgender men. These findings underscore the need for tailored interventions and policies addressing cancer health disparities affecting the transgender population.
Collapse
Affiliation(s)
- Shuang Yang
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, Florida, USA
| | - Yongqiu Li
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, Florida, USA
| | - Christopher W. Wheldon
- Department of Social and Behavioral Sciences, Temple University, Philadelphia, Pennsylvania, USA
| | - Mattia Prosperi
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| | - Thomas J. George
- Division of Hematology and Oncology, University of Florida, Gainesville, Florida, USA
| | - Elizabeth A. Shenkman
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, Florida, USA
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medicine, New York, New York, USA
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, Florida, USA
| | - Yi Guo
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Yin G, Wang Z, Li P, Cao Y, Zhou Z, Wu W, Li X, Lou Q. Tim-3 deficiency aggravates cadmium nephrotoxicity via regulation of NF-κB signaling and mitochondrial damage. Int Immunopharmacol 2024; 128:111434. [PMID: 38176346 DOI: 10.1016/j.intimp.2023.111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Kidney is the target organ of serious cadmium injury. Kidney damage caused by cadmium exposure is greatly influenced by the inflammatory response and mitochondrial damage. T cell immunoglobulin domain and mucin domain 3 (Tim-3) is an essential protein that functions as a negative immunological checkpoint to regulate inflammatory responses. Mice were given cadmium treatments at various dosages (0, 1.5, 3, 4.5 mg/kg) and times (0, 3, 5, 7 days) to assess the effects of cadmium on kidney damage. We found that the optimal way to induce kidney injury in mice was to inject 4.5 mg/kg of cadmium intraperitoneally for five days. It is interesting that giving mice 4.5 mg/kg of cadmium intravenously for seven days drastically lowered their survival rate. After cadmium exposure, Tim-3 knockout mice exhibited higher blood concentrations of urea nitrogen and creatinine compared to control mice. Tim-3 impacted the expression of oxidative stress-associated genes such as UDP glucuronosyltransferase family 1 member A9 (Ugt1a9), oxidative stress-induced growth inhibitor 2 (Osgin2), and S100 calcium binding protein A8 (S100a8), according to RNA-seq and real-time RT-PCR data. Tim-3 deficiency also resulted in activated nuclear factor-kappa B (NF-κB) signaling pathway. The NF-κB inhibitor 2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide (TPCA-1) significantly alleviated cell apoptosis, oxidative stress response, and renal tubule inflammation in Tim-3 knockout mice exposed to cadmium. Furthermore, cadmium caused obvious B-cell lymphoma protein 2 (Bcl-2)-associated X (Bax) translocation from cytoplasm to mitochondria, which can be inhibited by TPCA-1. In conclusion, Tim-3 prevented mitochondrial damage and NF-κB signaling activation, hence providing protection against cadmium nephrotoxicity.
Collapse
Affiliation(s)
- Guanyi Yin
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China
| | - Zhonghang Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China
| | - Peiyao Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China
| | - Yaping Cao
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China
| | - Ziou Zhou
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China
| | - Wenbin Wu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China
| | - Xuemiao Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China
| | - Qiang Lou
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
5
|
Liu H, Wan X, Yao L, Zhao Q, Yang Y, Liu H, Shang J, Zeng F, Wang X, Huang S. Differentially expressed long non-coding RNAs and mRNAs of cadmium exposure on learning disability of offspring rats. Eur J Med Res 2024; 29:82. [PMID: 38287418 PMCID: PMC10823636 DOI: 10.1186/s40001-024-01663-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Cadmium (Cd) exposure has been found to have detrimental effects on the development of the central nervous system and cognitive ability in children. However, there is ongoing debate regarding the impact of maternal Cd exposure on the cognitive ability of offspring. In this study, we aimed to investigate the mechanisms underlying the influence of maternal Cd exposure on the cognitive ability of offspring rats. METHODS Here, we constructed a model of cadmium poisoning in first-generation rats through gavage. The cognitive and memory abilities of its offspring were evaluated by water maze experiment. Then, we used the gene chip to find out the key genes, and we performed qRT-PCR detection of these genes. Subsequently, enrichment analysis was employed to identify pathways. Finally, we constructed a co-expression network consisting of LncRNAs and mRNAs to elucidate the biological functions and regulatory mechanisms of LncRNAs. RESULTS The results of the water maze trial demonstrated that the offspring of rats exposed to cadmium in the first generation had reduced cognitive and memory abilities. Through an analysis of gene expression in the hippocampus of the cadmium-treated rats' offspring and the control group, we identified a correlation between the islet secretion pathway and the cognitive impairment observed in the offspring. Utilizing various algorithms, we identified Cpa1 and Prss1 as potential key genes associated with the cognitive impairment caused by cadmium. The results of qRT-PCR demonstrated a decrease in the expression levels of these genes in the hippocampus of the cadmium-treated rats' offspring. In addition, in the co-expression network, we observed that Cpa1 was co-expressed with 11 LncRNAs, while Prss1 was associated with 4 unexplored LncRNAs. Furthermore, we conducted an analysis to examine the relationship between Cpa1, Prss1-related transcription factors, and LncRNAs. CONCLUSION Overall, this study provides novel insights into the molecular effects of first generation Cd exposure on the cognitive ability of offspring. The target genes and signaling pathways investigated in this study could serve as potential targets for improving neurodevelopment and cognitive ability in children.
Collapse
Affiliation(s)
- Hui Liu
- School of Nursing, Jiujiang University, Jiujiang, 332000, China
| | - Xichen Wan
- School of Medicine, Jiujiang University, Jiujiang, 332000, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Liyun Yao
- SpecAlly Life Technology Co., Ltd., Wuhan, 430070, China
| | - Qihan Zhao
- School of Medicine, Jiujiang University, Jiujiang, 332000, China
| | - Yong Yang
- SpecAlly Life Technology Co., Ltd., Wuhan, 430070, China
| | - Hongtao Liu
- SpecAlly Life Technology Co., Ltd., Wuhan, 430070, China
| | - Jun Shang
- SpecAlly Life Technology Co., Ltd., Wuhan, 430070, China
- Wuhan Institute of Biotechnology, Wuhan, 430070, China
| | - Fanfan Zeng
- School of Medicine, Jiujiang University, Jiujiang, 332000, China
| | - Xin Wang
- School of Medicine, Jiujiang University, Jiujiang, 332000, China
| | - Shaoxin Huang
- School of Nursing, Jiujiang University, Jiujiang, 332000, China.
- School of Medicine, Jiujiang University, Jiujiang, 332000, China.
- SpecAlly Life Technology Co., Ltd., Wuhan, 430070, China.
| |
Collapse
|
6
|
Shen Z, Cui T, Liu Y, Wu S, Han C, Li J. Astragalus membranaceus and Salvia miltiorrhiza ameliorate diabetic kidney disease via the "gut-kidney axis". PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155129. [PMID: 37804821 DOI: 10.1016/j.phymed.2023.155129] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/02/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND The combination of Astragalus membranaceus and Salvia miltiorrhiza (AS) is an effective prescription for treating diabetic kidney disease (DKD) in traditional Chinese medicine. Its efficacy in treating DKD has been confirmed, but the potential regulatory mechanism has not yet been fully clarified. PURPOSE To explore the mechanism by which AS regulates the "gut-metabolism-transcription" coexpression network under the action of the "gut-kidney axis" to ameliorate DKD. METHODS SD rats were used to establish the DKD model by injecting STZ. After AS intervention, the structure and function of the kidney and colon were observed. We sequenced the gut microbiota utilizing 16S rDNA, identified serum differential metabolites using LC‒MS/MS, and observed renal mRNA expression by RNA seq. The "gut-metabolism-transcription" coexpression network was further constructed, and the target bacteria, target metabolites, and target genes of AS were ultimately screened and validated. RESULTS AS improved renal pathology and functional damage and increased the abundance of Akkermansia, Akkermansia_muciniphila, Lactobacillus and Lactobacillus_murinus. Fourteen target metabolites of AS were identified, which were mainly concentrated in 19 KEGG pathways, including sphingolipid metabolism and glycerophospholipid metabolism. Sixty-three target mRNAs of AS were identified. The top 20 pathways were closely related to glycolipid metabolism, and 14 differential mRNAs were expressed in these pathways. Correlation analysis showed that Akkermansia, Akkermansia muciniphila, Lactobacillus and Lactobacillus murinus were closely associated with sphingolipid metabolism, glycerophospholipid metabolism, arachidonic acid metabolism, ascorbate and aldarate metabolism and galactose metabolism. Moreover, the target metabolites and target mRNAs of AS were also enriched in five identical pathways of sphingolipid metabolism, glycerophospholipid metabolism, arachidonic acid metabolism, ascorbate and aldarate metabolism and galactose metabolism, including 8 different metabolites, such as sphingosine, and 5 different genes, such as Kng1. The 8 metabolites had high AUC prediction values, and the validation of the 5 genes was consistent with the sequencing results. CONCLUSION Our research showed that AS can improve DKD via the "gut-kidney axis". Akkermansia muciniphila and Lactobacillus murinus were the main driving bacteria, and five pathways related to glycolipid metabolism, especially sphingolipid metabolism and glycerophospholipid metabolism, may be important follow-up reactions and regulatory mechanisms.
Collapse
Affiliation(s)
- Zhen Shen
- Shandong University of Traditional Chinese Medicine, No.4655 Daxue Road, Jinan 250014, China
| | - Tao Cui
- Jinan Zhangqiu District Hospital of Traditional Chinese Medicine, Jinan 250200, China
| | - Yao Liu
- Shandong University of Traditional Chinese Medicine, No.4655 Daxue Road, Jinan 250014, China
| | - Shuai Wu
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.16369 Jingshi Road, Jinan 250014, China
| | - Cong Han
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.16369 Jingshi Road, Jinan 250014, China.
| | - Jie Li
- Shandong University of Traditional Chinese Medicine, No.4655 Daxue Road, Jinan 250014, China.
| |
Collapse
|
7
|
Han C, Shen Z, Cui T, Ai SS, Gao RR, Liu Y, Sui GY, Hu HZ, Li W. Yi-Shen-Hua-Shi granule ameliorates diabetic kidney disease by the "gut-kidney axis". JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116257. [PMID: 36787845 DOI: 10.1016/j.jep.2023.116257] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yi-Shen-Hua-Shi (YSHS) granule is an effective prescription widely used in traditional Chinese medicine to treat diabetic kidney disease (DKD), its exact efficacy in treating DKD has been confirmed but the underlying regulatory mechanism has not been fully elucidated. AIM OF THE STUDY To explore the mechanism by which YSHS granule regulates intestinal flora and serum metabolites and then regulates renal mRNA expression through the "gut-kidney axis", so as to improve DKD. MATERIALS AND METHODS 40 rats were divided into five groups: Normal group (N) (normal saline), model group (M) (STZ + normal saline), YSHS granule low-dose group (YL) (STZ + 2.27 g kg-1 d-1), YSHS granule high-dose group (YH) (STZ + 5.54g kg-1 d-1) and valsartan group (V) (STZ + 7.38mg kg-1 d-1). After 6 weeks, changes in blood glucose, blood lipids, and renal function related indexes were observed, as well as pathological changes in the kidney and colon. Intestinal microbiota was sequenced by 16S rDNA, serum differential metabolites were identified by LC-MS/MS, and renal differences in mRNA expression were observed by RNA-seq. Further, through the association analysis of intestinal differential microbiota, serum differential metabolites and kidney differential mRNAs, the target flora, target metabolites and target genes of YSHS granule were screened and verified, and the "gut-metabolism-transcription" co-expression network was constructed. RESULTS In group M, blood glucose, blood lipid and proteinuria were increased, inflammation, oxidative stress and renal function were aggravated, with the proliferation of mesangial matrix, vacuolar degeneration of renal tubules, accumulation of collagen and lipid, and increased intestinal permeability, and YSHS granule and valsartan improved these disorders to varying degrees. High dose of YSHS granule improved the diversity and abundance of flora, decreased the F/B value, greatly increased the abundance of Lactobacillus and Lactobacillus_murinus, and decreased the abundance of Prevoella UCG_001. 14 target metabolites of YSHS granule were identified, which were mainly enriched in 20 KEGG pathways, such as Glycerophospholipid metabolism, Sphingolipid metabolism and Phenylalanine, tyrosine and tryptophan biosynthesis. 96 target mRNAs of YSHS granule were also identified. The enriched top 20 pathways were closely related to glucose and lipid metabolism, of which a total of 21 differential mRNAs were expressed. Further correlation analysis revealed that Lactobacillus, Lactobacillus_murinus and Prevotella UCG_001 were highly correlated with Glycerophospholipid metabolism, Sphingolipid metabolism and Phenylalanine, tyrosine and tryptophan biosynthesis pathways. At the same time, 6 pathways including Glycerophospholipid metabolism, Arachidonic acid metabolism, Purine metabolism, Primary bile acid biosynthesis, Ascorbate and aldarate metabolism and Galactose metabolism were co-enriched by the target metabolites and the target mRNAs of YSHS granule, including 7 differential metabolites such as phosphatidylethanolamine and 7 differential genes such as Adcy3. The 7 differential metabolites had high predictive value of AUC, and the validation of 7 differential genes were highly consistent with the sequencing results. CONCLUSION YSHS granule could improve DKD through the "gut-kidney axis". Lactobacillus and Lactobacillus_murinus were the main driving forces. 6 pathways related to glucose and lipid metabolism, especially Glycerophospholipid metabolism, may be an important follow-up response and regulatory mechanism.
Collapse
Affiliation(s)
- Cong Han
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhen Shen
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Tao Cui
- Jinan Zhangqiu District Hospital of Traditional Chinese Medicine, Jinan, 250200, China
| | - Shan-Shan Ai
- Jining Medical University, Jining, 272067, China
| | - Ran-Ran Gao
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yao Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Gui-Yuan Sui
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Hong-Zhen Hu
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Wei Li
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|