1
|
Moreira de Gouveia MI, Daniel J, Garrivier A, Bernalier-Donadille A, Jubelin G. Diversity of ethanolamine utilization by human commensal Escherichiacoli. Res Microbiol 2023; 174:103989. [PMID: 35988812 DOI: 10.1016/j.resmic.2022.103989] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 01/11/2023]
Abstract
Ethanolamine (EA) is a substrate naturally present in the human gut and its catabolism by bacteria relies on the presence of eut genes encoding specific metabolic enzymes and accessory proteins. To date, EA utilization has been mostly investigated in gut bacterial pathogens. The aim of this study was to evaluate the ability of human gut commensal Escherichia coli isolates to utilize EA as a nitrogen and/or carbon sources. Although the capacity to consume EA is heterogeneous between the 40 strains of our collection, we determined that most of them could degrade EA to generate ammonia, a useful nitrogen resource for growth. Three isolates were also able to exploit EA as a carbon source. We also revealed that the inability of some strains to catabolize EA is explained either by mutations in the eut locus or by a defect in gene transcription. Finally, we demonstrated the importance of EA utilization for an optimal fitness of commensal E. coli in vivo. Our study provides new insights on the diversity of commensal E. coli strains to utilize EA as a nutrient in the gut and opens the way for new research in the field of interactions between host, gut microbiota and pathogens.
Collapse
Affiliation(s)
| | - Julien Daniel
- Université Clermont Auvergne, INRAE, MEDIS UMR454, F-63000, Clermont-Ferrand, France.
| | - Annie Garrivier
- Université Clermont Auvergne, INRAE, MEDIS UMR454, F-63000, Clermont-Ferrand, France.
| | | | - Gregory Jubelin
- Université Clermont Auvergne, INRAE, MEDIS UMR454, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
2
|
Krysenko S, Wohlleben W. Polyamine and Ethanolamine Metabolism in Bacteria as an Important Component of Nitrogen Assimilation for Survival and Pathogenicity. Med Sci (Basel) 2022; 10:40. [PMID: 35997332 PMCID: PMC9397018 DOI: 10.3390/medsci10030040] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Nitrogen is an essential element required for bacterial growth. It serves as a building block for the biosynthesis of macromolecules and provides precursors for secondary metabolites. Bacteria have developed the ability to use various nitrogen sources and possess two enzyme systems for nitrogen assimilation involving glutamine synthetase/glutamate synthase and glutamate dehydrogenase. Microorganisms living in habitats with changeable availability of nutrients have developed strategies to survive under nitrogen limitation. One adaptation is the ability to acquire nitrogen from alternative sources including the polyamines putrescine, cadaverine, spermidine and spermine, as well as the monoamine ethanolamine. Bacterial polyamine and monoamine metabolism is not only important under low nitrogen availability, but it is also required to survive under high concentrations of these compounds. Such conditions can occur in diverse habitats such as soil, plant tissues and human cells. Strategies of pathogenic and non-pathogenic bacteria to survive in the presence of poly- and monoamines offer the possibility to combat pathogens by using their capability to metabolize polyamines as an antibiotic drug target. This work aims to summarize the knowledge on poly- and monoamine metabolism in bacteria and its role in nitrogen metabolism.
Collapse
Affiliation(s)
- Sergii Krysenko
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Department of Microbiology and Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany;
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
| | - Wolfgang Wohlleben
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Department of Microbiology and Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany;
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Song JB, Huang RK, Guo MJ, Zhou Q, Guo R, Zhang SY, Yao JW, Bai YN, Huang X. Lipids associated with plant-bacteria interaction identified using a metabolomics approach in an Arabidopsis thaliana model. PeerJ 2022; 10:e13293. [PMID: 35502205 PMCID: PMC9055996 DOI: 10.7717/peerj.13293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/28/2022] [Indexed: 01/13/2023] Open
Abstract
Background Systemic acquired resistance (SAR) protects plants against a wide variety of pathogens. In recent decades, numerous studies have focused on the induction of SAR, but its molecular mechanisms remain largely unknown. Methods We used a metabolomics approach based on ultra-high-performance liquid chromatographic (UPLC) and mass spectrometric (MS) techniques to identify SAR-related lipid metabolites in an Arabidopsis thaliana model. Multiple statistical analyses were used to identify the differentially regulated metabolites. Results Numerous lipids were implicated as potential factors in both plant basal resistance and SAR; these include species of phosphatidic acid (PA), monogalactosyldiacylglycerol (MGDG), phosphatidylcholine (PC), phosphatidylethanolamine (PE), and triacylglycerol (TG). Conclusions Our findings indicate that lipids accumulated in both local and systemic leaves, while other lipids only accumulated in local leaves or in systemic leaves. PA (16:0_18:2), PE (34:5) and PE (16:0_18:2) had higher levels in both local leaves inoculated with Psm ES4326 or Psm avrRpm1 and systemic leaves of the plants locally infected with Psm avrRpm1 or Psm ES4326. PC (32:5) had high levels in leaves inoculated with Psm ES4326. Other differentially regulated metabolites, including PA (18:2_18:2), PA (16:0_18:3), PA (18:3_18:2), PE (16:0_18:3), PE (16:1_16:1), PE (34:4) and TGs showed higher levels in systemic leaves of the plants locally infected with Psm avrRpm1 or Psm ES4326. These findings will help direct future studies on the molecular mechanisms of SAR.
Collapse
Affiliation(s)
- Jian-Bo Song
- College of Life Sciences, Northwest University, Shaanxi, Xi’an, China,Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology of Shaanxi, Shaanxi, Xi’an, China
| | - Rui-Ke Huang
- College of Life Sciences, Northwest University, Shaanxi, Xi’an, China,Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology of Shaanxi, Shaanxi, Xi’an, China
| | - Miao-Jie Guo
- College of Life Sciences, Northwest University, Shaanxi, Xi’an, China,Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology of Shaanxi, Shaanxi, Xi’an, China
| | - Qian Zhou
- Shanghai Omicsspace Biotechnology Co.Ltd., Shanghai, Shanghai, China
| | - Rui Guo
- College of Life Sciences, Northwest University, Shaanxi, Xi’an, China,Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology of Shaanxi, Shaanxi, Xi’an, China
| | - Shu-Yuan Zhang
- College of Life Sciences, Northwest University, Shaanxi, Xi’an, China,Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology of Shaanxi, Shaanxi, Xi’an, China
| | - Jing-Wen Yao
- College of Life Sciences, Northwest University, Shaanxi, Xi’an, China,Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology of Shaanxi, Shaanxi, Xi’an, China
| | - Ya-Ni Bai
- College of Life Sciences, Northwest University, Shaanxi, Xi’an, China,Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology of Shaanxi, Shaanxi, Xi’an, China
| | - Xuan Huang
- College of Life Sciences, Northwest University, Shaanxi, Xi’an, China,Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology of Shaanxi, Shaanxi, Xi’an, China
| |
Collapse
|
4
|
Nang SC, Li M, Harper M, Mandela E, Bergen PJ, Rolain JM, Zhu Y, Velkov T, Li J. Polymyxin causes cell envelope remodeling and stress responses in mcr-1-harboring Escherichia coli. Int J Antimicrob Agents 2021; 59:106505. [PMID: 34954369 DOI: 10.1016/j.ijantimicag.2021.106505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 11/28/2022]
Abstract
Polymyxins remain important last-line antibiotics against multidrug-resistant Gram-negative bacteria. Unfortunately, polymyxin resistance is emerging and the mobile polymyxin resistance gene, mcr is contributing to the wide dissemination of polymyxin resistance, especially among Escherichia coli, with mcr-1 being the most commonly found variant. The objective of this study was to provide mechanistic insights into concentration-dependent transcriptomic responses of mcr-harboring E. coli following polymyxin treatment. An mcr-1-carrying clinical isolate of E. coli (LH30) was treated with polymyxin B at 2 and 8 mg/L. Bacterial cultures were collected before and 1 h following treatment for viable counting and transcriptomic analysis. Growth of E. coli LH30 was unaffected by 2 mg/L polymyxin B, whereas killing of ∼2 log10 cfu/mL occurred with 8 mg/L at 1 h. All four phosphoethanolamine (pEtN) transferase genes (mcr-1, eptA, eptB and eptC) were upregulated (FC=2.4-4.0) by 8 mg/L polymyxin B, indicating that pEtN modifications were the preferred polymyxin resistance mechanism. The higher polymyxin B concentration also affected the expression of genes involved in fatty acid, lipopolysaccharide, lipid A, phospholipid biosynthesis, iron homeostasis and oxidative stress pathways. Our transcriptomic analysis revealed that cell envelope remodeling, pEtN modification, iron acquisition and oxidative stress protective mechanisms play a key role in the survival of mcr-carrying E. coli treated with polymyxin. These findings provide new mechanistic information at the gene expression level to counter polymyxin resistance.
Collapse
Affiliation(s)
- Sue C Nang
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Victoria, Australia
| | - Mengyao Li
- Department of Critical Care Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Marina Harper
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Victoria, Australia
| | - Eric Mandela
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Victoria, Australia
| | - Phillip J Bergen
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jean-Marc Rolain
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Médecine et de Pharmacie, Marseille, France
| | - Yan Zhu
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Victoria, Australia
| | - Tony Velkov
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Victoria, Australia.
| |
Collapse
|
5
|
Krysenko S, Matthews A, Busche T, Bera A, Wohlleben W. Poly- and Monoamine Metabolism in Streptomyces coelicolor: The New Role of Glutamine Synthetase-Like Enzymes in the Survival under Environmental Stress. Microb Physiol 2021; 31:233-247. [PMID: 34044403 DOI: 10.1159/000516644] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/17/2021] [Indexed: 11/19/2022]
Abstract
Soil bacteria from the genus Streptomyces, phylum Actinobacteria, feature a complex metabolism and diverse adaptations to environmental stress. These characteristics are consequences of variable nutrition availability in the soil and allow survival under changing nitrogen conditions. Streptomyces coelicolor is a model organism for Actinobacteria and is able to use nitrogen from a variety of sources including unusual compounds originating from the decomposition of dead plant and animal material, such as polyamines or monoamines (like ethanolamine). Assimilation of nitrogen from these sources in S. coelicolor remains largely unstudied. Using microbiological, biochemical and in silico approaches, it was recently possible to postulate polyamine and monoamine (ethanolamine) utilization pathways in S. coelicolor. Glutamine synthetase-like enzymes (GS-like) play a central role in these pathways. Extensive studies have revealed that these enzymes are able to detoxify polyamines or monoamines and allow the survival of S. coelicolor in soil containing an excess of these compounds. On the other hand, at low concentrations, polyamines and monoamines can be utilized as nitrogen and carbon sources. It has been demonstrated that the first step in poly-/monoamine assimilation is catalyzed by GlnA3 (a γ-glutamylpolyamine synthetase) and GlnA4 (a γ-glutamylethanolamide synthetase), respectively. First insights into the regulation of polyamine and ethanolamine metabolism have revealed that the expression of the glnA3 and the glnA4 gene are controlled on the transcriptional level.
Collapse
Affiliation(s)
- Sergii Krysenko
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Arne Matthews
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Agnieszka Bera
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Wolfgang Wohlleben
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Anast JM, Bobik TA, Schmitz-Esser S. The Cobalamin-Dependent Gene Cluster of Listeria monocytogenes: Implications for Virulence, Stress Response, and Food Safety. Front Microbiol 2020; 11:601816. [PMID: 33240255 PMCID: PMC7677406 DOI: 10.3389/fmicb.2020.601816] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022] Open
Abstract
Several genes of the eut, pdu, and cob/cbi operons are responsible for the metabolism of ethanolamine (EA) and 1,2-propanediol (PD) and are essential during the pathogenic lifecycles of various enteric pathogens. Studies concerning EA and PD metabolism have primarily focused on bacterial genera from the family Enterobacteriaceae, especially the genus Salmonella. Listeria monocytogenes is a member of the Firmicutes phylum and is the causative agent of the rare but highly fatal foodborne disease listeriosis. The eut, pdu, and cob/cbi operons are organized as a single large locus collectively referred to as the cobalamin-dependent gene cluster (CDGC). The CDGC is well conserved in L. monocytogenes; however, functional characterization of the genes in this cluster and how they may contribute to Listeria virulence and stress tolerance in food production environments is highly limited. Previous work suggests that the degradation pathway of PD is essential for L. monocytogenes establishment in the gastrointestinal tract. In contrast, EA metabolism may be more important during intracellular replication. Other studies indicate that the CDGC is utilized when L. monocytogenes is exposed to food and food production relevant stress conditions. Perhaps most noteworthy, L. monocytogenes exhibits attenuated growth at cold temperatures when a key EA utilization pathway gene was deleted. This review aims to summarize the current knowledge of these pathways in L. monocytogenes and their significance in virulence and stress tolerance, especially considering recent developments.
Collapse
Affiliation(s)
- Justin M Anast
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States.,Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Thomas A Bobik
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States.,Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Stephan Schmitz-Esser
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States.,Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
7
|
Initial Metabolic Step of a Novel Ethanolamine Utilization Pathway and Its Regulation in Streptomyces coelicolor M145. mBio 2019; 10:mBio.00326-19. [PMID: 31113893 PMCID: PMC6529630 DOI: 10.1128/mbio.00326-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Until now, knowledge of the utilization of ethanolamine in Streptomyces was limited. Our work represents the first attempt to reveal a novel ethanolamine utilization pathway in the actinobacterial model organism S. coelicolor through the characterization of the key enzyme gamma-glutamylethanolamide synthetase GlnA4, which is absolutely required for growth in the presence of ethanolamine. The novel ethanolamine utilization pathway is dissimilar to the currently known ethanolamine utilization pathway, which occurs in metabolome. The novel ethanolamine utilization pathway does not result in the production of toxic by-products (such as acetaldehyde); thus, it is not encapsulated. We believe that this contribution is a milestone in understanding the ecology of Streptomyces and the utilization of alternative nitrogen sources. Our report provides new insight into bacterial primary metabolism, which remains complex and partially unexplored. Streptomyces coelicolor is a Gram-positive soil bacterium with a high metabolic and adaptive potential that is able to utilize a variety of nitrogen sources. However, little is known about the utilization of the alternative nitrogen source ethanolamine. Our study revealed that S. coelicolor can utilize ethanolamine as a sole nitrogen or carbon (N/C) source, although it grows poorly on this nitrogen source due to the absence of a specific ethanolamine permease. Heterologous expression of a putative ethanolamine permease (SPRI_5940) from Streptomycespristinaespiralis positively influenced the biomass accumulation of the overexpression strain grown in defined medium with ethanolamine. In this study, we demonstrated that a glutamine synthetase-like protein, GlnA4 (SCO1613), is involved in the initial metabolic step of a novel ethanolamine utilization pathway in S. coelicolor M145. GlnA4 acts as a gamma-glutamylethanolamide synthetase. Transcriptional analysis revealed that expression of glnA4 was induced by ethanolamine and repressed in the presence of ammonium. Regulation of glnA4 is governed by the transcriptional repressor EpuRI (SCO1614). The ΔglnA4 mutant strain was unable to grow on defined liquid Evans medium supplemented with ethanolamine. High-performance liquid chromatography (HPLC) analysis demonstrated that strain ΔglnA4 is unable to utilize ethanolamine. GlnA4-catalyzed glutamylation of ethanolamine was confirmed in an enzymatic in vitro assay, and the GlnA4 reaction product, gamma-glutamylethanolamide, was detected by HPLC/electrospray ionization-mass spectrometry (HPLC/ESI-MS). In this work, the first step of ethanolamine utilization in S. coelicolor M145 was elucidated, and a putative ethanolamine utilization pathway was deduced based on the sequence similarity and genomic localization of homologous genes.
Collapse
|
8
|
Ethanolamine Utilization and Bacterial Microcompartment Formation Are Subject to Carbon Catabolite Repression. J Bacteriol 2019; 201:JB.00703-18. [PMID: 30833356 DOI: 10.1128/jb.00703-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/24/2019] [Indexed: 12/13/2022] Open
Abstract
Ethanolamine (EA) is a compound prevalent in the gastrointestinal (GI) tract that can be used as a carbon, nitrogen, and/or energy source. Enterococcus faecalis, a GI commensal and opportunistic pathogen, contains approximately 20 ethanolamine utilization (eut) genes encoding the necessary regulatory, enzymatic, and structural proteins for this process. Here, using a chemically defined medium, two regulatory factors that affect EA utilization were examined. First, the functional consequences of loss of the small RNA (sRNA) EutX on the efficacy of EA utilization were investigated. One effect observed, as loss of this negative regulator causes an increase in eut gene expression, was a concomitant increase in the number of catabolic bacterial microcompartments (BMCs) formed. However, despite this increase, the growth of the strain was repressed, suggesting that the overall efficacy of EA utilization was negatively affected. Second, utilizing a deletion mutant and a complement, carbon catabolite control protein A (CcpA) was shown to be responsible for the repression of EA utilization in the presence of glucose. A predicted cre site in one of the three EA-inducible promoters, PeutS, was identified as the target of CcpA. However, CcpA was shown to affect the activation of all the promoters indirectly through the two-component system EutV and EutW, whose genes are under the control of the PeutS promoter. Moreover, a bioinformatics analysis of bacteria predicted to contain CcpA and cre sites revealed that a preponderance of BMC-containing operons are likely regulated by carbon catabolite repression (CCR).IMPORTANCE Ethanolamine (EA) is a compound commonly found in the gastrointestinal (GI) tract that can affect the behavior of human pathogens that can sense and utilize it, such as Enterococcus faecalis and Salmonella Therefore, it is important to understand how the genes that govern EA utilization are regulated. In this work, we investigated two regulatory factors that control this process. One factor, a small RNA (sRNA), is shown to be important for generating the right levels of gene expression for maximum efficiency. The second factor, a transcriptional repressor, is important for preventing expression when other preferred sources of energy are available. Furthermore, a global bioinformatics analysis revealed that this second mechanism of transcriptional regulation likely operates on similar genes in related bacteria.
Collapse
|
9
|
Stracey NG, Costa FG, Escalante-Semerena JC, Brunold TC. Spectroscopic Study of the EutT Adenosyltransferase from Listeria monocytogenes: Evidence for the Formation of a Four-Coordinate Cob(II)alamin Intermediate. Biochemistry 2018; 57:5088-5095. [PMID: 30071158 DOI: 10.1021/acs.biochem.8b00743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The EutT enzyme from Listeria monocytogenes ( LmEutT) is a member of the family of ATP:cobalt(I) corrinoid adenosyltransferase (ACAT) enzymes that catalyze the biosynthesis of adenosylcobalamin (AdoCbl) from exogenous Co(II)rrinoids and ATP. Apart from EutT-type ACATs, two evolutionary unrelated types of ACATs have been identified, termed PduO and CobA. Although the three types of ACATs are nonhomologous, they all generate a four-coordinate cob(II)alamin (4C Co(II)Cbl) species to facilitate the formation of a supernucleophilic Co(I)Cbl intermediate capable of attacking the 5'-carbon of cosubstrate ATP. Previous spectroscopic studies of the EutT ACAT from Salmonella enterica ( SeEutT) revealed that this enzyme requires a divalent metal cofactor for the conversion of 5C Co(II)Cbl to a 4C species. Interestingly, LmEutT does not require a divalent metal cofactor for catalytic activity, which exemplifies an interesting phylogenetic divergence among the EutT enzymes. To explore if this disparity in the metal cofactor requirement among EutT enzymes correlates with differences in substrate specificity or the mechanism of Co(II)Cbl reduction, we employed various spectroscopic techniques to probe the interaction of Co(II)Cbl and cob(II)inamide (Co(II)Cbi+) with LmEutT in the absence and presence of cosubstrate ATP. Our data indicate that LmEutT displays a similar substrate specificity as SeEutT and can bind both Co(II)Cbl and Co(II)Cbi+ when complexed with MgATP, though it exclusively converts Co(II)Cbl to a 4C species. Notably, LmEutT is the most effective ACAT studied to date in generating the catalytically relevant 4C Co(II)Cbl species, achieving a >98% 5C → 4C conversion yield on the addition of just over one mol equiv of cosubstrate MgATP.
Collapse
Affiliation(s)
- Nuru G Stracey
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Flavia G Costa
- Department of Microbiology , University of Georgia , Athens , Georgia 30602 , United States
| | | | - Thomas C Brunold
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
10
|
Wang Z, Sun J, Xia T, Liu Y, Fu J, Lo YK, Chang C, Yan A, Liu X. Proteomic Delineation of the ArcA Regulon in Salmonella Typhimurium During Anaerobiosis. Mol Cell Proteomics 2018; 17:1937-1947. [PMID: 30038032 DOI: 10.1074/mcp.ra117.000563] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/08/2018] [Indexed: 12/14/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the most used models for bacterial pathogenesis and successful infection requires its adaptation to the low oxygen environment in host gastrointestinal tracts. Central to this process is the Arc (aerobic respiratory control) two-component regulatory system that contains a sensor kinase ArcB and a response regulator ArcA. Nevertheless, a comprehensive profile of the ArcA regulon on the proteome level is still lacking in S. Typhimurium. Here we quantitatively profiled Salmonella proteome during anaerobiosis in an arcA-deleting mutant compared with its parental strain. In addition to known processes under its control, notably we found that ArcA represses ethanolamine utilization by directly binding to the promoter region of the eut operon. Furthermore, we found opposing changes of several bacterial genes on the protein and transcript levels in the arcA-deleting mutant including the virulence genes of Salmonella pathogenicity island 1 (SPI-1), thereby indicating potentially prevalent post-transcriptional regulatory mechanisms. Altogether, our study provides important new insights into ArcA-dependent bacterial physiology and virulence during Salmonella anaerobiosis.
Collapse
Affiliation(s)
- Zhen Wang
- From the ‡Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jingjing Sun
- §School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Tingying Xia
- §School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Yanhua Liu
- From the ‡Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiaqi Fu
- From the ‡Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yat Kei Lo
- §School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Cheng Chang
- ¶State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (Beijing), Beijing 102206, P.R. China
| | - Aixin Yan
- §School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China;
| | - Xiaoyun Liu
- From the ‡Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
| |
Collapse
|
11
|
Yagi H, Nakayama-Imaohji H, Nariya H, Tada A, Yamasaki H, Ugai H, Elahi M, Ono T, Kuwahara T. Ethanolamine utilization supports Clostridium perfringens growth in infected tissues. Microb Pathog 2018; 119:200-207. [PMID: 29654901 DOI: 10.1016/j.micpath.2018.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 01/07/2023]
Abstract
Clostridium perfringens possesses the ethanolamine (EA) utilization (eut) system encoded within the eut operon, which utilizes the EA as a carbon, nitrogen and energy source. To determine the role of the eut system in C. perfringens growth, an in-frame deletion of the eutABC genes was made in strain HN13 to generate the eutABC-deleted mutant strain HY1701. Comparison of HN13 and HY1701 growth in media supplemented with 1.0% glucose and/or 1.0% EA showed that glucose enhanced the growth of both strains, whereas EA enhanced HN13 growth, but not that of HY1701, indicating that the eut system is necessary for C. perfringens to utilize EA. The two-component regulatory system EutVW is needed to induce eut gene expression in response to EA whereas the global virulence regulator VirRS differentially controlled eut gene expression depending on glucose and EA availability. To assess the role of the eut system in vivo, an equal number of HN13 and HY1701 cells were injected into the right thigh muscles of mice. Mice infected with HY1701 showed fewer symptoms than those injected with HN13. The mortality rate of mice infected with HY1701 tended to be lower than for mice infected with HN13. In addition, in infected tissues from mice injected with a mixture of HN13 and HY1701, HN13 outnumbered HY1701. PCR screening demonstrated that C. perfringens isolated from gas gangrene and sporadic diarrhea cases carried both eut genes and the perfringolysin O gene (pfoA) as well as the phospholipase C gene (plc). However, pfoA was not detected in isolates from food poisoning patients and healthy volunteers. Culture supernatants prepared from HN13 grown in media containing 7.5% sheep red blood cells induced significantly higher eutB expression levels compared to those from plc- and/or pfoA-deletion mutants. Together, these results indicate that the eut system plays a nutritional role for C. perfringens during histolytic infection.
Collapse
Affiliation(s)
- Hirofumi Yagi
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki, Kagawa, 761-0793, Japan
| | - Haruyuki Nakayama-Imaohji
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki, Kagawa, 761-0793, Japan
| | - Hirofumi Nariya
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan
| | - Ayano Tada
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki, Kagawa, 761-0793, Japan
| | - Hisashi Yamasaki
- Division of Biology, Hyogo College of Medicine, Mukogawa, Nishinomiya, 663-8501, Japan
| | - Hideyo Ugai
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki, Kagawa, 761-0793, Japan
| | - Miad Elahi
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki, Kagawa, 761-0793, Japan
| | - Tsuneko Ono
- Department of Molecular Microbiology, Institute of Health Biosciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Tomomi Kuwahara
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki, Kagawa, 761-0793, Japan.
| |
Collapse
|
12
|
Abstract
Ethanolamine (EA) is a valuable source of carbon and/or nitrogen for bacteria capable of its catabolism. Because it is derived from the membrane phospholipid phosphatidylethanolamine, it is particularly prevalent in the gastrointestinal tract, which is membrane rich due to turnover of the intestinal epithelium and the resident microbiota. Intriguingly, many gut pathogens carry the eut (ethanolamine utilization) genes. EA utilization has been studied for about 50 years, with most of the early work occurring in just a couple of species of Enterobacteriaceae. Once the metabolic pathways and enzymes were characterized by biochemical approaches, genetic screens were used to map the various activities to the eut genes. With the rise of genomics, the diversity of bacteria containing the eut genes and surprising differences in eut gene content were recognized. Some species contain nearly 20 genes and encode many accessory proteins, while others contain only the core catabolic enzyme. Moreover, the eut genes are regulated by very different mechanisms, depending on the organism and the eut regulator encoded. In the last several years, exciting progress has been made in elucidating the complex regulatory mechanisms that govern eut gene expression. Furthermore, a new appreciation for how EA contributes to infection and colonization in the host is emerging. In addition to providing an overview of EA-related biology, this minireview will give special attention to these recent advances.
Collapse
|
13
|
Luan OG, Yam H, Samian R, Wajidi MFF, Mahadi NM, Mohamad S, Najimudin N. Hypothetical Protein BPSL3393 of Burkholderia pseudomallei is Involved in Ethanolamine Catabolism. Trop Life Sci Res 2017; 28:57-74. [PMID: 28890761 PMCID: PMC5584837 DOI: 10.21315/tlsr2017.28.2.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Burkholderia pseudomallei is a soil-dwelling bacterium that causes a globally emerging disease called melioidosis. Approximately one third of the in silico annotated genes in its genome are classified as hypothetical genes. This group of genes is difficult to be functionally characterised partly due to the absence of noticeable phenotypes under conventional laboratory settings. A bioinformatic survey of hypothetical genes revealed a gene designated as BPSL3393 that putatively encodes a small protein of 11 kDA with a CoA binding domain. BPSL3393 is conserved in all the B. pseudomallei genomes as well as various in other species within the genus Burkholderia. Taking into consideration that CoA plays a ubiquitous metabolic role in all life forms, characterisation of BPSL3393 may uncover a previously over-looked metabolic feature of B. pseudomallei. The gene was deleted from the genome using a double homologous recombination approach yielding a null mutant. The BPSL3393 mutant showed no difference in growth rate with the wild type under rich and minimal growth conditions. An extensive metabolic phenotyping test was performed involving 95 metabolic substrates. The deletion mutant of BPSL3393 was severely impaired in its ethanolamine metabolism. The growth rate of the mutant was attenuated when ethanolamine was used as the sole carbon source. A transcriptional analysis of the ethanolamine metabolism genes showed that they were down-regulated in the BPSL3393 mutant. This seemed to suggest that BPSL3393 functions as a positive regulator for ethanolamine metabolism.
Collapse
Affiliation(s)
- Ooi Gim Luan
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | - Hokchai Yam
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia.,Faculty of Applied Sciences, UCSI University, Jalan Menara Gading, 56000 Kuala Lumpur, Malaysia
| | - Razip Samian
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | | | | | - Suriani Mohamad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | - Nazalan Najimudin
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| |
Collapse
|
14
|
Hoxmeier JC, Fleshman AC, Broeckling CD, Prenni JE, Dolan MC, Gage KL, Eisen L. Metabolomics of the tick-Borrelia interaction during the nymphal tick blood meal. Sci Rep 2017; 7:44394. [PMID: 28287618 PMCID: PMC5347386 DOI: 10.1038/srep44394] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/07/2017] [Indexed: 02/08/2023] Open
Abstract
The causal agents of Lyme disease in North America, Borrelia burgdorferi and Borrelia mayonii, are transmitted primarily by Ixodes scapularis ticks. Due to their limited metabolic capacity, spirochetes rely on the tick blood meal for nutrients and metabolic intermediates while residing in the tick vector, competing with the tick for nutrients in the blood meal. Metabolomics is an effective methodology to explore dynamics of spirochete survival and multiplication in tick vectors before transmission to a vertebrate host via tick saliva. Using gas chromatography coupled to mass spectrometry, we identified statistically significant differences in the metabolic profile among uninfected I. scapularis nymphal ticks, B. burgdorferi-infected nymphal ticks and B. mayonii-infected nymphal ticks by measuring metabolism every 24 hours over the course of their up to 96 hour blood meals. Specifically, differences in the abundance of purines, amino acids, carbohydrates, and fatty acids during the blood meal among the three groups of nymphal ticks suggest that B. mayonii and B. burgdorferi may have different metabolic capabilities, especially during later stages of nymphal feeding. Understanding mechanisms underlying variable metabolic requirements of different Lyme disease spirochetes within tick vectors could potentially aid development of novel methods to control spirochete transmission.
Collapse
Affiliation(s)
- J Charles Hoxmeier
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Amy C Fleshman
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Corey D Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jessica E Prenni
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, 80523, USA
| | - Marc C Dolan
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Kenneth L Gage
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Lars Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| |
Collapse
|
15
|
Gene regulation by the VirS/VirR system in Clostridium perfringens. Anaerobe 2016; 41:5-9. [DOI: 10.1016/j.anaerobe.2016.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 12/21/2022]
|
16
|
Ethanolamine Catabolism in Pseudomonas aeruginosa PAO1 Is Regulated by the Enhancer-Binding Protein EatR (PA4021) and the Alternative Sigma Factor RpoN. J Bacteriol 2016; 198:2318-29. [PMID: 27325678 DOI: 10.1128/jb.00357-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/13/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Although genes encoding enzymes and proteins related to ethanolamine catabolism are widely distributed in the genomes of Pseudomonas spp., ethanolamine catabolism has received little attention among this metabolically versatile group of bacteria. In an attempt to shed light on this subject, this study focused on defining the key regulatory factors that govern the expression of the central ethanolamine catabolic pathway in Pseudomonas aeruginosa PAO1. This pathway is encoded by the PA4022-eat-eutBC operon and consists of a transport protein (Eat), an ethanolamine-ammonia lyase (EutBC), and an acetaldehyde dehydrogenase (PA4022). EutBC is an essential enzyme in ethanolamine catabolism because it hydrolyzes this amino alcohol into ammonia and acetaldehyde. The acetaldehyde intermediate is then converted into acetate in a reaction catalyzed by acetaldehyde dehydrogenase. Using a combination of growth analyses and β-galactosidase fusions, the enhancer-binding protein PA4021 and the sigma factor RpoN were shown to be positive regulators of the PA4022-eat-eutBC operon in P. aeruginosa PAO1. PA4021 and RpoN were required for growth on ethanolamine, and both of these regulatory proteins were essential for induction of the PA4022-eat-eutBC operon. Unexpectedly, the results indicate that acetaldehyde (and not ethanolamine) serves as the inducer molecule that is sensed by PA4021 and leads to the transcriptional activation of the PA4022-eat-eutBC operon. Due to its regulatory role in ethanolamine catabolism, PA4021 was given the name EatR. Both EatR and its target genes are conserved in several other Pseudomonas spp., suggesting that these bacteria share a mechanism for regulating ethanolamine catabolism. IMPORTANCE The results of this study provide a basis for understanding ethanolamine catabolism and its regulation in Pseudomonas aeruginosa PAO1. Interestingly, expression of the ethanolamine-catabolic genes in this bacterium was found to be under the control of a positive-feedback regulatory loop in a manner dependent on the transcriptional regulator PA4021, the sigma factor RpoN, and the metabolite acetaldehyde. Previously characterized regulators of ethanolamine catabolism are known to sense and respond directly to ethanolamine. In contrast, PA4021 (EatR) appears to monitor the intracellular levels of free acetaldehyde and responds through transcriptional activation of the ethanolamine-catabolic genes. This regulatory mechanism is unique and represents an alternative strategy used by bacteria to govern the acquisition of ethanolamine from their surroundings.
Collapse
|
17
|
Abstract
This review summarizes research performed over the last 23 years on the genetics, enzyme structures and functions, and regulation of the expression of the genes encoding functions involved in adenosylcobalamin (AdoCbl, or coenzyme B12) biosynthesis. It also discusses the role of coenzyme B12 in the physiology of Salmonella enterica serovar Typhimurium LT2 and Escherichia coli. John Roth's seminal contributions to the field of coenzyme B12 biosynthesis research brought the power of classical and molecular genetic, biochemical, and structural approaches to bear on the extremely challenging problem of dissecting the steps of what has turned out to be one of the most complex biosynthetic pathways known. In E. coli and serovar Typhimurium, uro'gen III represents the first branch point in the pathway, where the routes for cobalamin and siroheme synthesis diverge from that for heme synthesis. The cobalamin biosynthetic pathway in P. denitrificans was the first to be elucidated, but it was soon realized that there are at least two routes for cobalamin biosynthesis, representing aerobic and anaerobic variations. The expression of the AdoCbl biosynthetic operon is complex and is modulated at different levels. At the transcriptional level, a sensor response regulator protein activates the transcription of the operon in response to 1,2-Pdl in the environment. Serovar Typhimurium and E. coli use ethanolamine as a source of carbon, nitrogen, and energy. In addition, and unlike E. coli, serovar Typhimurium can also grow on 1,2-Pdl as the sole source of carbon and energy.
Collapse
|
18
|
Small RNA Transcriptome of the Oral Microbiome during Periodontitis Progression. Appl Environ Microbiol 2015; 81:6688-99. [PMID: 26187962 DOI: 10.1128/aem.01782-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/12/2015] [Indexed: 02/06/2023] Open
Abstract
The oral microbiome is one of the most complex microbial communities in the human body, and due to circumstances not completely understood, the healthy microbial community becomes dysbiotic, giving rise to periodontitis, a polymicrobial inflammatory disease. We previously reported the results of community-wide gene expression changes in the oral microbiome during periodontitis progression and identified signatures associated with increasing severity of the disease. Small noncoding RNAs (sRNAs) are key players in posttranscriptional regulation, especially in fast-changing environments such as the oral cavity. Here, we expanded our analysis to the study of the sRNA metatranscriptome during periodontitis progression on the same samples for which mRNA expression changes were analyzed. We observed differential expression of 12,097 sRNAs, identifying a total of 20 Rfam sRNA families as being overrepresented in progression and 23 at baseline. Gene ontology activities regulated by the differentially expressed (DE) sRNAs included amino acid metabolism, ethanolamine catabolism, signal recognition particle-dependent cotranslational protein targeting to membrane, intron splicing, carbohydrate metabolism, control of plasmid copy number, and response to stress. In integrating patterns of expression of protein coding transcripts and sRNAs, we found that functional activities of genes that correlated positively with profiles of expression of DE sRNAs were involved in pathogenesis, proteolysis, ferrous iron transport, and oligopeptide transport. These findings represent the first integrated sequencing analysis of the community-wide sRNA transcriptome of the oral microbiome during periodontitis progression and show that sRNAs are key regulatory elements of the dysbiotic process leading to disease.
Collapse
|
19
|
Thompson MC, Cascio D, Leibly DJ, Yeates TO. An allosteric model for control of pore opening by substrate binding in the EutL microcompartment shell protein. Protein Sci 2015; 24:956-75. [PMID: 25752492 DOI: 10.1002/pro.2672] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/23/2015] [Accepted: 03/03/2015] [Indexed: 01/01/2023]
Abstract
The ethanolamine utilization (Eut) microcompartment is a protein-based metabolic organelle that is strongly associated with pathogenesis in bacteria that inhabit the human gut. The exterior shell of this elaborate protein complex is composed from a few thousand copies of BMC-domain shell proteins, which form a semi-permeable diffusion barrier that provides the interior enzymes with substrates and cofactors while simultaneously retaining metabolic intermediates. The ability of this protein shell to regulate passage of substrate and cofactor molecules is critical for microcompartment function, but the details of how this diffusion barrier can allow the passage of large cofactors while still retaining small intermediates remain unclear. Previous work has revealed two conformations of the EutL shell protein, providing substantial evidence for a gated pore that might allow the passage of large cofactors. Here we report structural and biophysical evidence to show that ethanolamine, the substrate of the Eut microcompartment, acts as a negative allosteric regulator of EutL pore opening. Specifically, a series of X-ray crystal structures of EutL from Clostridium perfringens, along with equilibrium binding studies, reveal that ethanolamine binds to EutL at a site that exists in the closed-pore conformation and which is incompatible with opening of the large pore for cofactor transport. The allosteric mechanism we propose is consistent with the cofactor requirements of the Eut microcompartment, leading to a new model for EutL function. Furthermore, our results suggest the possibility of redox modulation of the allosteric mechanism, opening potentially new lines of investigation.
Collapse
Affiliation(s)
- Michael C Thompson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095
| | - Duilio Cascio
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, California, 90095
| | - David J Leibly
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095.,UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, California, 90095
| |
Collapse
|
20
|
Mackie A, Keseler IM, Nolan L, Karp PD, Paulsen IT. Dead end metabolites--defining the known unknowns of the E. coli metabolic network. PLoS One 2013; 8:e75210. [PMID: 24086468 PMCID: PMC3781023 DOI: 10.1371/journal.pone.0075210] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 08/12/2013] [Indexed: 12/19/2022] Open
Abstract
The EcoCyc database is an online scientific database which provides an integrated view of the metabolic and regulatory network of the bacterium Escherichia coli K-12 and facilitates computational exploration of this important model organism. We have analysed the occurrence of dead end metabolites within the database – these are metabolites which lack the requisite reactions (either metabolic or transport) that would account for their production or consumption within the metabolic network. 127 dead end metabolites were identified from the 995 compounds that are contained within the EcoCyc metabolic network. Their presence reflects either a deficit in our representation of the network or in our knowledge of E. coli metabolism. Extensive literature searches resulted in the addition of 38 transport reactions and 3 metabolic reactions to the database and led to an improved representation of the pathway for Vitamin B12 salvage. 39 dead end metabolites were identified as components of reactions that are not physiologically relevant to E. coli K-12 – these reactions are properties of purified enzymes in vitro that would not be expected to occur in vivo. Our analysis led to improvements in the software that underpins the database and to the program that finds dead end metabolites within EcoCyc. The remaining dead end metabolites in the EcoCyc database likely represent deficiencies in our knowledge of E. coli metabolism.
Collapse
Affiliation(s)
- Amanda Mackie
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | | | - Laura Nolan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Peter D. Karp
- SRI International, Menlo Park, California, United States of America
| | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
21
|
Biological production of monoethanolamine by engineered Pseudomonas putida S12. J Biotechnol 2013; 167:344-9. [DOI: 10.1016/j.jbiotec.2013.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 11/23/2022]
|
22
|
Khatri N, Khatri I, Subramanian S, Raychaudhuri S. Ethanolamine utilization in Vibrio alginolyticus. Biol Direct 2012; 7:45; discussion 45. [PMID: 23234435 PMCID: PMC3542024 DOI: 10.1186/1745-6150-7-45] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 11/30/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED Ethanolamine is used as an energy source by phylogenetically diverse bacteria including pathogens, by the concerted action of proteins from the eut-operon. Previous studies have revealed the presence of eutBC genes encoding ethanolamine-ammonia lyase, a key enzyme that breaks ethanolamine into acetaldehyde and ammonia, in about 100 bacterial genomes including members of gamma-proteobacteria. However, ethanolamine utilization has not been reported for any member of the Vibrio genus. Our comparative genomics study reveals the presence of genes that are involved in ethanolamine utilization in several Vibrio species. Using Vibrio alginolyticus as a model system we demonstrate that ethanolamine is better utilized as a nitrogen source than as a carbon source. REVIEWERS This article was reviewed by Dr. Lakshminarayan Iyer and Dr. Vivek Anantharaman (nominated by Dr. L Aravind).
Collapse
Affiliation(s)
- Neelam Khatri
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | | | | | | |
Collapse
|
23
|
Ethanolamine utilization contributes to proliferation of Salmonella enterica serovar Typhimurium in food and in nematodes. Appl Environ Microbiol 2010; 77:281-90. [PMID: 21037291 DOI: 10.1128/aem.01403-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Only three pathogenic bacterial species, Salmonella enterica, Clostridium perfringens, and Listeria monocytogenes, are able to utilize both ethanolamine and 1,2-propanediol as a sole carbon source. Degradation of these substrates, abundant in food and the gut, depends on cobalamin, which is synthesized de novo only under anaerobic conditions. Although the eut, pdu, and cob-cbi gene clusters comprise 40 kb, the conditions under which they confer a selection advantage on these food-borne pathogens remain largely unknown. Here we used the luciferase reporter system to determine the response of the Salmonella enterica serovar Typhimurium promoters P(eutS), P(pocR), P(pduF), and P(pduA) to a set of carbon sources, to egg yolk, to whole milk, and to milk protein or fat fractions. Depending on the supplements, specific inductions up to 3 orders of magnitude were observed for P(eutS) and P(pduA), which drive the expression of most eut and pdu genes. To correlate these significant expression data with growth properties, nonpolar deletions of pocR, regulating the pdu and cob-cbi genes, and of eutR, involved in eut gene activation, were constructed in S. Typhimurium strain 14028. During exponential growth of the mutants 14028ΔpocR and 14028ΔeutR, 2- to 3-fold-reduced proliferation in milk and egg yolk was observed. Using the Caenorhabditis elegans infection model, we could also demonstrate that the proliferation of S. Typhimurium in the nematode is supported by an active ethanolamine degradation pathway. Taking these findings together, this study quantifies the differential expression of eut and pdu genes under distinct conditions and provides experimental evidence that the ethanolamine utilization pathway allows salmonellae to occupy specific metabolic niches within food environments and within their host organisms.
Collapse
|
24
|
Bertin Y, Girardeau JP, Chaucheyras-Durand F, Lyan B, Pujos-Guillot E, Harel J, Martin C. Enterohaemorrhagic Escherichia coli gains a competitive advantage by using ethanolamine as a nitrogen source in the bovine intestinal content. Environ Microbiol 2010; 13:365-77. [PMID: 20849446 DOI: 10.1111/j.1462-2920.2010.02334.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The bovine gastrointestinal tract is the main reservoir for enterohaemorrhagic Escherichia coli (EHEC) responsible for food-borne infections. Characterization of nutrients that promote the carriage of these pathogens by the ruminant would help to develop ecological strategies to reduce their survival in the bovine gastrointestinal tract. In this study, we show for the first time that free ethanolamine (EA) constitutes a nitrogen source for the O157:H7 EHEC strain EDL933 in the bovine intestinal content because of induction of the eut (ethanolamine utilization) gene cluster. In contrast, the eut gene cluster is absent in the genome of most species constituting the mammalian gut microbiota. Furthermore, the eutB gene (encoding a subunit of the enzyme that catalyses the release of ammonia from EA) is poorly expressed in non-pathogenic E. coli. Accordingly, EA is consumed by EHEC but is poorly metabolized by endogenous microbiota of the bovine small intestine, including commensal E. coli. Interestingly, the capacity to utilize EA as a nitrogen source confers a growth advantage to E. coli O157:H7 when the bacteria enter the stationary growth phase. These data demonstrate that EHEC strains take advantage of a nitrogen source that is not consumed by the resident microbiota, and suggest that EA represents an ecological niche favouring EHEC persistence in the bovine intestine.
Collapse
Affiliation(s)
- Yolande Bertin
- Institut National de la Recherche Agronomique, Unité de Microbiologie UR 454, Centre de Recherche de Clermont-Ferrand/Theix, 63122 Saint-Genès-Champanelle, France.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Some phytoplankton utilized a novel mechanism for obtaining nitrogen from primary amines. They oxidized the primary amines to produce extracellular hydrogen peroxide and aldehydes and used the third reaction product, ammonium, as a nitrogen source. The specificity, regulation, inhibition by bromoethylamine, and potential dependence on copper of this process are described.
Collapse
Affiliation(s)
- B Palenik
- Ralph M. Parsons Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | |
Collapse
|
26
|
Kendall MM, Rasko DA, Sperandio V. The LysR-type regulator QseA regulates both characterized and putative virulence genes in enterohaemorrhagic Escherichia coli O157:H7. Mol Microbiol 2010; 76:1306-21. [PMID: 20444105 PMCID: PMC2936457 DOI: 10.1111/j.1365-2958.2010.07174.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) colonizes the large intestine, causing attaching and effacing (AE) lesions. Most of the genes involved in AE lesion formation are encoded within a chromosomal pathogenicity island termed the locus of enterocyte effacement (LEE). The LysR-type transcriptional factor QseA regulates the LEE by binding to the regulatory region of ler. We performed transcriptome analyses comparing wild-type (WT) EHEC and the qseA mutant to elucidate QseA's role in gene regulation. During both growth phases, several genes carried in O-islands were activated by QseA, whereas genes involved in cell metabolism were repressed. During late-logarithmic growth, QseA activated expression of the LEE genes as well as non-LEE-encoded effector proteins. We also performed electrophoretic mobility shift assays, competition experiments and DNase I footprints. The results demonstrated that QseA directly binds both the ler proximal and distal promoters, its own promoter, as well as promoters of genes encoded in EHEC-specific O-islands. Additionally, we mapped the transcriptional start site of qseA, leading to the identification of two promoter sequences. Taken together, these results indicate that QseA acts as a global regulator in EHEC, co-ordinating expression of virulence genes.
Collapse
Affiliation(s)
- Melissa M. Kendall
- University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 5323 Harry Hines Blvd., 75390-9048, U.S.A
| | - David A. Rasko
- Institute for Genome Sciences, Department of Microbiology & Immunology, University of Maryland School of Medicine, BioPark Building II, 801 West Baltimore Street, Suite 619, Baltimore, MD 21201
| | - Vanessa Sperandio
- University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 5323 Harry Hines Blvd., 75390-9048, U.S.A
| |
Collapse
|
27
|
Ethanolamine utilization in bacterial pathogens: roles and regulation. Nat Rev Microbiol 2010; 8:290-5. [PMID: 20234377 DOI: 10.1038/nrmicro2334] [Citation(s) in RCA: 230] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ethanolamine is a compound that can be readily derived from cell membranes and that some bacteria can use as a source of carbon and/or nitrogen. The complex biology and chemistry of this process has been under investigation since the 1970s, primarily in one or two species. However, recent investigations into ethanolamine utilization have revealed important and intriguing differences in gene content and regulatory mechanisms among the bacteria that harbour this catabolic ability. In addition, many reports have connected this process to bacterial pathogenesis. In this Progress article, I discuss the latest research on the phylogeny and regulation of ethanolamine utilization and its possible roles in bacterial pathogenesis.
Collapse
|
28
|
|
29
|
Abend A, Bandarian V, Nitsche R, Stupperich E, Rétey J, Reed GH. Ethanolamine ammonia-lyase has a "base-on" binding mode for coenzyme B(12). Arch Biochem Biophys 1999; 370:138-41. [PMID: 10496987 DOI: 10.1006/abbi.1999.1382] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ethanolamine ammonia-lyase (EAL, EC 4.3.1.7) catalyzes a coenzyme B(12)-dependent deamination of vicinal amino alcohols. The mode of binding of coenzyme B(12) to EAL has been investigated by electron paramagnetic resonance spectroscopy (EPR) using [(15)N]-dimethylbenzimidazole-coenzyme B(12). EAL was incubated with either unlabeled or (15)N-enriched coenzyme B(12) and then either exposed to light or treated with ethanol to generate the cleaved form of the cofactor, cob(II)alamin (B(12r)) bound in the active site. The reaction mixtures were examined by EPR spectroscopy at 77 K. (15)N superhyperfine splitting in the EPR signals of the low-spin Co(2+) of B(12r), bound in the active site of EAL, indicates that the dimethylbenzimidazole moiety of the cofactor contributes the lower axial ligand consistent with "base-on" binding of coenzyme B(12) to EAL.
Collapse
Affiliation(s)
- A Abend
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53705, USA
| | | | | | | | | | | |
Collapse
|
30
|
Bandarian V, Reed GH. Hydrazine cation radical in the active site of ethanolamine ammonia-lyase: mechanism-based inactivation by hydroxyethylhydrazine. Biochemistry 1999; 38:12394-402. [PMID: 10493807 DOI: 10.1021/bi990620g] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A study has been made of the mechanism of inactivation of the adenosylcobalamin-dependent enzyme, ethanolamine ammonia-lyase (EAL), by hydroxyethylhydrazine. Incubation of EAL with adenosylcobalamin and hydroxyethylhydrazine, an analogue of ethanolamine, leads to rapid and complete loss of enzymic activity. Equimolar quantities of 5'-deoxyadenosine, cob(II)alamin (B(12r)), hydrazine cation radical, and acetaldehyde are products of the inactivation. Inactivation is attributed to the tight binding of B(12r) in the active site. Removal of B(12r) from the protein by ammonium sulfate precipitation under acidic conditions, however, restores significant activity. This inactivation event has also been monitored by electron paramagnetic resonance (EPR) spectroscopy. In addition to EPR signals associated with B(12r), spectra of samples of inactivation mixtures reveal the presence of another radical. The other radical is bound in the active site where it undergoes weak magnetic interactions with the low spin Co(2+) in B(12r). The radical species was unambiguously identified as a hydrazine cation radical by using [(15)N(2)]hydroxyethylhydrazine, (2)H(2)O, and quantitative interpretation of the EPR spectra. Homolytic fragmentation of a hydroxyethylhydrazine radical to acetaldehyde and a hydrazine cation radical is consistent with all of the observations. All of the experiments indicate that the mechanism-based inactivation of EAL by hydroxyethylhydrazine results from irreversible cleavage of the cofactor and tight binding of B(12r) to the active site.
Collapse
Affiliation(s)
- V Bandarian
- Institute for Enzyme Research, Graduate School, Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison 53705, USA
| | | |
Collapse
|
31
|
Möller B, Hippe H, Gottschalk G. Degradation of various amine compounds by mesophilic clostridia. Arch Microbiol 1986; 145:85-90. [PMID: 3753143 DOI: 10.1007/bf00413032] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
From 60 species of the genus Clostridium tested 26 species were able to degrade one to three of the following compounds: betaine, choline, creatine, and ethanolamine. Degradation of betaine and choline was always associated with the formation of trimethylamine as one of the products. Creatine was converted to N-methylhydantoin and with one species (Clostridium sordellii) to sarcosine in addition. The diagnostic value of the ability of clostridial species to degrade the compounds mentioned is discussed. N,N-dimethylglycine, N,N-dimethylethanolamine or sarcosine were not metabolized by the strains tested.
Collapse
|
32
|
Shukla SD, Turner JM. Microbial metabolism of amino alcohols. Biosynthetic utilization of ethanolamine for lipid synthesis by bacteria. Biochem J 1980; 186:13-9. [PMID: 7370003 PMCID: PMC1161499 DOI: 10.1042/bj1860013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
1. Ten bacteria utilizing [2-14C]ethanol-2-amine as the sole or major source of nitrogen for growth on glycerol + salts medium incorporated radioactivity into a variety of bacterial substances. A high proportion was commonly found in lipid fractions, particularly in the case of Erwinia carotovora. 2. Detailed studies of [14C]ethanolamine incorporation into lipids by five bacteria, including E. carotovora, showed that all detectable lipids were labelled. Even where phosphatidylethanolamine was the major lipid labelled, radioactivity was predominantly in the fatty acid rather than the base moiety. The labelled fatty acids were identified in each case. 3. The addition of acetate to growth media decreased the incorporation of radioactivity from ethanolamine into both fatty acid and phosphatidyl-base fragments of lipids from all the bacteria except Mycobacterium smegmatis. Experiments with [3H]ethanolamine and [14C]acetate confirmed that unlabelled acetate decreased the incorporation of both radioactive isotopes into lipids, except in the case of M. smegmatis. 4. Enzyme studies suggested one of two metabolic routes between ethanolamine and acetyl-CoA for each of four bacteria. A role for ethanolamine O-phosphate was not obligatory for the incorporation of [14C]ethanolamine into phospholipids, but correlated with CoA-independent aldehyde dehydrogenase activity.
Collapse
|