1
|
Liu D, Che X, Wang X, Ma C, Wu G. Tumor Vaccines: Unleashing the Power of the Immune System to Fight Cancer. Pharmaceuticals (Basel) 2023; 16:1384. [PMID: 37895855 PMCID: PMC10610367 DOI: 10.3390/ph16101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
This comprehensive review delves into the rapidly evolving arena of cancer vaccines. Initially, we examine the intricate constitution of the tumor microenvironment (TME), a dynamic factor that significantly influences tumor heterogeneity. Current research trends focusing on harnessing the TME for effective tumor vaccine treatments are also discussed. We then provide a detailed overview of the current state of research concerning tumor immunity and the mechanisms of tumor vaccines, describing the complex immunological processes involved. Furthermore, we conduct an exhaustive analysis of the contemporary research landscape of tumor vaccines, with a particular focus on peptide vaccines, DNA/RNA-based vaccines, viral-vector-based vaccines, dendritic-cell-based vaccines, and whole-cell-based vaccines. We analyze and summarize these categories of tumor vaccines, highlighting their individual advantages, limitations, and the factors influencing their effectiveness. In our survey of each category, we summarize commonly used tumor vaccines, aiming to provide readers with a more comprehensive understanding of the current state of tumor vaccine research. We then delve into an innovative strategy combining cancer vaccines with other therapies. By studying the effects of combining tumor vaccines with immune checkpoint inhibitors, radiotherapy, chemotherapy, targeted therapy, and oncolytic virotherapy, we establish that this approach can enhance overall treatment efficacy and offset the limitations of single-treatment approaches, offering patients more effective treatment options. Following this, we undertake a meticulous analysis of the entire process of personalized cancer vaccines, elucidating the intricate process from design, through research and production, to clinical application, thus helping readers gain a thorough understanding of its complexities. In conclusion, our exploration of tumor vaccines in this review aims to highlight their promising potential in cancer treatment. As research in this field continues to evolve, it undeniably holds immense promise for improving cancer patient outcomes.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| | - Xiaoxi Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Chuanyu Ma
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| |
Collapse
|
2
|
Trabbic KR, Whalen K, Abarca-Heideman K, Xia L, Temme JS, Edmondson EF, Gildersleeve JC, Barchi JJ. A Tumor-Selective Monoclonal Antibody from Immunization with a Tumor-Associated Mucin Glycopeptide. Sci Rep 2019; 9:5662. [PMID: 30952968 PMCID: PMC6450958 DOI: 10.1038/s41598-019-42076-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
We have previously studied the generation of immune responses after vaccination with tumor-associated carbohydrate antigen (TACA)-containing glycopeptides from the tandem repeat (TR) sequence of MUC4, an aberrantly expressed mucin in pancreatic adenocarcinomas. A specific lead antigen from that study containing the Thomsen-Friedenreich TACA disaccharide facilitated the pursuit of a monoclonal antibody to this synthetic hapten. Initial evaluation of polyclonal antiserum resulting from immunization with a KLH conjugate of this glycopeptide into rabbits showed high titer antibodies by ELISA assays, and selective immunoreactivity with MUC4+ cells by western blot and flow cytometry techniques. Glycan microarray analysis showed an intriguing binding pattern where the antiserum showed near complete specificity for MUC4 TR glycopeptides and peptides, relative to all components on the array. Tissue staining also showed distinct tumor specificity to pancreatic tumor tissue in relation to normal pancreatic tissue, with a preference for more aggressive tumor foci. Based on this data, we produced a monoclonal antibody whose binding and reactivity profile was similar to that of the polyclonal serum, with the added benefit of being more specific for the N-terminal glycosylated peptide domain. This epitope represents a novel immunogen to potentially develop diagnostic antibodies or immunotherapies against various MUC4-positive cancers.
Collapse
Affiliation(s)
- Kevin R Trabbic
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | | | | | - Li Xia
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - J Sebastian Temme
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Elijah F Edmondson
- Pathology and Histotechnology Lab, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Joseph J Barchi
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
3
|
Yang W, Ao M, Hu Y, Li QK, Zhang H. Mapping the O-glycoproteome using site-specific extraction of O-linked glycopeptides (EXoO). Mol Syst Biol 2018; 14:e8486. [PMID: 30459171 PMCID: PMC6243375 DOI: 10.15252/msb.20188486] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 01/30/2023] Open
Abstract
Protein glycosylation is one of the most abundant post-translational modifications. However, detailed analysis of O-linked glycosylation, a major type of protein glycosylation, has been severely impeded by the scarcity of suitable methodologies. Here, a chemoenzymatic method is introduced for the site-specific extraction of O-linked glycopeptides (EXoO), which enabled the mapping of over 3,000 O-linked glycosylation sites and definition of their glycans on over 1,000 proteins in human kidney tissues, T cells, and serum. This large-scale localization of O-linked glycosylation sites demonstrated that EXoO is an effective method for defining the site-specific O-linked glycoproteome in different types of sample. Detailed structural analysis of the sites identified revealed conserved motifs and topological orientations facing extracellular space, the cell surface, the lumen of the Golgi, and the endoplasmic reticulum (ER). EXoO was also able to reveal significant differences in the O-linked glycoproteome of tumor and normal kidney tissues pointing to its broader use in clinical diagnostics and therapeutics.
Collapse
Affiliation(s)
- Weiming Yang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Minghui Ao
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qing Kay Li
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
De La Cruz LM, Nocera NF, Czerniecki BJ. Restoring anti-oncodriver Th1 responses with dendritic cell vaccines in HER2/neu-positive breast cancer: progress and potential. Immunotherapy 2016; 8:1219-32. [PMID: 27605070 PMCID: PMC5967360 DOI: 10.2217/imt-2016-0052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/23/2016] [Indexed: 12/16/2022] Open
Abstract
HER2/neu is expressed in the majority of in situ breast cancers, but maintained in 20-30% of invasive breast cancer (IBC). During breast tumorigenesis, there is a progressive loss of anti-HER2 CD4(pos) Th1 (anti-HER2Th1) from benign to ductal carcinoma in situ, with almost complete loss in IBC. This anti-HER2Th1 response can predict response to neoadjuvant therapy, risk of recurrence and disease-free survival. Vaccines consisting of HER2-pulsed type I polarized dendritic cells (DC1) administered during ductal carcinoma in situ and early IBC can efficiently correct anti-HER2Th1 response and have clinical impact on the disease. In this review, we will discuss the role of anti-HER2Th1 response in the three phases of immunoediting during HER2 breast cancer development and opportunities for reversing these processes using DC1 vaccines alone or in combination with standard therapies. Correcting the anti-HER2Th1 response may represent an opportunity for improving outcomes and providing a path to eliminate escape variants.
Collapse
Affiliation(s)
- Lucy M De La Cruz
- Department of Endocrine & Oncologic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nadia F Nocera
- Department of Endocrine & Oncologic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Brian J Czerniecki
- Department of Breast Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33617, USA
| |
Collapse
|
5
|
Karmakar P, Lee K, Sarkar S, Wall KA, Sucheck SJ. Synthesis of a Liposomal MUC1 Glycopeptide-Based Immunotherapeutic and Evaluation of the Effect of l-Rhamnose Targeting on Cellular Immune Responses. Bioconjug Chem 2016; 27:110-20. [PMID: 26595674 PMCID: PMC4837471 DOI: 10.1021/acs.bioconjchem.5b00528] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Generation of a CD8(+) response to extracellular antigen requires processing of the antigen by antigen presenting cells (APC) and cross-presentation to CD8(+) T cell receptors via MHC class I molecules. Cross-presentation is facilitated by efficient antigen uptake followed by immune-complex-mediated maturation of the APCs. We hypothesize that improved antigen uptake of a glycopeptide sequence containing a CD8(+) T cell epitope could be achieved by delivering it on a liposome surface decorated with an immune complex-targeting ligand, an l-Rhamnose (Rha) epitope. We synthesized a 20-amino-acid glycopeptide TSAPDT(GalNAc)RPAPGSTAPPAHGV from the variable number tandem repeat region of the tumor marker MUC1 containing an N-terminal azido moiety and a tumor-associated α-N-acetyl galactosamine (GalNAc) at the immunogenic DTR motif. The MUC1 antigen was attached to Pam3Cys, a Toll-like receptor-2 ligand via copper(I)-catalyzed azido-alkyne cycloaddition (CuAAc) chemistry. The Rha-decorated liposomal Pam3Cys-MUC1-Tn 4 vaccine was evaluated in groups of C57BL/6 mice. Some groups were previously immunized to generate anti-Rha antibodies. Anti-Rha antibody expressing mice that received the Rha liposomal vaccine showed higher cellular immunogenicity compared to the control group while maintaining a strong humoral response.
Collapse
Affiliation(s)
- Partha Karmakar
- Department of Chemistry and Biochemistry, The University of Toledo, 2801 W. Bancroft Street, Toledo, OH 43606, United States
| | - Kyunghee Lee
- Department of Medicinal and Biological Chemistry, The University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH 43614, United States
| | - Sourav Sarkar
- Department of Chemistry and Biochemistry, The University of Toledo, 2801 W. Bancroft Street, Toledo, OH 43606, United States
| | - Katherine A. Wall
- Department of Medicinal and Biological Chemistry, The University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH 43614, United States
| | - Steven J. Sucheck
- Department of Chemistry and Biochemistry, The University of Toledo, 2801 W. Bancroft Street, Toledo, OH 43606, United States
| |
Collapse
|
6
|
Abstract
MUC1 is a glycoprotein that is overexpressed in tumor cells. In normal cells it forms a protective layer against microbes and toxic chemicals, besides providing lubrication on ductal surfaces. Oversecretion of MUC1 provide cancer cells with invasiveness, metastasis, and resistance to death induced by reactive oxygen species. MUC1 is made up of 2 heterodimers, MUC1-N and MUC1-C. MUC1-N is heavily glycosylated at 5 regions of the variable N-tandem repeats. MUC1-C is divisible into extracellular, intracellular, and cytoplasmic domain (MUC1-C/CD). The extracellular domain serves as a docking site for epidermal growth factor receptors and other receptor kinases; the transmembrane domain serves to relay messages from extracellular to MUC1-C/CD. The MUC1-C/CD has 5 phosphorylating sites that on interacting with the SH2 domain of specific proteins can stimulate tumor growth. Therapies targeting MUC1 consists of monoclonal antibodies (MAb), vaccines, or small molecules (aptamers). MAb therapies are mainly aimed at MUC1-N with little success, however, new generation of MAb are being developed for MUC1-C. Vaccines (peptide, carbohydrate, glycopeptide, DNA, and dendritic cell) have been developed that recognizes the aberrant glycosylated region of the variable N-tandem repeats in MUC1-N, whereas new generation vaccines are aimed at the cytoplasmic region of MUC1-C. Aptamers (peptides that resemble DNA, RNA) have been used for blocking the dimerization of CQC region and the 5 phosphorylating region of MUC1-C. In addition, aptamers have been used as cytotoxic drug carriers. However, none of the therapies for MUC1 are currently in clinical application, as they need further refinement and evaluation.
Collapse
|
7
|
Cai H, Huang ZH, Shi L, Zou P, Zhao YF, Kunz H, Li YM. Synthesis of Tn/T Antigen MUC1 Glycopeptide BSA Conjugates and Their Evaluation as Vaccines. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100304] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Cai H, Huang ZH, Shi L, Zhao YF, Kunz H, Li YM. Towards a fully synthetic MUC1-based anticancer vaccine: efficient conjugation of glycopeptides with mono-, di-, and tetravalent lipopeptides using click chemistry. Chemistry 2011; 17:6396-406. [PMID: 21538615 DOI: 10.1002/chem.201100217] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Indexed: 11/08/2022]
Abstract
The membrane-bound tumor-associated glycoprotein MUC1 is aberrantly glycosylated in cancer cells compared with normal cells, and is therefore considered an attractive target for cancer immunotherapy. However, tumor-associated glycopeptides from MUC1 do not elicit a sufficiently robust immune response. Therefore, antitumor vaccines were developed, which consist of MUC1 glycopeptides as the B epitopes and immune-stimulating toll-like receptor 2 (TLR 2) lipopeptide ligands. These fully synthetic vaccine candidates were prepared by solid-phase synthesis of the MUC1 glycopeptides. The Pam(3) Cys lipopeptide, also synthesized on solid-phase, was C-terminally coupled to oligovalent lysine cores, which N-terminally incorporate O-propargyl oligoethylene glycol acyl side chains. The MUC1 glycopeptides and lipopeptide lysine constructs were then conjugated by click chemistry to give oligovalent synthetic vaccines. Oligovalent glycopeptide-lipopeptide conjugates are considered more immunogenic than their monovalent analogues.
Collapse
Affiliation(s)
- Hui Cai
- Department of Chemistry, Tsinghua University, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China
| | | | | | | | | | | |
Collapse
|
9
|
Yuan S, Shi C, Liu L, Han W. MUC1-based recombinant Bacillus Calmette-Guerin vaccines as candidates for breast cancer immunotherapy. Expert Opin Biol Ther 2010; 10:1037-48. [PMID: 20420512 DOI: 10.1517/14712598.2010.485185] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IMPORTANCE OF THE FIELD The challenge in breast cancer vaccine development is to find the best combination of antigen, adjuvant and delivery system to produce a strong and long-lasting immune response. Mucin 1 (MUC1) is a potential candidate target for breast cancer immunotherapy. Bacillus Calmette-Guerin (BCG) is used widely in human vaccines. Furthermore, it can potentially offer unique advantages for developing a safe and effective multi-vaccine vehicle. Due to these properties, the development of MUC1 based recombinant BCG (rBCG) vaccines for breast cancer immunotherapy has gained great momentum in recent years. AREAS COVERED IN THIS REVIEW Our aim is to discuss the recent progress in MUC1-based breast cancer immunotherapy and to highlight the advantages of MUC1-based rBCG vaccines as the new breast cancer vaccines. WHAT THE READER WILL GAIN Several promising MUC1-based rBCG vaccines have been shown to induce MUC1-specific antitumor immune responses in pre-clinical studies. This review updates and evaluates this very important and rapidly developing field, and provides a critical perspective and information source for its potential clinical applications. TAKE HOME MESSAGE MUC1-based rBCG vaccines have been shown to elicit an effective anti-tumor immune response in vivo demonstrating its potential utility in breast cancer treatment.
Collapse
Affiliation(s)
- Shifang Yuan
- Fourth Military Medical University, Xijing Hospital, Department of Vascular and Endocrine Surgery, Xi'an, 710032, People's Republic of China.
| | | | | | | |
Collapse
|
10
|
von Mensdorff-Pouilly S. Vaccine-induced antibody responses in patients with carcinoma. Expert Rev Vaccines 2010; 9:579-94. [PMID: 20518714 DOI: 10.1586/erv.10.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cancer vaccines based on defined antigens are capable of inducing antibodies that recognize and kill tumor cells. Antibodies are ideally suited to address minimal residual disease, and vaccination in an adjuvant setting may favorably influence the outcome of a disease. The present article gives a short summary of antibody production by B cells, and the mechanism of action of antibodies, as well as a description of the current methods for measuring antibody responses and for assessing their antitumor efficacy in the context of clinical trials. It concludes with an overview of antibody responses induced by vaccines based on structurally defined tumor-associated antigens tested in patients with carcinomas. Correlation between antibody responses, T-cell responses and clinical outcome has been noted in a few studies, signaling the importance of vaccine design and adjuvants to exploit the interactions of the innate and adaptive immune system. However, humoral responses, which may provide a surrogate marker for T-helper responses and simplify monitoring of large Phase III trials, are still not or incompletely explored in many vaccination trials.
Collapse
Affiliation(s)
- Silvia von Mensdorff-Pouilly
- Department of Obstetrics and Gynecology, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Yang H, Cho NH, Seong SY. The Tat-conjugated N-terminal region of mucin antigen 1 (MUC1) induces protective immunity against MUC1-expressing tumours. Clin Exp Immunol 2009; 158:174-85. [PMID: 19737144 DOI: 10.1111/j.1365-2249.2009.03997.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mucin antigen 1 (MUC1) is overexpressed on various human adenocarcinomas and haematological malignancies and has long been used as a target antigen for cancer immunotherapy. Most of the preclinical and clinical studies using MUC1 have used the tandem repeat region of MUC1, which could be presented by only a limited set of major histocompatibility complex haplotypes. Here, we evaluated N-terminal region (2-147 amino acids) of MUC1 (MUC1-N) for dendritic cell (DC)-based cancer immunotherapy. We used Esherichia coli-derived MUC1-N that was fused to the protein transduction domain of human immunodeficiency virus Tat protein for three reasons. First, mature DCs do not phagocytose soluble protein antigens. Secondly, tumour cells express underglycosylated MUC1, which can generate epitopes repertoire that differs from normal cells, which express hyperglycosylated MUC1. Finally, aberrantly glycosylated MUC1 has been known to impair DC function. In our study, Tat-MUC1-N-loaded DCs induced type 1 T cell responses as well as cytotoxic T lymphocytes efficiently. Furthermore, they could break tolerance in the transgenic breast tumour mouse model, where MUC1-positive breast cancers grow spontaneously. Compared with DCs pulsed with unconjugated MUC1-N, DCs loaded with Tat-conjugated MUC1-N could delay tumour growth more effectively in the transgenic tumour model as well as in the tumour injection model. These results suggest that the recombinant N-terminal part of MUC1, which may provide a diverse epitope repertoire, could be utilized as an effective tumour antigen for DC-based cancer immunotherapy.
Collapse
Affiliation(s)
- H Yang
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
12
|
Suzuki R, Katayama T, Kitaoka M, Kumagai H, Wakagi T, Shoun H, Ashida H, Yamamoto K, Fushinobu S. Crystallographic and mutational analyses of substrate recognition of endo-alpha-N-acetylgalactosaminidase from Bifidobacterium longum. J Biochem 2009; 146:389-98. [PMID: 19502354 DOI: 10.1093/jb/mvp086] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Endo-alpha-N-acetylgalactosaminidase (endo-alpha-GalNAc-ase), a member of the glycoside hydrolase (GH) family 101, hydrolyses the O-glycosidic bonds in mucin-type O-glycan between alpha-GalNAc and Ser/Thr. Endo-alpha-GalNAc-ase from Bifidobacterium longum JCM1217 (EngBF) is highly specific for the core 1-type O-glycan to release the disaccharide Galbeta1-3GalNAc (GNB), whereas endo-alpha-GalNAc-ase from Clostridium perfringens (EngCP) exhibits broader substrate specificity. We determined the crystal structure of EngBF at 2.0 A resolution and performed automated docking analysis to investigate possible binding modes of GNB. Mutational analysis revealed important residues for substrate binding, and two Trp residues (Trp748 and Trp750) appeared to form stacking interactions with the beta-faces of sugar rings of GNB by substrate-induced fit. The difference in substrate specificities between EngBF and EngCP is attributed to the variations in amino acid sequences in the regions forming the substrate-binding pocket. Our results provide a structural basis for substrate recognition by GH101 endo-alpha-GalNAc-ases and will help structure-based engineering of these enzymes to produce various kinds of neo-glycoconjugates.
Collapse
Affiliation(s)
- Ryuichiro Suzuki
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Corzana F, Busto J, García de Luis M, Jiménez-Barbero J, Avenoza A, Peregrina J. The Nature and Sequence of the Amino Acid Aglycone Strongly Modulates the Conformation and Dynamics Effects of Tn Antigen's Clusters. Chemistry 2009; 15:3863-74. [DOI: 10.1002/chem.200801777] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Suzuki R, Katayama T, Fushinobu S, Kitaoka M, Kumagai H, Wakagi T, Shoun H, Ashida H, Yamamoto K. Crystal Structure of GH101 Endo-.ALPHA.-N-acetylgalactosaminidase from Bifidobacterium longum. J Appl Glycosci (1999) 2009. [DOI: 10.5458/jag.56.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
15
|
Andreasen AA, Burton MJ, Holland MJ, Polley S, Faal N, Mabey DC, Bailey RL. Chlamydia trachomatis ompA variants in trachoma: what do they tell us? PLoS Negl Trop Dis 2008; 2:e306. [PMID: 18820750 PMCID: PMC2553491 DOI: 10.1371/journal.pntd.0000306] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 09/04/2008] [Indexed: 11/22/2022] Open
Abstract
Background Trachoma, caused by Chlamydia trachomatis (Ct), is the leading infectious cause of blindness. Sequence-based analysis of the multiple strains typically present in endemic communities may be informative for epidemiology, transmission, response to treatment, and understanding the host response. Methods Conjunctival and nasal samples from a Gambian community were evaluated before and 2 months after mass azithromycin treatment. Samples were tested for Ct by Amplicor, with infection load determined by quantitative PCR (qPCR). ompA sequences were determined and their diversity analysed using frequency-based tests of neutrality. Results Ninety-five of 1,319 (7.2%) individuals from 14 villages were infected with Ct at baseline. Two genovars (A and B) and 10 distinct ompA genotypes were detected. Two genovar A variants (A1 and A2) accounted for most infections. There was an excess of rare ompA mutations, not sustained in the population. Post-treatment, 76 (5.7%) individuals had Ct infection with only three ompA genotypes present. In 12 of 14 villages, infection had cleared, while in two it increased, probably due to mass migration. Infection qPCR loads associated with infection were significantly greater for A1 than for A2. Seven individuals had concurrent ocular and nasal infection, with divergent genotypes in five. Conclusions The number of strains was substantially reduced after mass treatment. One common strain was associated with higher infection loads. Discordant genotypes in concurrent infection may indicate distinct infections at ocular and nasal sites. Population genetic analysis suggests the fleeting appearance of rare multiple ompA variants represents purifying selection rather than escape variants from immune pressure. Genotyping systems accessing extra-ompA variation may be more informative. Trachoma is an important cause of blindness resulting from transmission of the bacterium Chlamydia trachomatis. One way to understand better how this infection is transmitted and how the human immune system controls it is to study the strains of bacteria associated with infection. Comparing strains before and after treatment might help us learn if someone has a new infection or the same one as before. Identifying differences between disease-causing strains should help us understand how infection leads to disease and how the human host defences work. We chose to study variation in the chlamydial gene ompA because it determines the protein MOMP, one of the leading candidates for inclusion in a vaccine to prevent trachoma. If immunity to MOMP is important in natural trachoma infections, we would expect to find evidence of this in the way the strains varied. We did not find this, but instead found that two common strains seemed to cause different types of disease. Although their MOMPs were very slightly different, this did not really explain the differences. We conclude that methods of typing strains going beyond the ompA gene will be needed to help us understand the interaction between Chlamydia and its human host.
Collapse
Affiliation(s)
- Aura A. Andreasen
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Matthew J. Burton
- London School of Hygiene & Tropical Medicine, London, United Kingdom
- Medical Research Council Laboratories, Fajara, The Gambia
| | - Martin J. Holland
- London School of Hygiene & Tropical Medicine, London, United Kingdom
- Medical Research Council Laboratories, Fajara, The Gambia
| | - Spencer Polley
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Nkoyo Faal
- Medical Research Council Laboratories, Fajara, The Gambia
| | - David C.W. Mabey
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Robin L. Bailey
- London School of Hygiene & Tropical Medicine, London, United Kingdom
- Medical Research Council Laboratories, Fajara, The Gambia
- * E-mail:
| |
Collapse
|
16
|
Hardy CM, Beaton S, Hinds LA. Immunocontraception in mice using repeated, multi-antigen peptides: immunization with purified recombinant antigens. Mol Reprod Dev 2007; 75:126-35. [PMID: 17474093 DOI: 10.1002/mrd.20745] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Two immunocontraceptive antigens (AgE and AgF) were constructed that included different combinations of highly species-specific peptides from the mouse reproductive antigens SP56, ZP3, ZP2, and ZP1 in the form of multi-antigen peptides (MAPs). Both AgE and AgF contained three tandem repeats each of ZP2 and ZP3 peptide epitopes and a single copy of a ZP1 peptide sequence all of which had previously been demonstrated to individually have immunodominant or contraceptive effects. In addition, AgF contained a single contraceptive peptide derived from SP56, the putative ZP3 receptor protein on sperm. The antigens were expressed and affinity purified as recombinant repeated multi-antigen (polyepitope) peptides using an Escherichia coli maltose binding protein (MBP) expression system. Female BALB/c mice actively immunized with these antigens in Freund's adjuvants produced variable serum antibody responses to the component peptides. Fertility rates for animals immunized with AgE (40%) and AgF (20%) were significantly reduced compared to MBP immunized mice (90%), but the reduction in fertility did not correlate with peptide-specific serum antibody levels. Ovaries from all immunized mice appeared histologically normal with no evidence of oophoritis. These results demonstrate that high levels of immunocontraception can be achieved in mice, without apparent side-effects, using species-specific immunogens that include repeated peptides from proteins involved in fertilization.
Collapse
|
17
|
Pudelko M, Kihlberg J, Elofsson M. Application of gel-phase19F NMR spectroscopy for optimization of solid-phase synthesis of a hydrophobic peptide from the signal sequence of the mucin MUC1. J Pept Sci 2007; 13:354-61. [PMID: 17436345 DOI: 10.1002/psc.850] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This paper describes the manual Fmoc/t-Bu solid-phase synthesis of a difficult nine-residue hydrophobic peptide LLLLTVLTV from one of the signal sequences that flank the tandem repeat of the mucin MUC1. Gel-phase 19F NMR spectroscopy was used as a straightforward method for optimization of the solid-phase synthesis. Different approaches were applied for comparative studies. The strategy based on modified solid-phase conditions using DIC/HOAt for coupling, DBU for Fmoc deprotection, and the incorporation of the pseudo proline dipeptide Fmoc-Leu-Thr(psiMe, Me pro)-OH as a backbone-protecting group was found to be superior according to gel-phase 19F NMR spectroscopy. Implementation of the optimized Fmoc protocol enabled an effective synthesis of signal peptide LLLLTVLTV.
Collapse
Affiliation(s)
- Maciej Pudelko
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | | | | |
Collapse
|
18
|
N/A, 丁 志, 陈 勇, 李 晓, 罗 强, 陈 忠. N/A. Shijie Huaren Xiaohua Zazhi 2006; 14:923-926. [DOI: 10.11569/wcjd.v14.i9.923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|