1
|
Dai P, Shen J, Shen D, Li X, Win-Shwe TT, Li C. Melatonin Ameliorates Apoptosis of A549 Cells Exposed to Chicken House PM 2.5: A Novel Insight in Poultry Production. TOXICS 2023; 11:562. [PMID: 37505528 PMCID: PMC10383700 DOI: 10.3390/toxics11070562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
The particulate matter 2.5 (PM2.5) from the chicken production system can cause lung injury and reduce productivity through prolonged breath as it attaches large amounts of harmful substances and microbes. Melatonin has acted to regulate physiological and metabolic disorders and improve growth performance during poultry production. This research would investigate the apoptosis caused by chicken house PM2.5 on lung pulmonary epithelial cells and the protective action of melatonin. Here, the basal epithelial cells of human lung adenocarcinoma (A549 cells) were subjected to PM2.5 from the broiler breeding house to investigate the apoptosis induced by PM2.5 as well as the alleviation of melatonin. The apoptosis was aggravated by PM2.5 (12.5 and 25 μg/mL) substantially, and the expression of Bcl-2, Bad, Bax, PERK, and CHOP increased dramatically after PM2.5 treatment. Additionally, the up-regulation of cleaved caspase-9 and cleaved caspase-3 as well as endoplasmic reticulum stress (ERS)-related proteins, including ATF6 and CHOP, was observed due to PM2.5 exposure. It is worth noting that melatonin could support A549 cells' survival, in which reduced expression of Bax, Bad, cleaved caspase-3, and cleaved caspase-9 appeared. Concurrently, the level of malondialdehyde (MDA) was down-regulated and enhanced the intracellular content of total superoxide dismutase (T-SOD) and catalase (CAT) after treatment by PM2.5 together with melatonin. Collectively, our study underlined that melatonin exerted an anti-apoptotic action on A549 cells by strengthening their antioxidant capacity.
Collapse
Affiliation(s)
- Pengyuan Dai
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226019, China
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jiakun Shen
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Dan Shen
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xiaotong Li
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Tin-Tin Win-Shwe
- Center for Environmental Risk Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Chunmei Li
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
2
|
Lipidomics in Understanding Pathophysiology and Pharmacologic Effects in Inflammatory Diseases: Considerations for Drug Development. Metabolites 2022; 12:metabo12040333. [PMID: 35448520 PMCID: PMC9030008 DOI: 10.3390/metabo12040333] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 01/26/2023] Open
Abstract
The lipidome has a broad range of biological and signaling functions, including serving as a structural scaffold for membranes and initiating and resolving inflammation. To investigate the biological activity of phospholipids and their bioactive metabolites, precise analytical techniques are necessary to identify specific lipids and quantify their levels. Simultaneous quantification of a set of lipids can be achieved using high sensitivity mass spectrometry (MS) techniques, whose technological advancements have significantly improved over the last decade. This has unlocked the power of metabolomics/lipidomics allowing the dynamic characterization of metabolic systems. Lipidomics is a subset of metabolomics for multianalyte identification and quantification of endogenous lipids and their metabolites. Lipidomics-based technology has the potential to drive novel biomarker discovery and therapeutic development programs; however, appropriate standards have not been established for the field. Standardization would improve lipidomic analyses and accelerate the development of innovative therapies. This review aims to summarize considerations for lipidomic study designs including instrumentation, sample stabilization, data validation, and data analysis. In addition, this review highlights how lipidomics can be applied to biomarker discovery and drug mechanism dissection in various inflammatory diseases including cardiovascular disease, neurodegeneration, lung disease, and autoimmune disease.
Collapse
|
3
|
Kumar A, Behl T, Jamwal S, Kaur I, Sood A, Kumar P. Exploring the molecular approach of COX and LOX in Alzheimer's and Parkinson's disorder. Mol Biol Rep 2020; 47:9895-9912. [PMID: 33263931 DOI: 10.1007/s11033-020-06033-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/24/2020] [Indexed: 01/02/2023]
Abstract
Neuroinflammation is well established biomarker for the major neurodegenerative like Alzheimer's disease (AD) and Parkinson's disease (PD). Cytokines/chemokines excite phospholipase A2 and cyclooxygenases (COX), facilitating the release of arachidonic acid (AA) and docosahexaenoic acid (DHA) from membrane glycerophospholipids, in which the former is oxidized to produce pro-inflammatory eicosanoids (prostaglandins, leukotrienes and thromboxane's), which intensify the neuroinflammatory events in the brain. Similarly, resolvins and neuroprotectins are the metabolized products of docosahexaenoic acid, which exert an inhibitory effect on the production of eicosanoids. Furthermore, an oxidized product of arachidonic acid, lipoxin, is generated via 5-lipoxygenase (5-LOX) pathway, and contributes to the resolution of inflammation, along with anti-inflammatory actions. Moreover, DHA and its lipid mediators inhibit neuroinflammatory responses by blocking NF-κB, inhibiting eicosanoid production, preventing cytokine secretion and regulating leukocyte trafficking. Various epidemiological studies reported, elevated levels of COX-2 enzyme in patients with AD and PD, indicating its role in progression of the disease. Similarly, enhanced levels of 5-LOX and 12/15-LOX in PD models represent their role brain disorders, where the former is expressed in AD patients and the latter exhibits it involvement in PD. The present review elaborates the role of AA, DHA, eicosanoids and docosanoids, along with COX and LOX pathway which provides an opportunity to the researchers to understand the role of these lipid mediators in neurological disorders (AD and PD). The information gathered from the review will aid in facilitating the development of appropriate therapeutic options targeting COX and LOX pathway.
Collapse
Affiliation(s)
- Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sumit Jamwal
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Archit Sood
- Institute of Plant Sciences, Volcani Center, Agricultural Research Organisation (ARO), Rishon LeTsiyon, Israel
| | - Puneet Kumar
- Department of Pharmacology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| |
Collapse
|
4
|
Mehrabadi S, Sadr SS. Assessment of Probiotics Mixture on Memory Function, Inflammation Markers, and Oxidative Stress in an Alzheimer's Disease Model of Rats. IRANIAN BIOMEDICAL JOURNAL 2020; 24:220-8. [PMID: 32306720 PMCID: PMC7275815 DOI: 10.29252/ibj.24.4.220] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/11/2020] [Indexed: 12/16/2022]
Abstract
Background The most important cause of neurodegeneration in Alzheimer's disease (AD) is associated with inflammation and oxidative stress. Probiotics are microorganisms that are believed to be beneficial to human and animals. Probiotics reduce oxidative stress and inflammation in some cases. Therefore, this study determined the effects of probiotics mixture on the biomarkers of oxidative stress and inflammation in an AD model of rats. Methods In this study, 50 rats were allocated to five groups, namely control, sham, and AD groups with Aβ1-40 intra-hippocampal injection, as well as AD + rivastigmine and AD + probiotics groups with Aβ1-40 intra-hippocampal injection and 2 ml (1010 CFU) of probiotics (Lactobacillus reuteri, Lactobacillus rhamnosus, and Bifidobacterium infantis) orally once a day for 10 weeks. MWM was used to assess memory and learning. To detect Aβ plaque, Congo red staining was used. Oxidative stress was monitored by measuring the MDA level and SOD activity, and to assess inflammation markers (IL-1β and TNF-α) in the hippocampus, ELISA method was employed.. Results Spatial memory improved significantly in treatment group as measured by MWM. Probiotics administration reduced Aβ plaques in AD rats. MDA decreased and SOD increased in the treatment group. Besides, probiotics reduced IL-1β and TNF-α as inflammation markers in the AD model of rats. Conclusion Our data revealed that probiotics are helpful in attenuating inflammation and oxidative stress in AD.
Collapse
Affiliation(s)
- Shima Mehrabadi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Shahabeddin Sadr
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Liu SY, Ma YL, Hsu WL, Chiou HY, Lee EHY. Protein inhibitor of activated STAT1 Ser 503 phosphorylation-mediated Elk-1 SUMOylation promotes neuronal survival in APP/PS1 mice. Br J Pharmacol 2019; 176:1793-1810. [PMID: 30849179 DOI: 10.1111/bph.14656] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/29/2019] [Accepted: 02/10/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Protein inhibitor of activated STAT1 (PIAS1) is phosphorylated by IKKα at Ser90 in a PIAS1 E3 ligase activity-dependent manner. Whether PIAS1 is also phosphorylated at other residues and the functional significance of these additional phosphorylation events are not known. The transcription factor Elk-1 remains SUMOylated under basal conditions, but the role of Elk-1 SUMOylation in brain is unknown. Here, we examined the functional significance of PIAS1-mediated Elk-1 SUMOylation in Alzheimer's disease (AD) using the APP/PS1 mouse model of AD and amyloid β (Aβ) microinjections in vivo. EXPERIMENTAL APPROACH Novel phosphorylation site(s) on PIAS1 were identified by LC-MS/MS, and MAPK/ERK-mediated phosphorylation of Elk-1 demonstrated using in vitro kinase assays. Elk-1 SUMOylation by PIAS1 in brain was determined using in vitro SUMOylation assays. Apoptosis in hippocampus was assessed by measuring GADD45α expression by western blotting, and apoptosis of hippocampal neurons in APP/PS1 mice was assessed by TUNEL assay. KEY RESULTS Using LC-MS/MS, we identified a novel MAPK/ERK-mediated phosphorylation site on PIAS1 at Ser503 and showed this phosphorylation determines PIAS1 E3 ligase activity. In rat brain, Elk-1 was SUMOylated by PIAS1, which decreased Elk-1 phosphorylation and down-regulated GADD45α expression. Moreover, lentiviral-mediated transduction of Elk-1-SUMO1 reduced the number of hippocampal apoptotic neurons in APP/PS1 mice. CONCLUSIONS AND IMPLICATIONS MAPK/ERK-mediated phosphorylation of PIAS1 at Ser503 determines PIAS1 E3 ligase activity. Moreover, PIAS1 mediates SUMOylation of Elk-1, which functions as an endogenous defence mechanism against Aβ toxicity in vivo. Targeting Elk-1 SUMOylation could be considered a novel therapeutic strategy against AD.
Collapse
Affiliation(s)
- Shau-Yu Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yun-Li Ma
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Lun Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsin-Ying Chiou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Eminy H Y Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
6
|
Giau VV, Wu SY, Jamerlan A, An SSA, Kim SY, Hulme J. Gut Microbiota and Their Neuroinflammatory Implications in Alzheimer's Disease. Nutrients 2018; 10:nu10111765. [PMID: 30441866 PMCID: PMC6266223 DOI: 10.3390/nu10111765] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/08/2018] [Accepted: 11/10/2018] [Indexed: 12/12/2022] Open
Abstract
The bidirectional communication between the central nervous system (CNS) and the gut microbiota plays a pivotal role in human health. Increasing numbers of studies suggest that the gut microbiota can influence the brain and behavior of patients. Various metabolites secreted by the gut microbiota can affect the cognitive ability of patients diagnosed with neurodegenerative diseases. Nearly one in every ten Korean senior citizens suffers from Alzheimer’s disease (AD), the most common form of dementia. This review highlights the impact of metabolites from the gut microbiota on communication pathways between the brain and gut, as well as the neuroinflammatory roles they may have in AD patients. The objectives of this review are as follows: (1) to examine the role of the intestinal microbiota in homeostatic communication between the gut microbiota and the brain, termed the microbiota–gut–brain (MGB) axis; (2) to determine the underlying mechanisms of signal dysfunction; and (3) to assess the impact of signal dysfunction induced by the microbiota on AD. This review will aid in understanding the microbiota of elderly people and the neuroinflammatory roles they may have in AD.
Collapse
Affiliation(s)
- Vo Van Giau
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Seongnam-si, Gyeonggi-do 461-701, Korea.
| | - Si Ying Wu
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Seongnam-si, Gyeonggi-do 461-701, Korea.
| | - Angelo Jamerlan
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Seongnam-si, Gyeonggi-do 461-701, Korea.
| | - Seong Soo A An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Seongnam-si, Gyeonggi-do 461-701, Korea.
| | - Sang Yun Kim
- Department of Neurology, Seoul National University College of Medicine & Neurocognitive Behavior Center, Seoul National University Bundang Hospital, Seoul 100-011, Korea.
| | - John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Seongnam-si, Gyeonggi-do 461-701, Korea.
| |
Collapse
|
7
|
Layé S, Nadjar A, Joffre C, Bazinet RP. Anti-Inflammatory Effects of Omega-3 Fatty Acids in the Brain: Physiological Mechanisms and Relevance to Pharmacology. Pharmacol Rev 2017; 70:12-38. [PMID: 29217656 DOI: 10.1124/pr.117.014092] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/05/2017] [Indexed: 12/17/2022] Open
Abstract
Classically, polyunsaturated fatty acids (PUFA) were largely thought to be relatively inert structural components of brain, largely important for the formation of cellular membranes. Over the past 10 years, a host of bioactive lipid mediators that are enzymatically derived from arachidonic acid, the main n-6 PUFA, and docosahexaenoic acid, the main n-3 PUFA in the brain, known to regulate peripheral immune function, have been detected in the brain and shown to regulate microglia activation. Recent advances have focused on how PUFA regulate the molecular signaling of microglia, especially in the context of neuroinflammation and behavior. Several active drugs regulate brain lipid signaling and provide proof of concept for targeting the brain. Because brain lipid metabolism relies on a complex integration of diet, peripheral metabolism, including the liver and blood, which supply the brain with PUFAs that can be altered by genetics, sex, and aging, there are many pathways that can be disrupted, leading to altered brain lipid homeostasis. Brain lipid signaling pathways are altered in neurologic disorders and may be viable targets for the development of novel therapeutics. In this study, we discuss in particular how n-3 PUFAs and their metabolites regulate microglia phenotype and function to exert their anti-inflammatory and proresolving activities in the brain.
Collapse
Affiliation(s)
- Sophie Layé
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Agnès Nadjar
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Corinne Joffre
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Richard P Bazinet
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| |
Collapse
|
8
|
Echeverría F, Valenzuela R, Catalina Hernandez-Rodas M, Valenzuela A. Docosahexaenoic acid (DHA), a fundamental fatty acid for the brain: New dietary sources. Prostaglandins Leukot Essent Fatty Acids 2017; 124:1-10. [PMID: 28870371 DOI: 10.1016/j.plefa.2017.08.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/10/2017] [Accepted: 08/09/2017] [Indexed: 01/25/2023]
Abstract
Docosahexaenoic acid (C22: 6n-3, DHA) is a long-chain polyunsaturated fatty acid of marine origin fundamental for the formation and function of the nervous system, particularly the brain and the retina of humans. It has been proposed a remarkable role of DHA during human evolution, mainly on the growth and development of the brain. Currently, DHA is considered a critical nutrient during pregnancy and breastfeeding due their active participation in the development of the nervous system in early life. DHA and specifically one of its derivatives known as neuroprotectin D-1 (NPD-1), has neuroprotective properties against brain aging, neurodegenerative diseases and injury caused after brain ischemia-reperfusion episodes. This paper discusses the importance of DHA in the human brain given its relevance in the development of the tissue and as neuroprotective agent. It is also included a critical view about the ways to supply this noble fatty acid to the population.
Collapse
Affiliation(s)
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | | | - Alfonso Valenzuela
- Lipid Center, Institute of Nutrition and Food Technology (INTA), University of Chile and Faculty of Medicine,, University de Los Andes, Santiago, Chile
| |
Collapse
|
9
|
Tao CC, Hsu WL, Ma YL, Cheng SJ, Lee EH. Epigenetic regulation of HDAC1 SUMOylation as an endogenous neuroprotection against Aβ toxicity in a mouse model of Alzheimer's disease. Cell Death Differ 2017; 24:597-614. [PMID: 28186506 PMCID: PMC5384022 DOI: 10.1038/cdd.2016.161] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/04/2016] [Accepted: 12/13/2016] [Indexed: 01/08/2023] Open
Abstract
Amyloid-β (Aβ) produces neurotoxicity in the brain and causes neuronal death, but the endogenous defense mechanism that is activated on Aβ insult is less well known. Here we found that acute Aβ increases the expression of PIAS1 and Mcl-1 via activation of MAPK/ERK, and Aβ induction of PIAS1 enhances HDAC1 SUMOylation in rat hippocampus. Knockdown of PIAS1 decreases endogenous HDAC1 SUMOylation and blocks Aβ induction of Mcl-1. Sumoylated HDAC1 reduces it association with CREB, increases CREB binding to the Mcl-1 promoter and mediates Aβ induction of Mcl-1 expression. Transduction of SUMO-modified lenti-HDAC1 vector to the hippocampus of APP/PS1 mice rescues spatial learning and memory deficit and long-term potentiation impairment in APP/PS1 mice. It also reduces the amount of amyloid plaque and the number of apoptotic cells in CA1 area of APP/PS1 mice. Meanwhile, HDAC1 SUMOylation decreases HDAC1 binding to the neprilysin promoter. These results together reveal an important role of HDAC1 SUMOylation as a naturally occurring defense mechanism protecting against Aβ toxicity and provide an alternative therapeutic strategy against AD.
Collapse
Affiliation(s)
- Chih Chieh Tao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Wei Lun Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yun Li Ma
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sin Jhong Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Neuroscience Program in Academia Sinica, Taipei, Taiwan
| | - Eminy Hy Lee
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
10
|
Thomas MH, Pelleieux S, Vitale N, Olivier JL. Dietary arachidonic acid as a risk factor for age-associated neurodegenerative diseases: Potential mechanisms. Biochimie 2016; 130:168-177. [PMID: 27473185 DOI: 10.1016/j.biochi.2016.07.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/24/2016] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease and associated diseases constitute a major public health concern worldwide. Nutrition-based, preventive strategies could possibly be effective in delaying the occurrence of these diseases and lower their prevalence. Arachidonic acid is the second major polyunsaturated fatty acid (PUFA) and several studies support its involvement in Alzheimer's disease. The objective of this review is to examine how dietary arachidonic acid contributes to Alzheimer's disease mechanisms and therefore to its prevention. First, we explore the sources of neuronal arachidonic acid that could potentially originate from either the conversion of linoleic acid, or from dietary sources and transfer across the blood-brain-barrier. In a second part, a brief overview of the role of the two main agents of Alzheimer's disease, tau protein and Aβ peptide is given, followed by the examination of the relationship between arachidonic acid and the disease. Third, the putative mechanisms by which arachidonic acid could influence Alzheimer's disease occurrence and evolution are presented. The conclusion is devoted to what remains to be determined before integrating arachidonic acid in the design of preventive strategies against Alzheimer's disease and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Mélanie H Thomas
- Unité de Recherche Aliment et Fonctionnalité des Produits Animaux (URAFPA), INRA USC 0340, Université de Lorraine, Nancy, France
| | - Sandra Pelleieux
- Unité de Recherche Aliment et Fonctionnalité des Produits Animaux (URAFPA), INRA USC 0340, Université de Lorraine, Nancy, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR CNRS 3212, Université de Strasbourg, Strasbourg, France
| | - Jean Luc Olivier
- Unité de Recherche Aliment et Fonctionnalité des Produits Animaux (URAFPA), INRA USC 0340, Université de Lorraine, Nancy, France.
| |
Collapse
|
11
|
Ayzenberg I, Hoepner R, Kleiter I. Fingolimod for multiple sclerosis and emerging indications: appropriate patient selection, safety precautions, and special considerations. Ther Clin Risk Manag 2016; 12:261-72. [PMID: 26929636 PMCID: PMC4767105 DOI: 10.2147/tcrm.s65558] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fingolimod (FTY720), an immunotherapeutic drug targeting the sphingosine-1-phosphate receptor, is a widely used medication for relapsing-remitting multiple sclerosis (MS). Apart from the pivotal Phase III trials demonstrating efficacy against placebo and interferon-β-1a once weekly, sufficient clinical data are now available to assess its real-world efficacy and safety profile. Approved indications of fingolimod differ between countries. This discrepancy, to some extent, reflects the intermediate position of fingolimod in the expanding lineup of MS medications. With individualization of therapy, appropriate patient selection gets more important. We discuss various scenarios for fingolimod use in relapsing-remitting MS and their pitfalls: as first-line therapy, as escalation therapy after failure of previous immunotherapies, and as de-escalation therapy following highly potent immunotherapies. Potential side effects such as bradycardia, infections, macular edema, teratogenicity, and progressive multifocal leukoencephalopathy as well as appropriate safety precautions are outlined. Disease reactivation has been described upon fingolimod cessation; therefore, patients should be closely monitored for MS activity for several months after stopping fingolimod. Finally, we discuss preclinical and clinical data indicating neuroprotective effects of fingolimod, which might open the way to future indications such as stroke, Alzheimer’s disease, and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Ilya Ayzenberg
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Robert Hoepner
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Ingo Kleiter
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
12
|
The Lipoxygenases: Their Regulation and Implication in Alzheimer's Disease. Neurochem Res 2015; 41:243-57. [PMID: 26677076 PMCID: PMC4773476 DOI: 10.1007/s11064-015-1776-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/06/2015] [Accepted: 11/14/2015] [Indexed: 02/03/2023]
Abstract
Inflammatory processes and alterations of lipid metabolism play a crucial role in Alzheimer’s disease (AD) and other neurodegenerative disorders. Polyunsaturated fatty acids (PUFA) metabolism impaired by cyclooxygenases (COX-1, COX-2), which are responsible for formation of several eicosanoids, and by lipoxygenases (LOXs) that catalyze the addition of oxygen to linolenic, arachidonic (AA), and docosahexaenoic acids (DHA) and other PUFA leading to formation of bioactive lipids, significantly affects the course of neurodegenerative diseases. Among several isoforms, 5-LOX and 12/15-LOX are especially important in neuroinflammation/neurodegeneration. These two LOXs are regulated by substrate concentration and availability, and by phosphorylation/dephosphorylation through protein kinases PKA, PKC and MAP-kinases, including ERK1/ERK2 and p38. The protein/protein interaction also is involved in the mechanism of 5-LOX regulation through FLAP protein and coactosin-like protein. Moreover, non-heme iron and calcium ions are potent regulators of LOXs. The enzyme activity significantly depends on the cell redox state and is differently regulated by various signaling pathways. 5-LOX and 12/15-LOX convert linolenic acid, AA, and DHA into several bioactive compounds e.g. hydroperoxyeicosatetraenoic acids (5-HPETE, 12S-HPETE, 15S-HPETE), which are reduced to corresponding HETE compounds. These enzymes synthesize several bioactive lipids, e.g. leucotrienes, lipoxins, hepoxilins and docosahexaenoids. 15-LOX is responsible for DHA metabolism into neuroprotectin D1 (NPD1) with significant antiapoptotic properties which is down-regulated in AD. In this review, the regulation and impact of 5-LOX and 12/15-LOX in the pathomechanism of AD is discussed. Moreover, we describe the role of several products of LOXs, which may have significant pro- or anti-inflammatory activity in AD, and the cytoprotective effects of LOX inhibitors.
Collapse
|
13
|
Brunkhorst R, Vutukuri R, Pfeilschifter W. Fingolimod for the treatment of neurological diseases-state of play and future perspectives. Front Cell Neurosci 2014; 8:283. [PMID: 25309325 PMCID: PMC4162362 DOI: 10.3389/fncel.2014.00283] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/25/2014] [Indexed: 11/25/2022] Open
Abstract
Sphingolipids are a fascinating class of signaling molecules derived from the membrane lipid sphingomyelin. They show abundant expression in the brain. Complex sphingolipids such as glycosphingolipids (gangliosides and cerebrosides) regulate vesicular transport and lysosomal degradation and their dysregulation can lead to storage diseases with a neurological phenotype. More recently, simple sphingolipids such ceramide, sphingosine and sphingosine 1-phosphate (S1P) were discovered to signal in response to many extracellular stimuli. Forming an intricate signaling network, the balance of these readily interchangeable mediators is decisive for cell fate under stressful conditions. The immunomodulator fingolimod is the prodrug of an S1P receptor agonist. Following receptor activation, the drug leads to downregulation of the S1P1 receptor inducing functional antagonism. As the first drug to modulate the sphingolipid signaling pathway, it was marketed in 2010 for the treatment of multiple sclerosis (MS). At that time, immunomodulation was widely accepted as the key mechanism of fingolimod’s efficacy in MS. But given the excellent passage of this lipophilic compound into the brain and its massive brain accumulation as well as the abundant expression of S1P receptors on brain cells, it is conceivable that fingolimod also affects brain cells directly. Indeed, a seminal study showed that the protective effect of fingolimod in experimental autoimmune encephalitis (EAE), a murine MS model, is lost in mice lacking the S1P1 receptor on astrocytes, arguing for a specific role of astrocytic S1P signaling in MS. In this review, we discuss the role of sphingolipid mediators and their metabolizing enzymes in neurologic diseases and putative therapeutic strategies arising thereof.
Collapse
Affiliation(s)
- Robert Brunkhorst
- Cerebrovascular Research Group, Department of Neurology, Frankfurt University Hospital Frankfurt am Main, Germany
| | - Rajkumar Vutukuri
- Institute of General Pharmacology and Toxicology, pharmazentrum frankfurt, Goethe University Frankfurt Frankfurt am Main, Germany
| | - Waltraud Pfeilschifter
- Cerebrovascular Research Group, Department of Neurology, Frankfurt University Hospital Frankfurt am Main, Germany
| |
Collapse
|
14
|
Hill JM, Bhattacharjee S, Pogue AI, Lukiw WJ. The gastrointestinal tract microbiome and potential link to Alzheimer's disease. Front Neurol 2014; 5:43. [PMID: 24772103 PMCID: PMC3983497 DOI: 10.3389/fneur.2014.00043] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/21/2014] [Indexed: 12/26/2022] Open
Affiliation(s)
- James M Hill
- LSU Neuroscience Center, Louisiana State University Health Sciences Center , New Orleans, LA , USA ; Department of Microbiology, Louisiana State University Health Sciences Center , New Orleans, LA , USA ; Department of Ophthalmology, Louisiana State University Health Sciences Center , New Orleans, LA , USA
| | | | | | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center , New Orleans, LA , USA ; Department of Ophthalmology, Louisiana State University Health Sciences Center , New Orleans, LA , USA ; Alchem Biotek , Toronto, ON , Canada ; Department of Neurology, Louisiana State University Health Sciences Center , New Orleans, LA , USA
| |
Collapse
|
15
|
STAT1 negatively regulates spatial memory formation and mediates the memory-impairing effect of Aβ. Neuropsychopharmacology 2014; 39:746-58. [PMID: 24081304 PMCID: PMC3895253 DOI: 10.1038/npp.2013.263] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/29/2013] [Accepted: 09/16/2013] [Indexed: 01/15/2023]
Abstract
Signal transducer and activator of transcription-1 (STAT1) has an important role in inflammation and the innate immune response, but its role in the central nervous system is less well understood. Here, we examined the role of STAT1 in spatial learning and memory, and assessed the involvement of STAT1 in mediating the memory-impairing effect of amyloid-beta (Aβ). We found that water maze training downregulated STAT1 expression in the rat hippocampal CA1 area, and spatial learning and memory function was enhanced in Stat1-knockout mice. Conversely, overexpression of STAT1 impaired water maze performance. STAT1 strongly upregulated the expression of the extracellular matrix protein laminin β1 (LB1), which also impaired water maze performance in rats. Furthermore, Aβ impaired spatial learning and memory in association with a dose-dependent increase in STAT1 and LB1 expression, but knockdown of STAT1 and LB1 both reversed this effect of Aβ. This Aβ-induced increase in STAT1 and LB1 expression was also associated with a decrease in the expression of the N-methyl-D-aspartate receptor (NMDAR) subunits, NR1, and NR2B. Overexpression of NR1 or NR2B or exogenous application of NMDA reversed Aβ-induced learning and memory deficits as well as Aβ-induced STAT1 and LB1 expression. Our results demonstrate that STAT1 negatively regulates spatial learning and memory through transcriptional regulation of LB1 expression. We also identified a novel mechanism for Aβ pathogenesis through STAT1 induction. Notably, impairment of spatial learning and memory by this STAT1-mediated mechanism is independent of cAMP responsive element-binding protein signaling.
Collapse
|
16
|
Bhattacharjee S, Lukiw WJ. Alzheimer's disease and the microbiome. Front Cell Neurosci 2013; 7:153. [PMID: 24062644 PMCID: PMC3775450 DOI: 10.3389/fncel.2013.00153] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 08/26/2013] [Indexed: 12/21/2022] Open
Affiliation(s)
- Surjyadipta Bhattacharjee
- Departments of Neurology, Neuroscience and Ophthalmology, LSU Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | | |
Collapse
|
17
|
Edgünlü TG, Ozge A, Yalın OÖ, Kul S, Erdal ME. A Study of the Impact of Death Receptor 4 (DR4) Gene Polymorphisms in Alzheimer's Disease. Balkan Med J 2013; 30:268-72. [PMID: 25207117 DOI: 10.5152/balkanmedj.2013.7455] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 04/07/2013] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Excessive apoptosis is believed to play a role in many degenerative and non-degenerative neurological diseases including Alzheimer's disease (AD). Much recent data suggest that apoptotic mechanisms may represent the missing link between Aβ deposition and proteolysis of tau protein. However, there is emerging evidence that apoptotic mechanisms may play a role in Alzheimer's Disease pathogenesis in the absence of overt apoptosis. TNF-related apoptosis inducing ligand receptor 1 (Death Receptor 4, DR4) might impair the apoptotic signal transduction and lead to dysregulation of the homeostasis between cell survival and cell death. AIMS The aim of our study was to further investigate the relationship between genetic variants of DR4 and Alzheimer's Disease. STUDY DESIGN Case control study. METHODS Sixty-eight patients with AD were included in the study. The control group comprised 72 subjects without signs of neurodegenerative diseases, as evidenced by the examination.DNA was extracted from whole blood using the salting-out procedure. Genotypes were identified by restriction fragment length polymorphism analysis of polymerase chain reaction (PCR-RFLP) products. RESULTS We observed significant differences in the genotypic distribution of the rs6557634 polymorphism in AD patients compared with controls (p<0.05); our data suggest that the GA genotype in rs6557634 could be protective against AD (p<0.05). However, there were no significant differences between AD patients and control groups in terms of the DR4 rs20575 polymorphism (p>0.05) and the DR4 rs20576 polymorphism (p>0.05). According to haplotype analysis of the DR4 gene for rs6557634, rs20575 and rs20576 polymorphisms, GCA and GCC haplotypes might be a risk factor for AD. Also, we have shown that ACA, GGC and GGA haplotypes might be protective factors against AD. CONCLUSION The present results indicate for the first time the possible contribution of the DR4 gene rs6557634, rs20575, rs20576 polymorphisms in Alzheimer's Disease, which may influence susceptibility to Alzheimer's Disease.
Collapse
Affiliation(s)
| | - Aynur Ozge
- Department of Neurology, Mersin University School of Medicine, Mersin, Turkey
| | - Osman Özgür Yalın
- Department of Neurology, Mersin University School of Medicine, Mersin, Turkey
| | - Seval Kul
- Department of Biostatistics, Gaziantep University School of Medicine, Gaziantep, Turkey
| | - Mehmet Emin Erdal
- Department of Medical Biology and Genetics, Mersin University School of Medicine, Mersin, Turkey
| |
Collapse
|
18
|
Ryu J, Yu HN, Cho H, Kim HS, Baik TK, Lee SJ, Woo RS. Neuregulin-1 exerts protective effects against neurotoxicities induced by C-terminal fragments of APP via ErbB4 receptor. J Pharmacol Sci 2012; 119:73-81. [PMID: 22739235 DOI: 10.1254/jphs.12057fp] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Neuregulin-1 (NRG1) plays important roles in the development and plasticity of the brain, and it is also reported to have potent neuroprotective properties. We previously reported that NRG1 has neuroprotective actions against Swedish amyloid precursor protein-induced neurotoxicity. In addition to the amyloid beta peptide, other metabolites of amyloid precursor protein (APP) such as the C-terminal fragments of APP (APP-CTs) have been reported to possess cytotoxic effects in neuronal cells. In this study, we investigated whether NRG1 exerts neuroprotective effects against APP-CTs and attempted to determine its neuroprotective mechanisms. NRG1 attenuated the neurotoxicities induced by the expression of APP-CTs in neuronal cells. NRG1 also reduced the accumulation of reactive oxygen species and attenuated mitochondrial membrane potential loss induced by APP-CTs. In addition, NRG1 upregulated the expression of the anti-apoptotic protein Bcl-2. This effect was blocked by the inhibition of ErbB4, a key NRG1 receptor. Taken together, these results demonstrate the neuroprotective potential of NRG1 in Alzheimer's disease.
Collapse
Affiliation(s)
- Junghwa Ryu
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Metal-sulfate induced generation of ROS in human brain cells: detection using an isomeric mixture of 5- and 6-carboxy-2',7'-dichlorofluorescein diacetate (carboxy-DCFDA) as a cell permeant tracer. Int J Mol Sci 2012; 13:9615-9626. [PMID: 22949820 PMCID: PMC3431818 DOI: 10.3390/ijms13089615] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/20/2012] [Accepted: 07/24/2012] [Indexed: 12/13/2022] Open
Abstract
Evolution of reactive oxygen species (ROS), generated during the patho-physiological stress of nervous tissue, has been implicated in the etiology of several progressive human neurological disorders including Alzheimer’s disease (AD) and amylotrophic lateral sclerosis (ALS). In this brief communication we used mixed isomers of 5-(and-6)-carboxy-2′,7′-dichlorofluorescein diacetate (carboxy-DCFDA; C25H14Cl2O9; MW 529.3), a novel fluorescent indicator, to assess ROS generation within human neuronal-glial (HNG) cells in primary co-culture. We introduced pathological stress using the sulfates of 12 environmentally-, industrially- and agriculturally-relevant divalent and trivalent metals including Al, Cd, Cu, Fe, Hg, Ga, Mg, Mn, Ni, Pb, Sn and Zn. In this experimental test system, of all the metal sulfates analyzed, aluminum sulfate showed by far the greatest ability to induce intracellular ROS. These studies indicate the utility of using isomeric mixtures of carboxy-H2DCFDA diacetates as novel and highly sensitive, long-lasting, cell-permeant, fluorescein-based tracers for quantifying ROS generation in intact, metabolizing human brain cells, and in analyzing the potential epigenetic contribution of different metal sulfates to ROS-generation and ROS-mediated neurological dysfunction.
Collapse
|
20
|
Connor S, Tenorio G, Clandinin MT, Sauvé Y. DHA supplementation enhances high-frequency, stimulation-induced synaptic transmission in mouse hippocampus. Appl Physiol Nutr Metab 2012; 37:880-7. [PMID: 22716290 DOI: 10.1139/h2012-062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
While some studies on dietary supplementation with docosahexaenoic acid (DHA, 22:6n-3) have reported a beneficial effect on memory as a function of age, others have failed to find any effect. To clarify this issue, we sought to determine whether supplementing mice with a DHA-enriched diet could alter the ability of synapses to undergo activity-dependent changes in the hippocampus, a brain structure involved in forming new spatial memories. We found that DHA was increased by 29% ± 5% (mean ± SE) in the hippocampus for the supplemented (DHA+) versus nonsupplemented (control) group (n = 5 mice per group; p < 0.05). Such DHA elevation was associated with enhanced synaptic transmission (p < 0.05) as assessed by application of a high-frequency electrical stimulation protocol (100 Hz stimulation, which induced transient (<2 h) increases in synaptic strength) to slices from DHA+ (n = 4 mice) hippocampi when compared with controls (n = 4 mice). Increased synaptic responses were evident 60 min poststimulation. These results suggest that dietary DHA supplementation facilitates synaptic plasticity following brief high-frequency stimulation. This increase in synaptic transmission might provide a physiological correlation for the improved spatial learning and memory observed following DHA supplementation.
Collapse
Affiliation(s)
- Steve Connor
- Centre for Neuroscience, University of Alberta, Edmonton, AB, Canada
| | | | | | | |
Collapse
|
21
|
Lukiw WJ. Amyloid beta (Aβ) peptide modulators and other current treatment strategies for Alzheimer's disease (AD). Expert Opin Emerg Drugs 2012; 17:10.1517/14728214.2012.672559. [PMID: 22439907 PMCID: PMC3399957 DOI: 10.1517/14728214.2012.672559] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Alzheimer's disease (AD) is a common, progressive neurological disorder whose incidence is reaching epidemic proportions. The prevailing "amyloid cascade hypothesis," which maintains that the aberrant proteolysis of beta-amyloid precursor protein (βAPP) into neurotoxic amyloid beta (Aβ) peptides is central to the etiopathology of AD, continues to dominate pharmacological approaches to the clinical management of this insidious disorder. This review is a compilation and update on current pharmacological strategies designed to down-regulate Aβ42 peptide generation in an effort to ameliorate the tragedy of AD. Areas covered: This review utilized online data searches at various open online-access websites including the Alzheimer Association, Alzheimer Research Forum; individual drug company databases; the National Institutes of Health (NIH) Medline; Pharmaprojects database; Scopus; inter-University research communications; and unpublished research data. Expert opinion: Anti-acetylcholinesterase-, chelation-, N-methyl-D-aspartate (NMDA) receptor antagonist-, statin-, Aβ immunization-, β-secretase-, γ-secretase-based, and other strategies to modulate βAPP processing, have dominated pharmacological approaches directed against AD-type neurodegenerative pathology. Cumulative clinical results of these efforts remain extremely disappointing, and have had little overall impact on the clinical management of AD. While a number of novel approaches are in consideration and development, to date there is still no effective treatment or cure for this expanding healthcare concern.
Collapse
Affiliation(s)
- Walter J Lukiw
- Louisiana State University Health Sciences Center, LSU Neuroscience Center of Excellence, Ophthalmology and Human Genetics, , 2020 Gravier Street, Suite 904, New Orleans LA 70112-2272 , USA +1 504 599 0842 ; +1 504 568 5801 ;
| |
Collapse
|
22
|
|
23
|
Woo RS, Lee JH, Kim HS, Baek CH, Song DY, Suh YH, Baik TK. Neuregulin-1 protects against neurotoxicities induced by Swedish amyloid precursor protein via the ErbB4 receptor. Neuroscience 2011; 202:413-23. [PMID: 22186019 DOI: 10.1016/j.neuroscience.2011.11.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 11/08/2011] [Accepted: 11/08/2011] [Indexed: 12/25/2022]
Abstract
Neuregulin-1 (NRG1) plays an important role in the development and plasticity of the brain and exhibits potent neuroprotective properties. However, little information on its role in Alzheimer's disease (AD) is known. The neuroprotective effect and mechanisms of NRG1 in SH-SY5Y cells overexpressing the Swedish mutant form of amyloid precursor protein (Swe-APP) and primary cortical neuronal cells treated with amyloid beta peptide(1-42) (Aβ(1-42)) were investigated in this study. NRG1 attenuated Swe-APP- or Aβ(1-42)-induced lactate dehydrogenase (LDH) release in a concentration-dependent manner. The mitigating effects of NRG1 on neuronal cell death were blocked by ErbB4 inhibition, a key NRG1 receptor, which suggests a role of ErbB4 in the neuroprotective function of NRG1. Moreover, NRG1 reduced the number of Swe-APP- and Aβ(1-42)-induced TUNEL-positive SH-SY5Y cells and primary cortical neurons, respectively. NRG1 reduced the accumulation of reactive oxygen species and attenuated Swe-APP-induced mitochondrial membrane potential loss. NRG1 also induced the upregulation of the expression of the anti-apoptotic protein, Bcl-2, and decreased caspase-3 activation. Collectively, our results demonstrate that NRG1 exerts neuroprotective effects via the ErbB4 receptor, which suggests the neuroprotective potential of NRG1 in AD.
Collapse
Affiliation(s)
- R-S Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
24
|
Lukiw WJ. NF-кB-regulated micro RNAs (miRNAs) in primary human brain cells. Exp Neurol 2011; 235:484-90. [PMID: 22138609 DOI: 10.1016/j.expneurol.2011.11.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 11/08/2011] [Accepted: 11/11/2011] [Indexed: 02/07/2023]
Abstract
Micro RNAs (miRNAs), small and labile ~22 nucleotide-sized fragments of single stranded RNA, are important regulators of messenger (mRNA) complexity and in shaping the transcriptome of a cell. In this communication, we utilized amyloid beta 42 (Aβ42) peptides and interleukin-1beta (IL-1β) as a combinatorial, physiologically-relevant stress to induce miRNAs in human primary neural (HNG) cells (a co-culture of neurons and astroglia). Specific miRNA up-regulation was monitored using miRNA arrays, Northern micro-dot blots and RT-PCR. Selective NF-кB translocation and DNA binding inhibitors, including the chelator and anti-oxidant pyrollidine dithiocarbamate (PDTC) and the polyphenolic resveratrol analog CAY10512 (trans-3,5,4'-trihydroxystilbene), indicated the NF-кB sensitivity of several brain miRNAs, including miRNA-9, miRNA-125b and miRNA-146a. The inducible miRNA-125b and miRNA-146a, and their verified mRNA targets, including 15-lipoxygenase (15-LOX), synapsin-2 (SYN-2), complement factor H (CFH) and tetraspanin-12 (TSPAN12), suggests complex and highly interactive roles for NF-кB, miRNA-125b and miRNA-146a. These data further indicate that just two NF-кB-mediated miRNAs have tremendous potential to contribute to the regulation of neurotrophic support, synaptogenesis, neuroinflammation, innate immune signaling and amyloidogenesis in stressed primary neural cells of the human brain.
Collapse
|
25
|
Li YY, Cui JG, Dua P, Pogue AI, Bhattacharjee S, Lukiw WJ. Differential expression of miRNA-146a-regulated inflammatory genes in human primary neural, astroglial and microglial cells. Neurosci Lett 2011; 499:109-13. [PMID: 21640790 DOI: 10.1016/j.neulet.2011.05.044] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/12/2011] [Accepted: 05/16/2011] [Indexed: 02/08/2023]
Abstract
MicroRNA-146a (miRNA-146a) is an inducible, 22 nucleotide, small RNA over-expressed in Alzheimer's disease (AD) brain. Up-regulated miRNA-146a targets several inflammation-related and membrane-associated messenger RNAs (mRNAs), including those encoding complement factor-H (CFH) and the interleukin-1 receptor associated kinase-1 (IRAK-1), resulting in significant decreases in their expression (p<0.05, ANOVA). In this study we assayed miRNA-146a, CFH, IRAK-1 and tetraspanin-12 (TSPAN12), abundances in primary human neuronal-glial (HNG) co-cultures, in human astroglial (HAG) and microglial (HMG) cells stressed with Aβ42 peptide and tumor necrosis factor alpha (TNFα). The results indicate a consistent inverse relationship between miRNA-146a and CFH, IRAK-1 and TSPAN12 expression levels, and indicate that HNG, HAG and HMG cell types each respond differently to Aβ42-peptide+TNFα-triggered stress. While the strongest miRNA-146a-IRAK-1 response was found in HAG cells, the largest miRNA-146a-TSPAN12 response was found in HNG cells, and the most significant miRNA-146a-CFH changes were found in HMG cells, the 'resident scavenging macrophages' of the brain.
Collapse
Affiliation(s)
- Yuan Yuan Li
- LSU Neuroscience Center, Department of Ophthalmology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
26
|
Woo RS, Lee JH, Yu HN, Song DY, Baik TK. Expression of ErbB4 in the apoptotic neurons of Alzheimer's disease brain. Anat Cell Biol 2010; 43:332-9. [PMID: 21267408 PMCID: PMC3026186 DOI: 10.5115/acb.2010.43.4.332] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 10/25/2010] [Accepted: 11/09/2010] [Indexed: 12/24/2022] Open
Abstract
Neuregulin-1 (NRG1) signaling participates in the synaptic plasticity, maintenance or regulation of adult brain. Although ErbB4, a key NRG1 receptor, is expressed in multiple regions in the adult animal brain, little is known about its localization in Alzheimer's disease (AD) brains. We previously reported that ErbB4 immunoreactivity showed regional difference in the hippocampus of age-matched control. In the present paper, immunohistochemical characterization of the distribution of ErbB4 receptor in the hippocampus relative to pathology staging were performed in age-matched control (Braak stage 0, n=6) and AD (Braak stage I/V, n=10). Here, we found that ErbB4 immunoreactivity was significantly increased in apoptotic hippocampal pyramidal neurons in the brains of AD patients, compared to those of age-matched control subjects. In AD brains, ErbB4 immunoreactivity was demonstrated to colocalize with the apoptotic signal Bax in apoptotic hippocampal pyramidal neurons. These results suggest that up-regulation of ErbB4 immunoreactivity in apoptotic neuron may involve in the progression of pathology of AD.
Collapse
Affiliation(s)
- Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, Korea
| | | | | | | | | |
Collapse
|
27
|
Liposome-incorporated DHA increases neuronal survival by enhancing non-amyloidogenic APP processing. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:236-43. [PMID: 21036142 DOI: 10.1016/j.bbamem.2010.10.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 10/01/2010] [Accepted: 10/25/2010] [Indexed: 12/26/2022]
Abstract
The fluidity of neuronal membranes plays a pivotal role in brain aging and neurodegeneration. In this study, we investigated the role of the omega-3 fatty acid docosahexaenoic acid (DHA) in modulation of membrane fluidity, APP processing, and protection from cytotoxic stress. To this end, we applied unilamellar transfer liposomes, which provided protection from oxidation and effective incorporation of DHA into cell membranes. Liposomes transferring docosanoic acid (DA), the completely saturated form of DHA, to the cell cultures served as controls. In HEK-APP cells, DHA significantly increased membrane fluidity and non-amyloidogenic processing of APP, leading to enhanced secretion of sAPPα. This enhanced secretion of sAPPα was associated with substantial protection against apoptosis induced by ER Ca(2+) store depletion. sAPPα-containing supernatants obtained from HEK-APP cells exerted similar protective effects as DHA in neuronal PC12 cells and HEK293 control cells. Correlating to further increased sAPPα levels, supernatants obtained from DHA-treated HEK-APP cells enhanced protection, whereas supernatants obtained from DHA-treated HEK293 control cells did not inhibit apoptosis, likely due to the low expression of endogenous APP and negligible sAPPα secretion in these cells. Further experiments with the small molecule inhibitors LY294002 and SP600125 indicated that sAPPα-induced cytoprotection relied on activation of the anti-apoptotic PI3K/Akt pathway and inhibition of the stress-triggered JNK signaling pathway in PC12 cells. Our data suggest that liposomal DHA is able to restore or maintain physiological membrane properties, which are required for neuroprotective sAPPα secretion and autocrine modulation of neuronal survival.
Collapse
|
28
|
Sloan CD, Shen L, West JD, Wishart HA, Flashman LA, Rabin LA, Santulli RB, Guerin SJ, Rhodes CH, Tsongalis GJ, McAllister TW, Ahles TA, Lee SL, Moore JH, Saykin AJ. Genetic pathway-based hierarchical clustering analysis of older adults with cognitive complaints and amnestic mild cognitive impairment using clinical and neuroimaging phenotypes. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:1060-9. [PMID: 20468060 PMCID: PMC3021757 DOI: 10.1002/ajmg.b.31078] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hierarchical clustering is frequently used for grouping results in expression or haplotype analyses. These methods can elucidate patterns between measures that can then be applied to discerning their validity in discriminating between experimental conditions. Here a hierarchical clustering method is used to analyze the results of an imaging genetics study using multiple brain morphology and cognitive testing endpoints for older adults with amnestic mild cognitive impairment (MCI) or cognitive complaints (CC) compared to healthy controls (HC). The single nucleotide polymorphisms (SNPs) are a subset of those included on a larger array that are found in a reported Alzheimer's disease (AD) and neurodegeneration pathway. The results indicate that genetic models within the endpoints cluster together, while there are 4 distinct sets of SNPs that differentiate between the endpoints, with most significant results associated with morphology endpoints rather than cognitive testing of patients' reported symptoms. The genes found in at least one cluster are ABCB1, APBA1, BACE1, BACE2, BCL2, BCL2L1, CASP7, CHAT, CST3, DRD3, DRD5, IL6, LRP1, NAT1, and PSEN2. The greater associations with morphology endpoints suggests that changes in brain structure can be influenced by an individual's genetic background in the absence of dementia and in some cases (Cognitive Complaints group) even without those effects necessarily being detectable on commonly used clinical tests of cognition. The results are consistent with polygenic influences on early neurodegenerative changes and demonstrate the effectiveness of hierarchical clustering in identifying genetic associations among multiple related phenotypic endpoints.
Collapse
Affiliation(s)
- Chantel D. Sloan
- Computational Genetics Laboratory, Departments of Genetics and Community and Family Medicine, Dartmouth Medical School, Lebanon, NH
| | - Li Shen
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
| | - John D. West
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN
| | - Heather A. Wishart
- Brain Imaging Laboratory, Department of Psychiatry, Dartmouth Medical School, Lebanon, NH
| | - Laura A. Flashman
- Brain Imaging Laboratory, Department of Psychiatry, Dartmouth Medical School, Lebanon, NH
| | - Laura A. Rabin
- Brain Imaging Laboratory, Department of Psychiatry, Dartmouth Medical School, Lebanon, NH
| | - Robert B. Santulli
- Brain Imaging Laboratory, Department of Psychiatry, Dartmouth Medical School, Lebanon, NH
| | - Stephen J. Guerin
- Brain Imaging Laboratory, Department of Psychiatry, Dartmouth Medical School, Lebanon, NH
| | - C. Harker Rhodes
- Department of Pathology and Laboratory Medicine, Dartmouth Medical School, Lebanon, NH
| | - Gregory J. Tsongalis
- Department of Pathology and Laboratory Medicine, Dartmouth Medical School, Lebanon, NH
| | - Thomas W. McAllister
- Brain Imaging Laboratory, Department of Psychiatry, Dartmouth Medical School, Lebanon, NH
| | - Tim A. Ahles
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Stephen L. Lee
- Department of Medicine (Neurology), Dartmouth Medical School, Lebanon, NH
| | - Jason H. Moore
- Computational Genetics Laboratory, Departments of Genetics and Community and Family Medicine, Dartmouth Medical School, Lebanon, NH,Department of Computer Science, University of New Hampshire, Durham, NH,Department of Computer Science, University of Vermont, Burlington, VT,Translational Genomics Research Institute, Phoenix, AZ
| | - Andrew J. Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN,Brain Imaging Laboratory, Department of Psychiatry, Dartmouth Medical School, Lebanon, NH,Departments of Medical and Molecular Genetics, Neurology and Psychiatry, Indiana University School of Medicine, Indianapolis, IN,Address for Correspondence: Dr. Andrew J. Saykin, Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 950 West Walnut St., R2, E124, Indianapolis, IN 46202, Phone: 317-278-6947, Fax: 317-274-1067,
| |
Collapse
|
29
|
Palacios-Pelaez R, Lukiw WJ, Bazan NG. Omega-3 Essential Fatty Acids Modulate Initiation and Progression of Neurodegenerative Disease. Mol Neurobiol 2010; 41:367-74. [DOI: 10.1007/s12035-010-8139-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 04/12/2010] [Indexed: 01/29/2023]
|
30
|
Lukiw WJ, Bazan NG. Inflammatory, Apoptotic, and Survival Gene Signaling in Alzheimer’s Disease. Mol Neurobiol 2010; 42:10-6. [DOI: 10.1007/s12035-010-8126-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 04/05/2010] [Indexed: 01/13/2023]
|
31
|
Increased acidic fibroblast growth factor concentrations in the serum and cerebrospinal fluid of patients with Alzheimer’s disease. J Clin Neurosci 2010; 17:357-9. [DOI: 10.1016/j.jocn.2009.05.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 05/17/2009] [Indexed: 11/18/2022]
|
32
|
Sun MK, Nelson TJ, Alkon DL. PKC and Insulin Pathways in Memory Storage: Targets for Synaptogenesis, Anti-apoptosis, and the Treatment of AD. DIABETES, INSULIN AND ALZHEIMER'S DISEASE 2010. [DOI: 10.1007/978-3-642-04300-0_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
33
|
Impact of phospholipid bilayer saturation on amyloid-beta protein aggregation intermediate growth: a quartz crystal microbalance analysis. Anal Biochem 2009; 399:30-8. [PMID: 20018160 DOI: 10.1016/j.ab.2009.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 11/23/2009] [Accepted: 12/08/2009] [Indexed: 11/20/2022]
Abstract
Evidence that membrane-associated amyloid aggregate growth can impart membrane damage represents one possible mechanism for the neurodegeneration associated with deposited amyloid-beta protein (Abeta) aggregates in the brains of Alzheimer's disease (AD) patients. This potential pathogenic event necessitates an understanding of the impact that cellular membrane composition may have on Abeta aggregate growth. In the current study, a quartz crystal microbalance (QCM) was employed to examine the growth of Abeta(1-40) aggregation intermediates on supported phospholipid bilayers (SPBs) assembled at the crystal surface. These surface-specific measurements illustrate that zwitterionic SPBs selectively bind aggregated but not monomeric protein, and these bound aggregates are capable of supporting nonsaturable reversible growth via monomer addition. Growth-capable Abeta(1-40) aggregation intermediates more readily bind SPBs composed of phospholipids with a greater degree of carbon saturation. Furthermore, kinetic analysis afforded by the quantitative real-time QCM measurements reveals that SPBs with greater saturation also better support the growth of bound Abeta(1-40) aggregation intermediates as a result of the slower dissociation of bound monomer rather than more efficient recognition between aggregate and monomeric protein. These findings correlate with epidemiological and experimental evidence that links increased dietary intake of polyunsaturated fatty acids to a reduced risk of AD.
Collapse
|
34
|
Sun GY, Shelat PB, Jensen MB, He Y, Sun AY, Simonyi A. Phospholipases A2 and inflammatory responses in the central nervous system. Neuromolecular Med 2009; 12:133-48. [PMID: 19855947 DOI: 10.1007/s12017-009-8092-z] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 09/25/2009] [Indexed: 12/21/2022]
Abstract
Phospholipases A2 (PLA2s) belong to a superfamily of enzymes responsible for hydrolyzing the sn-2 fatty acids of membrane phospholipids. These enzymes are known to play multiple roles for maintenance of membrane phospholipid homeostasis and for production of a variety of lipid mediators. Over 20 different types of PLA2s are present in the mammalian cells, and in snake and bee venom. Despite their common function in hydrolyzing fatty acids of phospholipids, they are diversely encoded by a number of genes and express proteins that are regulated by different mechanisms. Recent studies have focused on the group IV calcium-dependent cytosolic cPLA2, the group VI calcium-independent iPLA2, and the group II small molecule secretory sPLA2. In the central nervous system (CNS), these PLA2s are distributed among neurons and glial cells. Although the physiological role of these PLA2s in regulating neural cell function has not yet been clearly elucidated, there is increasing evidence for their involvement in receptor signaling and transcriptional pathways that link oxidative events to inflammatory responses that underline many neurodegenerative diseases. Recent studies also reveal an important role of cPLA2 in modulating neuronal excitatory functions, sPLA2 in the inflammatory responses, and iPLA2 with childhood neurologic disorders associated with brain iron accumulation. The goal for this review is to better understand the structure and function of these PLA2s and to highlight specific types of PLA2s and their cross-talk mechanisms in these inflammatory responses under physiological and pathological conditions in the CNS.
Collapse
Affiliation(s)
- Grace Y Sun
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Melatonin plays a neuroprotective role in models of neurodegenerative diseases. However, the molecular mechanisms underlying neuroprotection by melatonin are not well understood. Apoptotic cell death in the central nervous system is a feature of neurodegenerative diseases. The intrinsic and extrinsic apoptotic pathways and the antiapoptotic survival signal pathways play critical roles in neurodegeneration. This review summarizes the reports to date showing inhibition by melatonin of the intrinsic apoptotic pathways in neurodegenerative diseases including stroke, Alzheimer disease, Parkinson disease, Huntington disease, and amyotrophic lateral sclerosis. Furthermore, the activation of survival signal pathways by melatonin in neurodegenerative diseases is discussed.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Hsu WL, Chiu TH, Tai DJC, Ma YL, Lee EHY. A novel defense mechanism that is activated on amyloid-beta insult to mediate cell survival: role of SGK1-STAT1/STAT2 signaling. Cell Death Differ 2009; 16:1515-29. [PMID: 19609277 DOI: 10.1038/cdd.2009.91] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Amyloid-beta (Abeta) is known to induce apoptotic cell death and its underlying mechanism has been studied extensively, but the endogenous protection mechanism that results from Abeta insult is less known. In this study, we have found that Abeta(1-42) produced a dose-dependent decrease in cell viability and dose-dependent increase in apoptotic cell death in PC12 cells. Meanwhile, Abeta(1-42) (0.1 muM) increased the phosphorylation of serum- and glucocorticoid-inducible kinase1 (SGK1) at Ser-78 specifically. A parallel increase in ERK1/2, STAT1 and STAT2 phosphorylation and the anti-apoptotic gene Mcl-1 expression was also observed. Transfection of rat siRNAs against ERK1/2, SGK1, STAT1 and STAT2 abolished these effects of Abeta. Transfection of sgkS78D, the constitutively active SGK1, dose-dependently protected against Abeta-induced apoptosis and dose-dependently increased the expression of Mcl-1. SGK1 activation further phosphorylates STAT1 at Tyr-701 and Ser-727 directly, and activates STAT2 at Tyr-690 indirectly. Phosphorylation of STAT1/STAT2 upregulated Mcl-1 expression which in turn protected against Abeta-induced apoptosis. But Mcl-1 siRNA transfection enhanced Abeta-induced apoptosis. Mutation of SGK1 at Ser-78 blocked the effect of Abeta on STAT1/STAT2 phosphorylation and Mcl-1 expression. Further, mutation of STAT1/STAT2 prevented the effect of both Abeta and SGK1 on Mcl-1 expression. These results together showed a novel endogenous protection mechanism that is activated on Abeta insult to mediate cell survival.
Collapse
Affiliation(s)
- W L Hsu
- Department of Physiology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
37
|
Valenzuela B A. Docosahexaenoic acid (DHA), an essential fatty acid for the proper functioning of neuronal cells: their role in mood disorders. GRASAS Y ACEITES 2009. [DOI: 10.3989/gya.085208] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Whelan J. (n-6) and (n-3) Polyunsaturated fatty acids and the aging brain: food for thought. J Nutr 2008; 138:2521-2. [PMID: 19022982 DOI: 10.3945/jn.108.095943] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Over the last decade, the role of dietary PUFA in growth, development, and cognitive function in the infant has been a topic at numerous national and international meetings. Only recently has the role of PUFA been more seriously examined as they relate to the aging brain. In fact, a search of the literature reveals very few randomized control trials exploring this research area. However, the literature reveals growing mechanistic evidence that cognitive function of the aging brain can be preserved, or loss of function can be diminished with docosahexaenoic acid, a long-chain (n-3) PUFA. Furthermore, no symposia have taken a serious look at the impact of (n-6) PUFA on the brain, in particular arachidonic acid (AA), the most highly concentrated (n-6) PUFA in the brain. This symposium explores the role of AA metabolism in the brain as it relates to neurological mood disorders. To that end, this symposium was designed to highlight the potential effects of dietary PUFA on the adult brain, an important issue given the growing elderly population in this country and the growing problems with neurological disorders (dementia, Alzheimer disease, Parkinson disease, bipolar disorders, etc.).
Collapse
Affiliation(s)
- Jay Whelan
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996-1920, USA.
| |
Collapse
|
39
|
Abstract
The dietary essential PUFA docosahexaenoic acid [DHA; 22:6(n-3)] is a critical contributor to cell structure and function in the nervous system, and deficits in DHA abundance are associated with cognitive decline during aging and in neurodegenerative disease. Recent studies underscore the importance of DHA-derived neuroprotectin D1 (NPD1) in the homeostatic regulation of brain cell survival and repair involving neurotrophic, antiapoptotic and antiinflammatory signaling. Emerging evidence suggests that NPD1 synthesis is activated by growth factors and neurotrophins. Evolving research indicates that NPD1 has important determinant and regulatory interactions with the molecular-genetic mechanisms affecting beta-amyloid precursor protein (betaAPP) and amyloid beta (Abeta) peptide neurobiology. Deficits in DHA or its peroxidation appear to contribute to inflammatory signaling, apoptosis, and neuronal dysfunction in Alzheimer disease (AD), a common and progressive age-related neurological disorder unique to structures and processes of the human brain. This article briefly reviews our current understanding of the interactions of DHA and NPD1 on betaAPP processing and Abeta peptide signaling and how this contributes to oxidative and pathogenic processes characteristic of aging and AD pathology.
Collapse
|
40
|
Lukiw WJ, Zhao Y, Cui JG. An NF-kappaB-sensitive micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells. J Biol Chem 2008; 283:31315-22. [PMID: 18801740 PMCID: PMC2581572 DOI: 10.1074/jbc.m805371200] [Citation(s) in RCA: 356] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 09/16/2008] [Indexed: 01/15/2023] Open
Abstract
Human brains retain discrete populations of micro RNA (miRNA) species that support homeostatic brain gene expression functions; however, specific miRNA abundance is significantly altered in neurological disorders such as Alzheimer disease (AD) when compared with age-matched controls. Here we provide evidence in AD brains of a specific up-regulation of an NF-kappaB-sensitive miRNA-146a highly complementary to the 3'-untranslated region of complement factor H (CFH), an important repressor of the inflammatory response of the brain. Up-regulation of miRNA-146a coupled to down-regulation of CFH was observed in AD brain and in interleukin-1beta, Abeta42, and/or oxidatively stressed human neural (HN) cells in primary culture. Transfection of HN cells using an NF-kappaB-containing pre-miRNA-146a promoter-luciferase reporter construct in stressed HN cells showed significant up-regulation of luciferase activity that paralleled decreases in CFH gene expression. Treatment of stressed HN cells with the NF-kappaB inhibitor pyrollidine dithiocarbamate or the resveratrol analog CAY10512 abrogated this response. Incubation of an antisense oligonucleotide to miRNA-146a (anti-miRNA-146a; AM-146a) was found to restore CFH expression levels. These data indicate that NF-kappaB-sensitive miRNA-146a-mediated modulation of CFH gene expression may in part regulate an inflammatory response in AD brain and in stressed HN cell models of AD and illustrate the potential for anti-miRNAs as an effective therapeutic strategy against pathogenic inflammatory signaling.
Collapse
Affiliation(s)
- Walter J Lukiw
- Louisiana State University Neuroscience Center, Louisiana State University Health Science Center, New Orleans, Louisiana 70112-2272, USA.
| | | | | |
Collapse
|
41
|
Abstract
Glioma and glioblastoma multiforme constitute rapidly proliferating glial cell tumors whose pathogenic mechanisms are not well understood. This study examined proinflammatory and neurodegenerative gene expression in five American Tissue Culture Collection glioma and glioblastoma multiforme tumor cell lines and in 14 glioma and glioblastoma samples obtained from human brain biopsy. Expression of the low-abundance cyclooxygenase-1 and the high-abundance cytoskeletal element beta-actin were found not to significantly change in any cells or tissues studied and were used as internal controls. In contrast, proinflammatory cyclooxygenase-2, cytosolic phospholipase A2, IL-1beta, and beta-amyloid precursor protein expression levels were found to be significantly upregulated. These studies suggest that glioma and glioblastoma exhibit robust upregulation of proinflammatory and neurodegenerative genetic markers that may contribute to the pathobiology, phenotype, and proliferation of glial cell growth.
Collapse
|
42
|
Lukiw WJ. Emerging amyloid beta (Ab) peptide modulators for the treatment of Alzheimer's disease (AD). Expert Opin Emerg Drugs 2008; 13:255-71. [PMID: 18537520 DOI: 10.1517/14728214.13.2.255] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND According to the 'amyloid cascade hypothesis' of Alzheimer's disease (AD), abnormal processing of beta-amyloid precursor protein (betaAPP) into toxic amyloid beta (Abeta)-peptides is central to the etiopathology of this uniquely human brain disorder. OBJECTIVE To review current AD drugs, pharmacological approaches and strategies aimed at modulating Abeta-peptide generation and/or aggregation in the treatment of AD. METHODS Data searches at various websites: Alzheimer Research Forum; individual drug company databases; Medline; Pharmaprojects database; unpublished research; inter-University research communications. RESULTS/CONCLUSION Considerable research effort has focused on secretase-mediated mechanisms of betaAPP processing, and the latest pharmacological strategies have used selective Abeta-peptide-lowering agents (SALA) to provide therapeutic benefit against Abeta-initiated neurodegenerative pathology. Currently, dedicated anticholinesterase, glutamatergic agonist and Abeta-peptide immunization have had little impact in the clinical treatment of AD. One unexpected benefit of statins (HMG-CoA inhibitors), besides their cholesterol lowering abilities, has been their ancillary effects in potentiating the enzymatic mechanisms that generate Abeta-peptides. The long-term benefits or complications of statin-based therapies for use in the clinical management of AD are not known.
Collapse
Affiliation(s)
- Walter J Lukiw
- Louisiana State University Health Sciences Center, LSU Neuroscience Center of Excellence, 2020 Gravier Street, Suite 8B8, New Orleans, LA 70112-2272, USA.
| |
Collapse
|
43
|
Fraser T, Tayler H, Love S. Low-temperature improved-throughput method for analysis of brain fatty acids and assessment of their post-mortem stability. J Neurosci Methods 2008; 169:135-40. [DOI: 10.1016/j.jneumeth.2007.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 11/29/2007] [Accepted: 12/03/2007] [Indexed: 11/25/2022]
|
44
|
Kruck TP, Percy ME, Lukiw WJ. Metal sulfate-mediated induction of pathogenic genes and repression by phenyl butyl nitrone and Feralex-G. Neuroreport 2008; 19:245-9. [DOI: 10.1097/wnr.0b013e3282f4cb7e] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Salehi Z, Mashayekhi F, Naji M. Insulin like growth factor-1 and insulin like growth factor binding proteins in the cerebrospinal fluid and serum from patients with Alzheimer's disease. Biofactors 2008; 33:99-106. [PMID: 19346585 DOI: 10.1002/biof.5520330202] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Insulin like growth factor-1 (IGF-1) is ubiquitously expressed growth factor that has profound effects on the growth and differentiation of many cell types and tissues, including cells of the central nervous system (CNS). IGF-1 is produced by a wide variety of cells and is found in many biological fluids including cerebrospinal fluid (CSF). IGF-1 plays important role during CNS development and repair. IGF-1 has broad range neuroprotective effects and is a therapeutic candidate for Huntington's disease (HD). IGF-1 protects striatal neurons from the toxicity of mutated Huntington in vitro and improves neuronal survival in vivo in a phenotypic model of HD. Alzheimer's disease (AD) is an age-dependent dementia characterized by progressive loss of cognitive functions and by characteristic pathological changes in the brain: the formation of aggregates extracellularly by beta-amyloid (AB) peptide and intracellularly by tau proteins. Since cerebrospinal fluid (CSF) is in contact with the extracellular space of the brain, biochemical brain modifications could be reflected in the CSF. IGFs in circulation and other physiological fluids are associated with a group of high-affinity binding proteins insulin like growth factor binding proteins (IGFBPs) that specifically bind and modulate their bioactivity at the cellular level. The aim of this study was to determine the level of CSF and serum IGF-1 and IGFBPs concentrations in the patients with AD. CSF was obtained by lumbar puncture. The presence of IGF-1 and IGFBPs in the CSF and serum samples was confirmed by Western blot using anti-IGF-1 and IGFBPs antibodies. Using enzyme linked immunosorbent assay (ELISA), it was shown that the concentration of CSF and serum IGF-1 and IGFBPs in the patients with AD is higher than in normal control. The data from this study indicate that IGF-1 is a constant component of human CSF. It is also concluded that high levels of CSF IGF-1 may be partly related to AD pathophysiology.
Collapse
Affiliation(s)
- Zivar Salehi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | | | | |
Collapse
|
46
|
Boetkjaer A, Boedker M, Cui JG, Zhao Y, Lukiw WJ. Synergism in the repression of COX-2- and TNFalpha-induction in platelet activating factor-stressed human neural cells. Neurosci Lett 2007; 426:59-63. [PMID: 17881124 PMCID: PMC2083574 DOI: 10.1016/j.neulet.2007.08.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 08/14/2007] [Accepted: 08/15/2007] [Indexed: 11/25/2022]
Abstract
Platelet activating factor (PAF; beta-acetyl-gamma-O-hexadecyl-l-alpha-phosphatidylcholine) triggers a rapid pro-inflammatory gene expression program in primary cultures of human neural (HN) cells. Two genes and gene products consistently induced after PAF treatment are the cytosoluble prostaglandin synthase cycloooxygenase-2 (COX-2) and the pro-apoptotic tumor necrosis factor alpha (TNFalpha). Both of these mediators are associated with the activation of inflammatory signaling, neural cell dysfunction, apoptosis and brain cell death, and both have been found to be up-regulated after brain injury in vivo. In this study we investigated the effects of the non-halogenated synthetic glucocorticoid budesonide epimer R (BUDeR), the novel PAF antagonist LAU-0901, and the electron spin trap and free radical scavenger phenyl butyl nitrone (PBN), upon early COX-2 and TNFalpha gene activation and prostaglandin E(2) (PGE(2)) release in PAF-stressed primary HN cells. The data indicate that these three biochemically unrelated classes of inflammatory repressors act synergistically in modulating PAF-induced up-regulation of COX-2, TNFalpha, and PGE(2) by quenching oxidative stress or inflammatory signaling, resulting in increased HN cell survival. These, or analogous classes of compounds, may be useful in the design of more effective combinatorial pharmacotherapeutic strategies in the treatment of complex neuro-inflammatory disorders.
Collapse
Affiliation(s)
- Anja Boetkjaer
- The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK 2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
47
|
Plourde M, Cunnane SC. Extremely limited synthesis of long chain polyunsaturates in adults: implications for their dietary essentiality and use as supplements. Appl Physiol Nutr Metab 2007; 32:619-34. [PMID: 17622276 DOI: 10.1139/h07-034] [Citation(s) in RCA: 341] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is considerable interest in the potential impact of several polyunsaturated fatty acids (PUFAs) in mitigating the significant morbidity and mortality caused by degenerative diseases of the cardiovascular system and brain. Despite this interest, confusion surrounds the extent of conversion in humans of the parent PUFA, linoleic acid or α-linolenic acid (ALA), to their respective long-chain PUFA products. As a result, there is uncertainty about the potential benefits of ALA versus eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA). Some of the confusion arises because although mammals have the necessary enzymes to make the long-chain PUFA from the parent PUFA, in vivo studies in humans show that ≈5% of ALA is converted to EPA and <0.5% of ALA is converted to DHA. Because the capacity of this pathway is very low in healthy, nonvegetarian humans, even large amounts of dietary ALA have a negligible effect on plasma DHA, an effect paralleled in the ω6 PUFA by a negligible effect of dietary linoleic acid on plasma arachidonic acid. Despite this inefficient conversion, there are potential roles in human health for ALA and EPA that could be independent of their metabolism to DHA through the desaturation – chain elongation pathway.
Collapse
Affiliation(s)
- Mélanie Plourde
- Research Center on Aging, Departments of Medicine, and Physiology and Biophysics, Université de Sherbrooke, 1036 Belvedere St, South, Sherbrooke, QC J1H 4C4, Canada
| | | |
Collapse
|