1
|
Nieweglowska ES, Brilot AF, Méndez-Moran M, Kokontis C, Baek M, Li J, Cheng Y, Baker D, Bondy-Denomy J, Agard DA. The ϕPA3 phage nucleus is enclosed by a self-assembling 2D crystalline lattice. Nat Commun 2023; 14:927. [PMID: 36807264 PMCID: PMC9938867 DOI: 10.1038/s41467-023-36526-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 02/03/2023] [Indexed: 02/20/2023] Open
Abstract
To protect themselves from host attack, numerous jumbo bacteriophages establish a phage nucleus-a micron-scale, proteinaceous structure encompassing the replicating phage DNA. Bacteriophage and host proteins associated with replication and transcription are concentrated inside the phage nucleus while other phage and host proteins are excluded, including CRISPR-Cas and restriction endonuclease host defense systems. Here, we show that nucleus fragments isolated from ϕPA3 infected Pseudomonas aeruginosa form a 2-dimensional lattice, having p2 or p4 symmetry. We further demonstrate that recombinantly purified primary Phage Nuclear Enclosure (PhuN) protein spontaneously assembles into similar 2D sheets with p2 and p4 symmetry. We resolve the dominant p2 symmetric state to 3.9 Å by cryo-EM. Our structure reveals a two-domain core, organized into quasi-symmetric tetramers. Flexible loops and termini mediate adaptable inter-tetramer contacts that drive subunit assembly into a lattice and enable the adoption of different symmetric states. While the interfaces between subunits are mostly well packed, two are open, forming channels that likely have functional implications for the transport of proteins, mRNA, and small molecules.
Collapse
Affiliation(s)
- Eliza S Nieweglowska
- Department of Biochemistry, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Axel F Brilot
- Department of Biochemistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Sauer Structural Biology Laboratory, Center for Biomedical Research Support, University of Texas at Austin, Austin, TX, USA
| | - Melissa Méndez-Moran
- Department of Biochemistry, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Claire Kokontis
- Department of Microbiology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Minkyung Baek
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Junrui Li
- Howard Hughes Medical Institute, University of California, San Francisco, CA, 94143, USA
| | - Yifan Cheng
- Department of Biochemistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, 94143, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Joseph Bondy-Denomy
- Department of Microbiology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - David A Agard
- Department of Biochemistry, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
2
|
Trettel DS, Resager W, Ueberheide BM, Jenkins CC, Winkler WC. Chemical probing provides insight into the native assembly state of a bacterial microcompartment. Structure 2022; 30:537-550.e5. [PMID: 35216657 PMCID: PMC8995372 DOI: 10.1016/j.str.2022.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 11/28/2022]
Abstract
Bacterial microcompartments (BMCs) are widespread in bacteria and are used for a variety of metabolic purposes, including catabolism of host metabolites. A suite of proteins self-assembles into the shell and cargo layers of BMCs. However, the native assembly state of these large complexes remains to be elucidated. Herein, chemical probes were used to observe structural features of a native BMC. While the exterior could be demarcated with fluorophores, the interior was unexpectedly permeable, suggesting that the shell layer may be more dynamic than previously thought. This allowed access to cross-linking chemical probes, which were analyzed to uncover the protein interactome. These cross-links revealed a complex multivalent network among cargo proteins that contained encapsulation peptides and demonstrated that the shell layer follows discrete rules in its assembly. These results are consistent overall with a model in which biomolecular condensation drives interactions of cargo proteins before envelopment by shell layer proteins.
Collapse
Affiliation(s)
- Daniel S Trettel
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - William Resager
- New York University Grossman School of Health, NYU Langone Health, New York, NY 10016, USA
| | - Beatrix M Ueberheide
- New York University Grossman School of Health, NYU Langone Health, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Conor C Jenkins
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Wade C Winkler
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
3
|
Sun Y, Huang F, Dykes GF, Liu LN. Diurnal Regulation of In Vivo Localization and CO 2-Fixing Activity of Carboxysomes in Synechococcus elongatus PCC 7942. Life (Basel) 2020; 10:E169. [PMID: 32872408 PMCID: PMC7555275 DOI: 10.3390/life10090169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Carboxysomes are the specific CO2-fixing microcompartments in all cyanobacteria. Although it is known that the organization and subcellular localization of carboxysomes are dependent on external light conditions and are highly relevant to their functions, how carboxysome organization and function are actively orchestrated in natural diurnal cycles has remained elusive. Here, we explore the dynamic regulation of carboxysome positioning and carbon fixation in the model cyanobacterium Synechococcus elongatus PCC 7942 in response to diurnal light-dark cycles, using live-cell confocal imaging and Rubisco assays. We found that carboxysomes are prone to locate close to the central line along the short axis of the cell and exhibit a greater preference of polar distribution in the dark phase, coupled with a reduction in carbon fixation. Moreover, we show that deleting the gene encoding the circadian clock protein KaiA could lead to an increase in carboxysome numbers per cell and reduced portions of pole-located carboxysomes. Our study provides insight into the diurnal regulation of carbon fixation in cyanobacteria and the general cellular strategies of cyanobacteria living in natural habitat for environmental acclimation.
Collapse
Affiliation(s)
| | | | | | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (Y.S.); (F.H.); (G.F.D.)
| |
Collapse
|
4
|
Changing surface grafting density has an effect on the activity of immobilized xylanase towards natural polysaccharides. Sci Rep 2019; 9:5763. [PMID: 30962508 PMCID: PMC6453946 DOI: 10.1038/s41598-019-42206-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/25/2019] [Indexed: 12/22/2022] Open
Abstract
Enzymes are involved in various types of biological processes. In many cases, they are part of multi-component machineries where enzymes are localized in close proximity to each-other. In such situations, it is still not clear whether inter-enzyme spacing actually plays a role or if the colocalization of complementary activities is sufficient to explain the efficiency of the system. Here, we focus on the effect of spatial proximity when identical enzymes are immobilized onto a surface. By using an innovative grafting procedure based on the use of two engineered protein fragments, Jo and In, we produce model systems in which enzymes are immobilized at surface densities that can be controlled precisely. The enzyme used is a xylanase that participates to the hydrolysis of plant cell wall polymers. By using a small chromogenic substrate, we first show that the intrinsic activity of the enzymes is fully preserved upon immobilization and does not depend on surface density. However, when using beechwood xylan, a naturally occurring polysaccharide, as substrate, we find that the enzymatic efficiency decreases by 10–60% with the density of grafting. This unexpected result is probably explained through steric hindrance effects at the nanoscale that hinder proper interaction between the enzymes and the polymer. A second effect of enzyme immobilization at high densities is the clear tendency for the system to release preferentially shorter oligosaccharides from beechwood xylan as compared to enzymes in solution.
Collapse
|
5
|
Nanoreactor Design Based on Self-Assembling Protein Nanocages. Int J Mol Sci 2019; 20:ijms20030592. [PMID: 30704048 PMCID: PMC6387247 DOI: 10.3390/ijms20030592] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/18/2022] Open
Abstract
Self-assembling proteins that form diverse architectures are widely used in material science and nanobiotechnology. One class belongs to protein nanocages, which are compartments with nanosized internal spaces. Because of the precise nanoscale structures, proteinaceous compartments are ideal materials for use as general platforms to create distinct microenvironments within confined cellular environments. This spatial organization strategy brings several advantages including the protection of catalyst cargo, faster turnover rates, and avoiding side reactions. Inspired by diverse molecular machines in nature, bioengineers have developed a variety of self-assembling supramolecular protein cages for use as biosynthetic nanoreactors that mimic natural systems. In this mini-review, we summarize current progress and ongoing efforts creating self-assembling protein based nanoreactors and their use in biocatalysis and synthetic biology. We also highlight the prospects for future research on these versatile nanomaterials.
Collapse
|
6
|
Abstract
Cyanobacteria sequester photosynthetic enzymes into microcompartments which facilitate the conversion of carbon dioxide into sugars. Geometric similarities between these structures and self-assembling viral capsids have inspired models that posit microcompartments as stable equilibrium arrangements of the constituent proteins. Here we describe a different mechanism for microcompartment assembly, one that is fundamentally nonequilibrium and yet highly reliable. This pathway is revealed by simulations of a molecular model resolving the size and shape of a cargo droplet and the extent and topography of an elastic shell. The resulting metastable microcompartment structures closely resemble those of carboxysomes, with a narrow size distribution and faceted shells. The essence of their assembly dynamics can be understood from a simpler mathematical model that combines elements of classical nucleation theory with continuum elasticity. These results highlight important control variables for achieving nanoscale encapsulation in general and for modulating the size and shape of carboxysomes in particular.
Collapse
|
7
|
Malik SS, Azem-E-Zahra S, Kim KM, Caetano-Anollés G, Nasir A. Do Viruses Exchange Genes across Superkingdoms of Life? Front Microbiol 2017; 8:2110. [PMID: 29163404 PMCID: PMC5671483 DOI: 10.3389/fmicb.2017.02110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022] Open
Abstract
Viruses can be classified into archaeoviruses, bacterioviruses, and eukaryoviruses according to the taxonomy of the infected host. The host-constrained perception of viruses implies preference of genetic exchange between viruses and cellular organisms of their host superkingdoms and viral origins from host cells either via escape or reduction. However, viruses frequently establish non-lytic interactions with organisms and endogenize into the genomes of bacterial endosymbionts that reside in eukaryotic cells. Such interactions create opportunities for genetic exchange between viruses and organisms of non-host superkingdoms. Here, we take an atypical approach to revisit virus-cell interactions by first identifying protein fold structures in the proteomes of archaeoviruses, bacterioviruses, and eukaryoviruses and second by tracing their spread in the proteomes of superkingdoms Archaea, Bacteria, and Eukarya. The exercise quantified protein structural homologies between viruses and organisms of their host and non-host superkingdoms and revealed likely candidates for virus-to-cell and cell-to-virus gene transfers. Unexpected lifestyle-driven genetic affiliations between bacterioviruses and Eukarya and eukaryoviruses and Bacteria were also predicted in addition to a large cohort of protein folds that were universally shared by viral and cellular proteomes and virus-specific protein folds not detected in cellular proteomes. These protein folds provide unique insights into viral origins and evolution that are generally difficult to recover with traditional sequence alignment-dependent evolutionary analyses owing to the fast mutation rates of viral gene sequences.
Collapse
Affiliation(s)
- Shahana S Malik
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Syeda Azem-E-Zahra
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Kyung Mo Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Arshan Nasir
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan.,Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
8
|
Nasir A, Caetano-Anollés G. Identification of Capsid/Coat Related Protein Folds and Their Utility for Virus Classification. Front Microbiol 2017; 8:380. [PMID: 28344575 PMCID: PMC5344890 DOI: 10.3389/fmicb.2017.00380] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/23/2017] [Indexed: 12/31/2022] Open
Abstract
The viral supergroup includes the entire collection of known and unknown viruses that roam our planet and infect life forms. The supergroup is remarkably diverse both in its genetics and morphology and has historically remained difficult to study and classify. The accumulation of protein structure data in the past few years now provides an excellent opportunity to re-examine the classification and evolution of viruses. Here we scan completely sequenced viral proteomes from all genome types and identify protein folds involved in the formation of viral capsids and virion architectures. Viruses encoding similar capsid/coat related folds were pooled into lineages, after benchmarking against published literature. Remarkably, the in silico exercise reproduced all previously described members of known structure-based viral lineages, along with several proposals for new additions, suggesting it could be a useful supplement to experimental approaches and to aid qualitative assessment of viral diversity in metagenome samples.
Collapse
Affiliation(s)
- Arshan Nasir
- Department of Crop Sciences, Evolutionary Bioinformatics Laboratory, University of Illinois at Urbana-ChampaignUrbana, IL, USA; Department of Biosciences, COMSATS Institute of Information TechnologyIslamabad, Pakistan
| | - Gustavo Caetano-Anollés
- Department of Crop Sciences, Evolutionary Bioinformatics Laboratory, University of Illinois at Urbana-Champaign Urbana, IL, USA
| |
Collapse
|
9
|
Guttman S, Ocko BM, Deutsch M, Sloutskin E. From faceted vesicles to liquid icoshedra: Where topology and crystallography meet. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
10
|
Eom J, Gong J, Kwon S, Jeon A, Jeong R, Driver RW, Lee H. A Hollow Foldecture with Truncated Trigonal Bipyramid Shape from the Self‐Assembly of an 11‐Helical Foldamer. Angew Chem Int Ed Engl 2015; 54:13204-7. [DOI: 10.1002/anie.201504248] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/13/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Jae‐Hoon Eom
- Department of Chemistry, KAIST, Molecular‐Level Interface Research Center, 291 Daehak‐ro, Yuseong‐gu, Daejeon 305‐701 (Korea) http://hslee.kaist.ac.kr
| | - Jintaek Gong
- Department of Chemistry, KAIST, Molecular‐Level Interface Research Center, 291 Daehak‐ro, Yuseong‐gu, Daejeon 305‐701 (Korea) http://hslee.kaist.ac.kr
| | - Sunbum Kwon
- Department of Chemistry, KAIST, Molecular‐Level Interface Research Center, 291 Daehak‐ro, Yuseong‐gu, Daejeon 305‐701 (Korea) http://hslee.kaist.ac.kr
| | - Aram Jeon
- Department of Chemistry, KAIST, Molecular‐Level Interface Research Center, 291 Daehak‐ro, Yuseong‐gu, Daejeon 305‐701 (Korea) http://hslee.kaist.ac.kr
| | - Rokam Jeong
- Department of Chemistry, KAIST, Molecular‐Level Interface Research Center, 291 Daehak‐ro, Yuseong‐gu, Daejeon 305‐701 (Korea) http://hslee.kaist.ac.kr
| | - Russell W. Driver
- Department of Chemistry, KAIST, Molecular‐Level Interface Research Center, 291 Daehak‐ro, Yuseong‐gu, Daejeon 305‐701 (Korea) http://hslee.kaist.ac.kr
| | - Hee‐Seung Lee
- Department of Chemistry, KAIST, Molecular‐Level Interface Research Center, 291 Daehak‐ro, Yuseong‐gu, Daejeon 305‐701 (Korea) http://hslee.kaist.ac.kr
| |
Collapse
|
11
|
Nasir A, Caetano-Anollés G. A phylogenomic data-driven exploration of viral origins and evolution. SCIENCE ADVANCES 2015; 1:e1500527. [PMID: 26601271 PMCID: PMC4643759 DOI: 10.1126/sciadv.1500527] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/30/2015] [Indexed: 05/05/2023]
Abstract
The origin of viruses remains mysterious because of their diverse and patchy molecular and functional makeup. Although numerous hypotheses have attempted to explain viral origins, none is backed by substantive data. We take full advantage of the wealth of available protein structural and functional data to explore the evolution of the proteomic makeup of thousands of cells and viruses. Despite the extremely reduced nature of viral proteomes, we established an ancient origin of the "viral supergroup" and the existence of widespread episodes of horizontal transfer of genetic information. Viruses harboring different replicon types and infecting distantly related hosts shared many metabolic and informational protein structural domains of ancient origin that were also widespread in cellular proteomes. Phylogenomic analysis uncovered a universal tree of life and revealed that modern viruses reduced from multiple ancient cells that harbored segmented RNA genomes and coexisted with the ancestors of modern cells. The model for the origin and evolution of viruses and cells is backed by strong genomic and structural evidence and can be reconciled with existing models of viral evolution if one considers viruses to have originated from ancient cells and not from modern counterparts.
Collapse
|
12
|
Eom J, Gong J, Kwon S, Jeon A, Jeong R, Driver RW, Lee H. A Hollow Foldecture with Truncated Trigonal Bipyramid Shape from the Self‐Assembly of an 11‐Helical Foldamer. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jae‐Hoon Eom
- Department of Chemistry, KAIST, Molecular‐Level Interface Research Center, 291 Daehak‐ro, Yuseong‐gu, Daejeon 305‐701 (Korea) http://hslee.kaist.ac.kr
| | - Jintaek Gong
- Department of Chemistry, KAIST, Molecular‐Level Interface Research Center, 291 Daehak‐ro, Yuseong‐gu, Daejeon 305‐701 (Korea) http://hslee.kaist.ac.kr
| | - Sunbum Kwon
- Department of Chemistry, KAIST, Molecular‐Level Interface Research Center, 291 Daehak‐ro, Yuseong‐gu, Daejeon 305‐701 (Korea) http://hslee.kaist.ac.kr
| | - Aram Jeon
- Department of Chemistry, KAIST, Molecular‐Level Interface Research Center, 291 Daehak‐ro, Yuseong‐gu, Daejeon 305‐701 (Korea) http://hslee.kaist.ac.kr
| | - Rokam Jeong
- Department of Chemistry, KAIST, Molecular‐Level Interface Research Center, 291 Daehak‐ro, Yuseong‐gu, Daejeon 305‐701 (Korea) http://hslee.kaist.ac.kr
| | - Russell W. Driver
- Department of Chemistry, KAIST, Molecular‐Level Interface Research Center, 291 Daehak‐ro, Yuseong‐gu, Daejeon 305‐701 (Korea) http://hslee.kaist.ac.kr
| | - Hee‐Seung Lee
- Department of Chemistry, KAIST, Molecular‐Level Interface Research Center, 291 Daehak‐ro, Yuseong‐gu, Daejeon 305‐701 (Korea) http://hslee.kaist.ac.kr
| |
Collapse
|
13
|
Aussignargues C, Paasch BC, Gonzalez-Esquer R, Erbilgin O, Kerfeld CA. Bacterial microcompartment assembly: The key role of encapsulation peptides. Commun Integr Biol 2015; 8:e1039755. [PMID: 26478774 PMCID: PMC4594438 DOI: 10.1080/19420889.2015.1039755] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/03/2015] [Accepted: 04/06/2015] [Indexed: 12/14/2022] Open
Abstract
Bacterial microcompartments (BMCs) are proteinaceous organelles used by a broad range of bacteria to segregate and optimize metabolic reactions. Their functions are diverse, and can be divided into anabolic (carboxysome) and catabolic (metabolosomes) processes, depending on their cargo enzymes. The assembly pathway for the β-carboxysome has been characterized, revealing that biogenesis proceeds from the inside out. The enzymes coalesce into a procarboxysome, followed by encapsulation in a protein shell that is recruited to the procarboxysome by a short (∼17 amino acids) extension on the C-terminus of one of the encapsulated proteins. A similar extension is also found on the N- or C-termini of a subset of metabolosome core enzymes. These encapsulation peptides (EPs) are characterized by a primary structure predicted to form an amphipathic α-helix that interacts with shell proteins. Here, we review the features, function and widespread occurrence of EPs among metabolosomes, and propose an expanded role for EPs in the assembly of diverse BMCs.
Collapse
Affiliation(s)
| | - Bradley C Paasch
- DOE Plant Research Laboratory; Michigan State University ; East Lansing, MI USA
| | | | - Onur Erbilgin
- Department of Plant and Microbial Biology; University of California, Berkeley ; Berkeley, CA USA
| | - Cheryl A Kerfeld
- DOE Plant Research Laboratory; Michigan State University ; East Lansing, MI USA ; Department of Plant and Microbial Biology; University of California, Berkeley ; Berkeley, CA USA ; Physical Biosciences Division; Lawrence Berkeley National Laboratory ; Berkeley, CA USA ; Berkeley Synthetic Biology Institute ; Berkeley, CA USA
| |
Collapse
|
14
|
In Salmonella enterica, Ethanolamine Utilization Is Repressed by 1,2-Propanediol To Prevent Detrimental Mixing of Components of Two Different Bacterial Microcompartments. J Bacteriol 2015; 197:2412-21. [PMID: 25962913 DOI: 10.1128/jb.00215-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/22/2015] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Bacterial microcompartments (MCPs) are a diverse family of protein-based organelles composed of metabolic enzymes encapsulated within a protein shell. The function of bacterial MCPs is to optimize metabolic pathways by confining toxic and/or volatile metabolic intermediates. About 20% of bacteria produce MCPs, and there are at least seven different types. Different MCPs vary in their encapsulated enzymes, but all have outer shells composed of highly conserved proteins containing bacterial microcompartment domains. Many organisms have genes encoding more than one type of MCP, but given the high homology among shell proteins, it is uncertain whether multiple MCPs can be functionally expressed in the same cell at the same time. In these studies, we examine the regulation of the 1,2-propanediol (1,2-PD) utilization (Pdu) and ethanolamine utilization (Eut) MCPs in Salmonella. Studies showed that 1,2-PD (shown to induce the Pdu MCP) represses transcription of the Eut MCP and that the PocR regulatory protein is required. The results indicate that repression of the Eut MCP by 1,2-PD is needed to prevent detrimental mixing of shell proteins from the Eut and Pdu MCPs. Coexpression of both MCPs impaired the function of the Pdu MCP and resulted in the formation of hybrid MCPs composed of Eut and Pdu MCP components. We also show that plasmid-based expression of individual shell proteins from the Eut MCP or the β-carboxysome impaired the function of Pdu MCP. Thus, the high conservation among bacterial microcompartment (BMC) domain shell proteins is problematic for coexpression of the Eut and Pdu MCPs and perhaps other MCPs as well. IMPORTANCE Bacterial MCPs are encoded by nearly 20% of bacterial genomes, and almost 40% of those genomes contain multiple MCP gene clusters. In this study, we examine how the regulation of two different MCP systems (Eut and Pdu) is integrated in Salmonella. Our findings indicate that 1,2-PD (shown to induce the Pdu MCP) represses the Eut MCP to prevent detrimental mixing of Eut and Pdu shell proteins. These findings suggest that numerous organisms which produce more than one type of MCP likely need some mechanism to prevent aberrant shell protein interactions.
Collapse
|
15
|
De la Fuente IM. Elements of the cellular metabolic structure. Front Mol Biosci 2015; 2:16. [PMID: 25988183 PMCID: PMC4428431 DOI: 10.3389/fmolb.2015.00016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/12/2015] [Indexed: 12/19/2022] Open
Abstract
A large number of studies have demonstrated the existence of metabolic covalent modifications in different molecular structures, which are able to store biochemical information that is not encoded by DNA. Some of these covalent mark patterns can be transmitted across generations (epigenetic changes). Recently, the emergence of Hopfield-like attractor dynamics has been observed in self-organized enzymatic networks, which have the capacity to store functional catalytic patterns that can be correctly recovered by specific input stimuli. Hopfield-like metabolic dynamics are stable and can be maintained as a long-term biochemical memory. In addition, specific molecular information can be transferred from the functional dynamics of the metabolic networks to the enzymatic activity involved in covalent post-translational modulation, so that determined functional memory can be embedded in multiple stable molecular marks. The metabolic dynamics governed by Hopfield-type attractors (functional processes), as well as the enzymatic covalent modifications of specific molecules (structural dynamic processes) seem to represent the two stages of the dynamical memory of cellular metabolism (metabolic memory). Epigenetic processes appear to be the structural manifestation of this cellular metabolic memory. Here, a new framework for molecular information storage in the cell is presented, which is characterized by two functionally and molecularly interrelated systems: a dynamic, flexible and adaptive system (metabolic memory) and an essentially conservative system (genetic memory). The molecular information of both systems seems to coordinate the physiological development of the whole cell.
Collapse
Affiliation(s)
- Ildefonso M. De la Fuente
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra,” Consejo Superior de Investigaciones CientíficasGranada, Spain
- Department of Mathematics, University of the Basque Country, UPV/Euskal Herriko UnibertsitateaLeioa, Spain
| |
Collapse
|
16
|
Nasir A, Sun FJ, Kim KM, Caetano-Anollés G. Untangling the origin of viruses and their impact on cellular evolution. Ann N Y Acad Sci 2015; 1341:61-74. [PMID: 25758413 DOI: 10.1111/nyas.12735] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The origin and evolution of viruses remain mysterious. Here, we focus on the distribution of viral replicons in host organisms, their morphological features, and the evolution of highly conserved protein and nucleic acid structures. The apparent inability of RNA viral replicons to infect contemporary akaryotic species suggests an early origin of RNA viruses and their subsequent loss in akaryotes. A census of virion morphotypes reveals that advanced forms were unique to viruses infecting a specific supergroup, while simpler forms were observed in viruses infecting organisms in all forms of cellular life. Results hint toward an ancient origin of viruses from an ancestral virus harboring either filamentous or spherical virions. Finally, phylogenetic trees built from protein domain and tRNA structures in thousands of genomes suggest that viruses evolved via reductive evolution from ancient cells. The analysis presents a complete account of the evolutionary history of cells and viruses and identifies viruses as crucial agents influencing cellular evolution.
Collapse
Affiliation(s)
- Arshan Nasir
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences and Illinois Informatics Institute, University of Illinois, Urbana, Illinois
| | | | | | | |
Collapse
|
17
|
de Lorenzo V, Sekowska A, Danchin A. Chemical reactivity drives spatiotemporal organisation of bacterial metabolism. FEMS Microbiol Rev 2014; 39:96-119. [PMID: 25227915 DOI: 10.1111/1574-6976.12089] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In this review, we examine how bacterial metabolism is shaped by chemical constraints acting on the material and dynamic layout of enzymatic networks and beyond. These are moulded not only for optimisation of given metabolic objectives (e.g. synthesis of a particular amino acid or nucleotide) but also for curbing the detrimental reactivity of chemical intermediates. Besides substrate channelling, toxicity is avoided by barriers to free diffusion (i.e. compartments) that separate otherwise incompatible reactions, along with ways for distinguishing damaging vs. harmless molecules. On the other hand, enzymes age and their operating lifetime must be tuned to upstream and downstream reactions. This time dependence of metabolic pathways creates time-linked information, learning and memory. These features suggest that the physical structure of existing biosystems, from operon assemblies to multicellular development may ultimately stem from the need to restrain chemical damage and limit the waste inherent to basic metabolic functions. This provides a new twist of our comprehension of fundamental biological processes in live systems as well as practical take-home lessons for the forward DNA-based engineering of novel biological objects.
Collapse
Affiliation(s)
- Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología CSIC, Cantoblanco-Madrid, Spain
| | - Agnieszka Sekowska
- AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Antoine Danchin
- AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
18
|
Abstract
Holistic emerging approaches allow us to understand that every organism is the result of integration mechanisms observed at every level of nature: integration of DNA from virus and bacteria in metazoans, endosymbiotic relationships and holobionts. Horizontal gene transfer events in Bacteria, Archaea and Eukaryotes have resulted in the chimeric nature of genomes. As a continuity of this genomic landscape, the human body contains more bacterial than human cells. Human microbiome has co-evolved with the human being as a unity called holobiont. The loss of part of our microbiome along evolution can explain the continuous increasing incidence of immune and inflammatory-related diseases. Life is a continuous process in which the organism experiences its environment and this interaction impacts in the epigenetic system and the genomic structure. The emerging perspectives restitute the great importance of Lamarck's theoretical contributions (the milieu) and Darwin's pangenesis theory.
Collapse
|
19
|
Keeling TJ, Samborska B, Demers RW, Kimber MS. Interactions and structural variability of β-carboxysomal shell protein CcmL. PHOTOSYNTHESIS RESEARCH 2014; 121:125-133. [PMID: 24504539 DOI: 10.1007/s11120-014-9973-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/14/2014] [Indexed: 06/03/2023]
Abstract
CcmL is a small, pentameric protein that is argued to fill the vertices of β-carboxysomal shell. Here we report the structures of two CcmL orthologs, those from Nostoc sp. PCC 7120 and Thermosynechococcus elongatus BP-1. These structures broadly resemble those previously reported for other strains. However, the Nostoc CcmL structure shows an interesting pattern of behavior where two loops that map to the base of the pentamer adopt either an out or in conformation, with a consistent (over six pentamers) out-in-out-in-in pattern of protomers. The pentamers in this structure are also consistently organized into a back-to-back decamer, though evidence suggests that this is likely not present in solution. Förster resonance energy transfer experiments were able to show a weak interaction between CcmL and CcmK2 when CcmK2 was present at >100 μM. Since CcmK2 forms defined bodies with approximately 200 nm diameter at this concentration, this would support the idea that CcmL can only interact with CcmK2 at rare defect points in the growing shell.
Collapse
Affiliation(s)
- Thomas J Keeling
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | | | | |
Collapse
|
20
|
Mangan NM, Brenner MP. Systems analysis of the CO2 concentrating mechanism in cyanobacteria. eLife 2014; 3:e02043. [PMID: 24842993 PMCID: PMC4027813 DOI: 10.7554/elife.02043] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/12/2014] [Indexed: 12/13/2022] Open
Abstract
Cyanobacteria are photosynthetic bacteria with a unique CO2 concentrating mechanism (CCM), enhancing carbon fixation. Understanding the CCM requires a systems level perspective of how molecular components work together to enhance CO2 fixation. We present a mathematical model of the cyanobacterial CCM, giving the parameter regime (expression levels, catalytic rates, permeability of carboxysome shell) for efficient carbon fixation. Efficiency requires saturating the RuBisCO reaction, staying below saturation for carbonic anhydrase, and avoiding wasteful oxygenation reactions. We find selectivity at the carboxysome shell is not necessary; there is an optimal non-specific carboxysome shell permeability. We compare the efficacy of facilitated CO2 uptake, CO2 scavenging, and HCO3- transport with varying external pH. At the optimal carboxysome permeability, contributions from CO2 scavenging at the cell membrane are small. We examine the cumulative benefits of CCM spatial organization strategies: enzyme co-localization and compartmentalization.
Collapse
Affiliation(s)
- Niall M Mangan
- School of Engineering and Applied Sciences and Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, United States
| | - Michael P Brenner
- School of Engineering and Applied Sciences and Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, United States
| |
Collapse
|
21
|
Yeates TO, Jorda J, Bobik TA. The shells of BMC-type microcompartment organelles in bacteria. J Mol Microbiol Biotechnol 2013; 23:290-9. [PMID: 23920492 DOI: 10.1159/000351347] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bacterial microcompartments are large proteinaceous structures that act as metabolic organelles in many bacterial cells. A shell or capsid, which is composed of a few thousand protein subunits, surrounds a series of sequentially acting enzymes and controls the diffusion of substrates and products into and out of the lumen. The carboxysome and the propanediol utilization microcompartment represent two well-studied systems among seven or more distinct types that can be delineated presently. Recent structural studies have highlighted a number of sophisticated mechanisms that underlie the function of bacterial microcompartment shell proteins. This review updates our understanding of bacterial microcompartment shells, how they are assembled, and how they carry out their functions in molecular transport and enzyme organization.
Collapse
Affiliation(s)
- Todd O Yeates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Calif. 90095-1569, USA.
| | | | | |
Collapse
|
22
|
|
23
|
O'Connell JD, Zhao A, Ellington AD, Marcotte EM. Dynamic reorganization of metabolic enzymes into intracellular bodies. Annu Rev Cell Dev Biol 2013; 28:89-111. [PMID: 23057741 DOI: 10.1146/annurev-cellbio-101011-155841] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Both focused and large-scale cell biological and biochemical studies have revealed that hundreds of metabolic enzymes across diverse organisms form large intracellular bodies. These proteinaceous bodies range in form from fibers and intracellular foci--such as those formed by enzymes of nitrogen and carbon utilization and of nucleotide biosynthesis--to high-density packings inside bacterial microcompartments and eukaryotic microbodies. Although many enzymes clearly form functional mega-assemblies, it is not yet clear for many recently discovered cases whether they represent functional entities, storage bodies, or aggregates. In this article, we survey intracellular protein bodies formed by metabolic enzymes, asking when and why such bodies form and what their formation implies for the functionality--and dysfunctionality--of the enzymes that comprise them. The panoply of intracellular protein bodies also raises interesting questions regarding their evolution and maintenance within cells. We speculate on models for how such structures form in the first place and why they may be inevitable.
Collapse
Affiliation(s)
- Jeremy D O'Connell
- Center for Systems and Synthetic Biology, University of Texas, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
24
|
Jorda J, Lopez D, Wheatley NM, Yeates TO. Using comparative genomics to uncover new kinds of protein-based metabolic organelles in bacteria. Protein Sci 2013. [PMID: 23188745 DOI: 10.1002/pro.2196] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bacterial microcompartment (MCP) organelles are cytosolic, polyhedral structures consisting of a thin protein shell and a series of encapsulated, sequentially acting enzymes. To date, different microcompartments carrying out three distinct types of metabolic processes have been characterized experimentally in various bacteria. In the present work, we use comparative genomics to explore the existence of yet uncharacterized microcompartments encapsulating a broader set of metabolic pathways. A clustering approach was used to group together enzymes that show a strong tendency to be encoded in chromosomal proximity to each other while also being near genes for microcompartment shell proteins. The results uncover new types of putative microcompartments, including one that appears to encapsulate B(12) -independent, glycyl radical-based degradation of 1,2-propanediol, and another potentially involved in amino alcohol metabolism in mycobacteria. Preliminary experiments show that an unusual shell protein encoded within the glycyl radical-based microcompartment binds an iron-sulfur cluster, hinting at complex mechanisms in this uncharacterized system. In addition, an examination of the computed microcompartment clusters suggests the existence of specific functional variations within certain types of MCPs, including the alpha carboxysome and the glycyl radical-based microcompartment. The findings lead to a deeper understanding of bacterial microcompartments and the pathways they sequester.
Collapse
Affiliation(s)
- Julien Jorda
- UCLA-DOE Institute for Genomics and Proteomics, 611 Charles Young Dr East, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
25
|
Pitts AC, Tuck LR, Faulds-Pain A, Lewis RJ, Marles-Wright J. Structural insight into the Clostridium difficile ethanolamine utilisation microcompartment. PLoS One 2012; 7:e48360. [PMID: 23144756 PMCID: PMC3483176 DOI: 10.1371/journal.pone.0048360] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 09/24/2012] [Indexed: 12/17/2022] Open
Abstract
Bacterial microcompartments form a protective proteinaceous barrier around metabolic enzymes that process unstable or toxic chemical intermediates. The genome of the virulent, multidrug-resistant Clostridium difficile 630 strain contains an operon, eut, encoding a bacterial microcompartment with genes for the breakdown of ethanolamine and its utilisation as a source of reduced nitrogen and carbon. The C. difficile eut operon displays regulatory genetic elements and protein encoding regions in common with homologous loci found in the genomes of other bacteria, including the enteric pathogens Salmonella enterica and Enterococcus faecalis. The crystal structures of two microcompartment shell proteins, CD1908 and CD1918, and an uncharacterised protein with potential enzymatic activity, CD1925, were determined by X-ray crystallography. CD1908 and CD1918 display the same protein fold, though the order of secondary structure elements is permuted in CD1908 and this protein displays an N-terminal β-strand extension. These proteins form hexamers with molecules related by crystallographic and non-crystallographic symmetry. The structure of CD1925 has a cupin β-barrel fold and a putative active site that is distinct from the metal-ion dependent catalytic cupins. Thin-section transmission electron microscopy of Escherichia coli over-expressing eut proteins indicates that CD1918 is capable of self-association into arrays, suggesting an organisational role for CD1918 in the formation of this microcompartment. The work presented provides the basis for further study of the architecture and function of the C. difficile eut microcompartment, its role in metabolism and the wider consequences of intestinal colonisation and virulence in this pathogen.
Collapse
Affiliation(s)
- Alison C. Pitts
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Laura R. Tuck
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alexandra Faulds-Pain
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Richard J. Lewis
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jon Marles-Wright
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Souza WD. Prokaryotic cells: structural organisation of the cytoskeleton and organelles. Mem Inst Oswaldo Cruz 2012; 107:283-93. [DOI: 10.1590/s0074-02762012000300001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 02/23/2012] [Indexed: 11/22/2022] Open
Affiliation(s)
- Wanderley de Souza
- Universidade Federal do Rio de Janeiro, Brasil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brasil; Instituto Nacional de Metrologia, Brasil
| |
Collapse
|
27
|
Salvucci E. Selfishness, warfare, and economics; or integration, cooperation, and biology. Front Cell Infect Microbiol 2012; 2:54. [PMID: 22919645 PMCID: PMC3417387 DOI: 10.3389/fcimb.2012.00054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 04/06/2012] [Indexed: 12/11/2022] Open
Abstract
The acceptance of Darwin's theory of evolution by natural selection is not complete and it has been pointed out its limitation to explain the complex processes that constitute the transformation of species. It is necessary to discuss the explaining power of the dominant paradigm. It is common that new discoveries bring about contradictions that are intended to be overcome by adjusting results to the dominant reductionist paradigm using all sorts of gradations and combinations that are admitted for each case. In addition to the discussion on the validity of natural selection, modern findings represent a challenge to the interpretation of the observations with the Darwinian view of competition and struggle for life as theoretical basis. New holistic interpretations are emerging related to the Net of Life, in which the interconnection of ecosystems constitutes a dynamic and self-regulating biosphere: viruses are recognized as a macroorganism with a huge collection of genes, most unknown that constitute the major planet's gene pool. They play a fundamental role in evolution since their sequences are capable of integrating into the genomes in an “infective” way and become an essential part of multicellular organisms. They have content with “biological sense” i.e., they appear as part of normal life processes and have a serious role as carrier elements of complex genetic information. Antibiotics are cell signals with main effects on general metabolism and transcription on bacterial cells and communities. The hologenome theory considers an organism and all of its associated symbiotic microbes (parasites, mutualists, synergists, amensalists) as a result of symbiopoiesis. Microbes, helmints, that are normally understood as parasites are cohabitants and they have cohabited with their host and drive the evolution and existence of the partners. Each organism is the result of integration of complex systems. The eukaryotic organism is the result of combination of bacterial, virus, and eukaryotic DNA and it is the result of the interaction of its own genome with the genome of its microbiota, and their metabolism are intertwined (as a “superorganism”) along evolution. The darwinian paradigm had its origin in the free market theories and concepts of Malthus and Spencer. Then, nature was explained on the basis of market theories moving away from an accurate explanation of natural phenomena. It is necessary to acknowledge the limitations of the dominant dogma. These new interpretations about biological processes, molecules, roles of viruses in nature, and microbial interactions are remarkable points to be considered in order to construct a solid theory adjusted to the facts and with less speculations and tortuous semantic traps.
Collapse
Affiliation(s)
- Emiliano Salvucci
- Consejo Nacional de Investigaciones Cientificas y Técnicas Argentina.
| |
Collapse
|
28
|
The PduM protein is a structural component of the microcompartments involved in coenzyme B(12)-dependent 1,2-propanediol degradation by Salmonella enterica. J Bacteriol 2012; 194:1912-8. [PMID: 22343294 DOI: 10.1128/jb.06529-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Diverse bacteria use proteinaceous microcompartments (MCPs) to optimize metabolic pathways that have toxic or volatile intermediates. MCPs consist of metabolic enzymes encased within a protein shell that provides a defined environment. In Salmonella enterica, a MCP is involved in B(12)-dependent 1,2-propanediol utilization (Pdu MCP). In this report, we show that the protein PduM is required for the assembly and function of the Pdu MCP. The results of tandem mass spectrometry and Western blot analyses show that PduM is a component of the Pdu MCP. Electron microscopy shows that a pduM deletion mutant forms MCPs with abnormal morphology. Growth tests and metabolite measurements establish that a pduM deletion mutant is unable to form functional MCPs. PduM is unrelated in sequence to proteins of known function and hence may represent a new class of MCP structural proteins. We also report a modified protocol for the purification of Pdu MCP from Salmonella which allows isolation of milligram amounts of MCPs in about 4 h. We believe that this protocol can be extended or modified for the purification of MCPs from diverse bacteria.
Collapse
|
29
|
Fuente IMDL, Cortes JM, Perez-Pinilla MB, Ruiz-Rodriguez V, Veguillas J. The metabolic core and catalytic switches are fundamental elements in the self-regulation of the systemic metabolic structure of cells. PLoS One 2011; 6:e27224. [PMID: 22125607 PMCID: PMC3220688 DOI: 10.1371/journal.pone.0027224] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/12/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Experimental observations and numerical studies with dissipative metabolic networks have shown that cellular enzymatic activity self-organizes spontaneously leading to the emergence of a metabolic core formed by a set of enzymatic reactions which are always active under all environmental conditions, while the rest of catalytic processes are only intermittently active. The reactions of the metabolic core are essential for biomass formation and to assure optimal metabolic performance. The on-off catalytic reactions and the metabolic core are essential elements of a Systemic Metabolic Structure which seems to be a key feature common to all cellular organisms. METHODOLOGY/PRINCIPAL FINDINGS In order to investigate the functional importance of the metabolic core we have studied different catalytic patterns of a dissipative metabolic network under different external conditions. The emerging biochemical data have been analysed using information-based dynamic tools, such as Pearson's correlation and Transfer Entropy (which measures effective functionality). Our results show that a functional structure of effective connectivity emerges which is dynamical and characterized by significant variations of bio-molecular information flows. CONCLUSIONS/SIGNIFICANCE We have quantified essential aspects of the metabolic core functionality. The always active enzymatic reactions form a hub--with a high degree of effective connectivity--exhibiting a wide range of functional information values being able to act either as a source or as a sink of bio-molecular causal interactions. Likewise, we have found that the metabolic core is an essential part of an emergent functional structure characterized by catalytic modules and metabolic switches which allow critical transitions in enzymatic activity. Both, the metabolic core and the catalytic switches in which also intermittently-active enzymes are involved seem to be fundamental elements in the self-regulation of the Systemic Metabolic Structure.
Collapse
|
30
|
The N-terminal region of the medium subunit (PduD) packages adenosylcobalamin-dependent diol dehydratase (PduCDE) into the Pdu microcompartment. J Bacteriol 2011; 193:5623-8. [PMID: 21821773 DOI: 10.1128/jb.05661-11] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Salmonella enterica produces a proteinaceous microcompartment for B(12)-dependent 1,2-propanediol utilization (Pdu MCP). The Pdu MCP consists of catabolic enzymes encased within a protein shell, and its function is to sequester propionaldehyde, a toxic intermediate of 1,2-propanediol degradation. We report here that a short N-terminal region of the medium subunit (PduD) is required for packaging the coenzyme B(12)-dependent diol dehydratase (PduCDE) into the lumen of the Pdu MCP. Analysis of soluble cell extracts and purified MCPs by Western blotting showed that the PduD subunit mediated packaging of itself and other subunits of diol dehydratase (PduC and PduE) into the Pdu MCP. Deletion of 35 amino acids from the N terminus of PduD significantly impaired the packaging of PduCDE with minimal effects on its enzyme activity. Western blotting showed that fusing the 18 N-terminal amino acids of PduD to green fluorescent protein or glutathione S-transferase resulted in the association of these fusion proteins with the MCP. Immunoprecipitation tests indicated that the fusion proteins were encapsulated inside the MCP shell.
Collapse
|
31
|
Buch I, Tsai CJ, Wolfson HJ, Nussinov R. Symmetry-based self-assembled nanotubes constructed using native protein structures: the key role of flexible linkers. Protein Pept Lett 2011; 18:362-72. [PMID: 21222638 PMCID: PMC7316382 DOI: 10.2174/092986611794653996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 12/15/2010] [Indexed: 11/22/2022]
Abstract
We construct nanotubes using native protein structures and their native associations from structural databases. The construction is based on a shape-guided symmetric self-assembly concept. Our strategy involves fusing judiciously-selected oligomerization domains via peptide linkers. Linkers are inherently flexible, hence their choice is critical: they should position the domains in three-dimensional space in the desired orientation while retaining their own natural conformational tendencies; however, at the same time, retain the construct stability. Here we outline a design scheme which accounts for linker flexibility considerations, and present two examples. The first is HIV-1 capsid protein, which in vitro self-assembles into nanotubes and conical capsids, and its linker exists as a short flexible loop. The second involves novel nanotubes construction based on antimicrobial homodimer Magainin 2, employing linkers of distinct lengths and flexibility levels. Our strategy utilizes the abundance of unique shapes and sizes of proteins and their building blocks which can assemble into a vast number of combinations, and consequently, nanotubes of distinct morphologies and diameters. Computational design and assessment methodologies can help reduce the number of candidates for experimental validation. This is an invited paper for a special issue on protein dynamics, here focusing on flexibility in nanotube design based on protein building blocks.
Collapse
Affiliation(s)
- Idit Buch
- Department of Human Genetics, Sackler Institute of Molecular Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chung-Jung Tsai
- SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI – Frederick, Bldg 469, Frederick, MD 21702, USA
| | - Haim J. Wolfson
- School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ruth Nussinov
- Department of Human Genetics, Sackler Institute of Molecular Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI – Frederick, Bldg 469, Frederick, MD 21702, USA
| |
Collapse
|
32
|
de la Fuente IM. Quantitative analysis of cellular metabolic dissipative, self-organized structures. Int J Mol Sci 2010; 11:3540-99. [PMID: 20957111 PMCID: PMC2956111 DOI: 10.3390/ijms11093540] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 09/11/2010] [Accepted: 09/12/2010] [Indexed: 11/16/2022] Open
Abstract
One of the most important goals of the postgenomic era is understanding the metabolic dynamic processes and the functional structures generated by them. Extensive studies during the last three decades have shown that the dissipative self-organization of the functional enzymatic associations, the catalytic reactions produced during the metabolite channeling, the microcompartmentalization of these metabolic processes and the emergence of dissipative networks are the fundamental elements of the dynamical organization of cell metabolism. Here we present an overview of how mathematical models can be used to address the properties of dissipative metabolic structures at different organizational levels, both for individual enzymatic associations and for enzymatic networks. Recent analyses performed with dissipative metabolic networks have shown that unicellular organisms display a singular global enzymatic structure common to all living cellular organisms, which seems to be an intrinsic property of the functional metabolism as a whole. Mathematical models firmly based on experiments and their corresponding computational approaches are needed to fully grasp the molecular mechanisms of metabolic dynamical processes. They are necessary to enable the quantitative and qualitative analysis of the cellular catalytic reactions and also to help comprehend the conditions under which the structural dynamical phenomena and biological rhythms arise. Understanding the molecular mechanisms responsible for the metabolic dissipative structures is crucial for unraveling the dynamics of cellular life.
Collapse
Affiliation(s)
- Ildefonso Martínez de la Fuente
- Institute of Parasitology and Biomedicine "López-Neyra" (CSIC), Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento s/n, 18100 Armilla (Granada), Spain; E-Mail: ; Tel.: +34-958-18-16-21
| |
Collapse
|
33
|
Short N-terminal sequences package proteins into bacterial microcompartments. Proc Natl Acad Sci U S A 2010; 107:7509-14. [PMID: 20308536 DOI: 10.1073/pnas.0913199107] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hundreds of bacterial species produce proteinaceous microcompartments (MCPs) that act as simple organelles by confining the enzymes of metabolic pathways that have toxic or volatile intermediates. A fundamental unanswered question about bacterial MCPs is how enzymes are packaged within the protein shell that forms their outer surface. Here, we report that a short N-terminal peptide is necessary and sufficient for packaging enzymes into the lumen of an MCP involved in B(12)-dependent 1,2-propanediol utilization (Pdu MCP). Deletion of 10 or 14 amino acids from the N terminus of the propionaldehyde dehydrogenase (PduP) enzyme, which is normally found within the Pdu MCP, substantially impaired packaging, with minimal effects on its enzymatic activity. Fusion of the 18 N-terminal amino acids from PduP to GFP, GST, or maltose-binding protein resulted in their encapsulation within MCPs. Bioinformatic analyses revealed N-terminal extensions in two additional Pdu proteins and three proteins from two unrelated MCPs, suggesting that N-terminal peptides may be used to package proteins into diverse MCPs. The potential uses of MCP assembly principles in nature and in biotechnology are discussed.
Collapse
|
34
|
Rizzuti B, Zappone B, De Santo MP, Guzzi R. Native beta-lactoglobulin self-assembles into a hexagonal columnar phase on a solid surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:1090-1095. [PMID: 19877696 DOI: 10.1021/la902464f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Using electron scanning microscopy, we have studied the protein deposit left on silicon and mica substrates by dried droplets of aqueous solutions of bovine beta-lactoglobulin at low concentration and pH = 2-7. We have observed different self-assembled structures: homogeneous layers, hexagonal platelets and flower-shaped patterns laying flat on the surface, and rods formed by columns. Homogeneous layers covered the largest area of the droplet deposit. The other structures were found in small isolated regions, where the protein solution dried in the form of microdroplets. The presence of hexagonal platelets, flower-shaped patterns and columnar rods shows that beta-lactoglobulin self-assembles at the surface in a hexagonal columnar phase, which has never been observed in solution. A comparison with proteins showing similar aggregates suggests that beta-lactoglobulin structures grow from hexagonal germs composed of discotic nanometric building blocks, possibly possessing an octameric structure. We propose that discotic building blocks of beta-lactoglobulin may be produced by the anisotropic interaction with the solid surface.
Collapse
Affiliation(s)
- Bruno Rizzuti
- Licryl CNR-INFM and Cemif.Cal, University of Calabria, Ponte P. Bucci, Cubo 31C, 87036 Rende (CS), Italy
| | | | | | | |
Collapse
|
35
|
Abstract
Evolutionary biology rejoices in the diversity of life, but this comes at a cost: other than working in the common framework of neo-Darwinian evolution, specialists in, for example, diatoms and mammals have little to say to each other. Accordingly, their research tends to track the particularities and peculiarities of a given group and seldom enquires whether there are any wider or deeper sets of explanations. Here, I present evidence in support of the heterodox idea that evolution might look to a general theory that does more than serve as a tautology ('evolution explains evolution'). Specifically, I argue that far from its myriad of products being fortuitous and accidental, evolution is remarkably predictable. Thus, I urge a move away from the continuing obsession with Darwinian mechanisms, which are entirely uncontroversial. Rather, I emphasize why we should seek explanations for ubiquitous evolutionary convergence, as well as the emergence of complex integrated systems. At present, evolutionary theory seems to be akin to nineteenth-century physics, blissfully unaware of the imminent arrival of quantum mechanics and general relativity. Physics had its Newton, biology its Darwin: evolutionary biology now awaits its Einstein.
Collapse
|
36
|
Abstract
Some bacteria contain organelles or microcompartments consisting of a large virion-like protein shell encapsulating sequentially acting enzymes. These organized microcompartments serve to enhance or protect key metabolic pathways inside the cell. The variety of bacterial microcompartments provide diverse metabolic functions, ranging from CO(2) fixation to the degradation of small organic molecules. Yet they share an evolutionarily related shell, which is defined by a conserved protein domain that is widely distributed across the bacterial kingdom. Structural studies on a number of these bacterial microcompartment shell proteins are illuminating the architecture of the shell and highlighting its critical role in controlling molecular transport into and out of microcompartments. Current structural, evolutionary, and mechanistic ideas are discussed, along with genomic studies for exploring the function and diversity of this family of bacterial organelles.
Collapse
Affiliation(s)
- Todd O Yeates
- Department of Chemistry and Biochemistry, Institute of Genomics and Proteomics, University of California, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
37
|
Conway Morris S. The predictability of evolution: glimpses into a post-Darwinian world. Naturwissenschaften 2009; 96:1313-37. [PMID: 19784612 DOI: 10.1007/s00114-009-0607-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/17/2009] [Accepted: 08/27/2009] [Indexed: 01/01/2023]
Abstract
The very success of the Darwinian explanation, in not only demonstrating evolution from multiple lines of evidence but also in providing some plausible explanations, paradoxically seems to have served to have stifled explorations into other areas of investigation. The fact of evolution is now almost universally yoked to the assumption that its outcomes are random, trends are little more than drunkard's walks, and most evolutionary products are masterpieces of improvisation and far from perfect. But is this correct? Let us consider some alternatives. Is there evidence that evolution could in anyway be predictable? Can we identify alternative forms of biological organizations and if so how viable are they? Why are some molecules so extraordinarily versatile, while others can be spoken of as "molecules of choice"? How fortuitous are the major transitions in the history of life? What implications might this have for the Tree of Life? To what extent is evolutionary diversification constrained or facilitated by prior states? Are evolutionary outcomes merely sufficient or alternatively are they highly efficient, even superb? Here I argue that in sharp contradistinction to an orthodox Darwinian view, not only is evolution much more predictable than generally assumed but also investigation of its organizational substrates, including those of sensory systems, which indicates that it is possible to identify a predictability to the process and outcomes of evolution. If correct, the implications may be of some significance, not least in separating the unexceptional Darwinian mechanisms from underlying organizational principles, which may indicate evolutionary inevitabilities.
Collapse
Affiliation(s)
- Simon Conway Morris
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK.
| |
Collapse
|
38
|
Beeby M, Bobik TA, Yeates TO. Exploiting genomic patterns to discover new supramolecular protein assemblies. Protein Sci 2009; 18:69-79. [PMID: 19177352 PMCID: PMC2708037 DOI: 10.1002/pro.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/19/2008] [Accepted: 09/22/2008] [Indexed: 01/29/2023]
Abstract
Bacterial microcompartments are supramolecular protein assemblies that function as bacterial organelles by compartmentalizing particular enzymes and metabolic intermediates. The outer shells of these microcompartments are assembled from multiple paralogous structural proteins. Because the paralogs are required to assemble together, their genes are often transcribed together from the same operon, giving rise to a distinctive genomic pattern: multiple, typically small, paralogous proteins encoded in close proximity on the bacterial chromosome. To investigate the generality of this pattern in supramolecular assemblies, we employed a comparative genomics approach to search for protein families that show the same kind of genomic pattern as that exhibited by bacterial microcompartments. The results indicate that a variety of large supramolecular assemblies fit the pattern, including bacterial gas vesicles, bacterial pili, and small heat-shock protein complexes. The search also retrieved several widely distributed protein families of presently unknown function. The proteins from one of these families were characterized experimentally and found to show a behavior indicative of supramolecular assembly. We conclude that cotranscribed paralogs are a common feature of diverse supramolecular assemblies, and a useful genomic signature for discovering new kinds of large protein assemblies from genomic data.
Collapse
Affiliation(s)
- Morgan Beeby
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los AngelesLos Angeles, California 90095
| | - Thomas A Bobik
- Biochemistry, Biophysics and Molecular Biology, Iowa State UniversityAmes, Iowa 50011
| | - Todd O Yeates
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los AngelesLos Angeles, California 90095
- Department of Chemistry and Biochemistry, University of California Los AngelesCalifornia 90095-1569
- Molecular Biology Institute, Paul D. Boyer HallLos Angeles, California 90095-1570
| |
Collapse
|
39
|
Cheng S, Liu Y, Crowley CS, Yeates TO, Bobik TA. Bacterial microcompartments: their properties and paradoxes. Bioessays 2008; 30:1084-95. [PMID: 18937343 PMCID: PMC3272490 DOI: 10.1002/bies.20830] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many bacteria conditionally express proteinaceous organelles referred to here as microcompartments (Fig. 1). These microcompartments are thought to be involved in a least seven different metabolic processes and the number is growing. Microcompartments are very large and structurally sophisticated. They are usually about 100-150 nm in cross section and consist of 10,000-20,000 polypeptides of 10-20 types. Their unifying feature is a solid shell constructed from proteins having bacterial microcompartment (BMC) domains. In the examples that have been studied, the microcompartment shell encases sequentially acting metabolic enzymes that catalyze a reaction sequence having a toxic or volatile intermediate product. It is thought that the shell of the microcompartment confines such intermediates, thereby enhancing metabolic efficiency and/or protecting cytoplasmic components. Mechanistically, however, this creates a paradox. How do microcompartments allow enzyme substrates, products and cofactors to pass while confining metabolic intermediates in the absence of a selectively permeable membrane? We suggest that the answer to this paradox may have broad implications with respect to our understanding of the fundamental properties of biological protein sheets including microcompartment shells, S-layers and viral capsids.
Collapse
Affiliation(s)
- Shouqiang Cheng
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA
| | - Yu Liu
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA
| | | | | | - Thomas A. Bobik
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA
| |
Collapse
|
40
|
Castelle C, Guiral M, Malarte G, Ledgham F, Leroy G, Brugna M, Giudici-Orticoni MT. A new iron-oxidizing/O2-reducing supercomplex spanning both inner and outer membranes, isolated from the extreme acidophile Acidithiobacillus ferrooxidans. J Biol Chem 2008; 283:25803-11. [PMID: 18632666 PMCID: PMC3258861 DOI: 10.1074/jbc.m802496200] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 07/16/2008] [Indexed: 01/23/2023] Open
Abstract
The iron respiratory chain of the acidophilic bacterium Acidithiobacillus ferrooxidans involves various metalloenzymes. Here we demonstrate that the oxygen reduction pathway from ferrous iron (named downhill pathway) is organized as a supercomplex constituted of proteins located in the outer and inner membranes as well as in the periplasm. For the first time, the outer membrane-bound cytochrome c Cyc2 was purified, and we showed that it is responsible for iron oxidation and determined that its redox potential is the highest measured to date for a cytochrome c. The organization of metalloproteins inside the supramolecular structure was specified by protein-protein interaction experiments. The isolated complex spanning the two membranes had iron oxidase as well as oxygen reductase activities, indicating functional electron transfer between the first iron electron acceptor, Cyc2, and the Cu(A) center of cytochrome c oxidase aa(3). This is the first characterization of a respirasome from an acidophilic bacterium. In Acidithiobacillus ferrooxidans,O(2) reduction from ferrous iron must be coupled to the energy-consuming reduction of NAD(+)(P) from ferrous iron (uphill pathway) required for CO(2) fixation and other anabolic processes. Besides the proteins involved in the O(2) reduction, there were additional proteins in the supercomplex, involved in uphill pathway (bc complex and cytochrome Cyc(42)), suggesting a possible physical link between these two pathways.
Collapse
|
41
|
Crowley CS, Sawaya MR, Bobik TA, Yeates TO. Structure of the PduU shell protein from the Pdu microcompartment of Salmonella. Structure 2008; 16:1324-32. [PMID: 18786396 PMCID: PMC5878062 DOI: 10.1016/j.str.2008.05.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 05/29/2008] [Accepted: 05/30/2008] [Indexed: 01/07/2023]
Abstract
The Pdu microcompartment is a proteinaceous, subcellular structure that serves as an organelle for the metabolism of 1,2-propanediol in Salmonella enterica. It encapsulates several related enzymes within a shell composed of a few thousand protein subunits. Recent structural studies on the carboxysome, a related microcompartment involved in CO(2) fixation, have concluded that the major shell proteins from that microcompartment form hexamers that pack into layers comprising the facets of the shell. Here we report the crystal structure of PduU, a protein from the Pdu microcompartment, representing the first structure of a shell protein from a noncarboxysome microcompartment. Though PduU is a hexamer like other characterized shell proteins, it has undergone a circular permutation leading to dramatic differences in the hexamer pore. In view of the hypothesis that microcompartment metabolites diffuse across the outer shell through these pores, the unique structure of PduU suggests the possibility of a special functional role.
Collapse
Affiliation(s)
- Christopher S. Crowley
- UCLA Molecular Biology Institute; University of California, Los Angeles (UCLA); Los Angeles, CA, 90095; USA
| | - Michael R. Sawaya
- UCLA-DOE Institute for Genomics and Proteomics; UCLA; Los Angeles, CA, 90095; USA
| | - Thomas A. Bobik
- Department of Biochemistry, Biophysics and Molecular Biology; Iowa State University; Ames, IA, 50011; USA
| | - Todd O. Yeates
- UCLA Molecular Biology Institute; University of California, Los Angeles (UCLA); Los Angeles, CA, 90095; USA
- UCLA-DOE Institute for Genomics and Proteomics; UCLA; Los Angeles, CA, 90095; USA
- UCLA Department of Chemistry and Biochemistry; UCLA; Los Angeles, CA, 90095; USA
| |
Collapse
|
42
|
Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nat Struct Mol Biol 2008; 15:939-47. [DOI: 10.1038/nsmb.1473] [Citation(s) in RCA: 323] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
43
|
Affiliation(s)
- Dylan M. Morris
- Division of Biology, California Institute of Technology, Pasadena, California 91125;
| | - Grant J. Jensen
- Division of Biology, California Institute of Technology, Pasadena, California 91125;
| |
Collapse
|
44
|
Microcompartments for B12-dependent 1,2-propanediol degradation provide protection from DNA and cellular damage by a reactive metabolic intermediate. J Bacteriol 2008; 190:2966-71. [PMID: 18296526 DOI: 10.1128/jb.01925-07] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica grows on 1,2-propanediol (1,2-PD) in a coenzyme B(12)-dependent fashion. Prior studies showed that a bacterial microcompartment (MCP) is involved in this process and that an MCP-minus mutant undergoes a 20-h period of growth arrest during 1,2-PD degradation. It was previously proposed that growth arrest resulted from propionaldehyde toxicity, but no direct evidence was presented. Here, high-pressure liquid chromatography analyses of culture medium were used to show that the major products of aerobic 1,2-PD degradation are propionaldehyde, propionate, and 1-propanol. A MCP-minus mutant accumulated a level of propionaldehyde 10-fold higher than that of the wild type (1.6 mM compared to 15.7 mM), associating this compound with growth arrest. The addition of propionaldehyde to cultures of S. enterica caused growth arrest from 8 to 20 mM, but not at 4 mM, providing direct evidence for propionaldehyde toxicity. Studies also indicated that propionaldehyde was toxic due to the inhibition of respiratory processes, and the growth arrest ended when propionaldehyde was depleted primarily by conversion to propionate and 1-propanol and secondarily due to volatility. The Ames test was used to show that propionaldehyde is a mutagen and that mutation frequencies are increased in MCP-minus mutants during 1,2-PD degradation. We propose that a primary function of the MCPs involved in 1,2-PD degradation is the mitigation of toxicity and DNA damage by propionaldehyde.
Collapse
|