1
|
Peshkova AD, Saliakhutdinova SM, Sounbuli K, Selivanova YA, Andrianova IA, Khabirova AI, Litvinov RI, Weisel JW. The differential formation and composition of leukocyte-platelet aggregates induced by various cellular stimulants. Thromb Res 2024; 241:109092. [PMID: 39024901 PMCID: PMC11411814 DOI: 10.1016/j.thromres.2024.109092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Leukocyte-platelet aggregates comprise a pathogenic link between hemostasis and immunity, but the prerequisites and mechanisms of their formation remain not understood. AIMS To quantify the formation, composition, and morphology of leukocyte-platelet aggregates in vitro under the influence of various cellular activators. METHODS Phorbol-12-myristate-13-acetate (PMA), lipopolysaccharide (LPS), thrombin receptor-activating peptide (TRAP-6), and adenosine diphosphate (ADP) were used as cellular activators. Flow cytometry was utilized to identify and quantify aggregates in whole human blood and platelet-rich plasma. Cell types and cellular aggregates were identified using fluorescently labeled antibodies against the appropriate cellular markers, and cell activation was assessed by the expression of appropriate surface markers. For confocal fluorescent microscopy, cell membranes and nuclei were labeled. Neutrophil-platelet aggregates were studied using scanning electron microscopy. RESULTS In the presence of PMA, ADP or TRAP-6, about 17-38 % of neutrophils and 61-77 % of monocytes formed aggregates with platelets in whole blood, whereas LPS did not induce platelet aggregation with either neutrophils or monocytes due the inability to activate platelets. Similar results were obtained when isolated neutrophils were added to platelet-rich plasma. All the cell types involved in the heterotypic aggregation expressed molecular markers of activation. Fluorescent and electron microscopy of the aggregates showed that the predominant platelet/leukocyte ratios were 1:1 and 2:1. CONCLUSIONS Formation of leukocyte-platelet aggregates depends on the nature of the cellular activator and the spectrum of its cell-activating ability. An indispensable condition for formation of leukocyte-platelet aggregates is activation of all cell types including platelets, which is the restrictive step.
Collapse
Affiliation(s)
- Alina D Peshkova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | | | - Khetam Sounbuli
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Yuliya A Selivanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Izabella A Andrianova
- Department of Internal Medicine, Division of Hematology and Program in Molecular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Alina I Khabirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Rustem I Litvinov
- Departments of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - John W Weisel
- Departments of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Gao T, Cho EA, Zhang P, Wu J. Inhibition of talin-induced integrin activation by a double-hit stapled peptide. Structure 2023; 31:948-957.e3. [PMID: 37369205 PMCID: PMC10526925 DOI: 10.1016/j.str.2023.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/20/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
Integrins are ubiquitously expressed cell-adhesion proteins. Activation of integrins is triggered by talin through an inside-out signaling pathway, which can be driven by RAP1-interacting adaptor molecule (RIAM) through its interaction with talin at two distinct sites. A helical talin-binding segment (TBS) in RIAM interacts with both sites in talin, leading to integrin activation. The bispecificity inspires a "double-hit" strategy for inhibiting talin-induced integrin activation. We designed an experimental peptidomimetic inhibitor, S-TBS, derived from TBS and containing a molecular staple, which leads to stronger binding to talin and inhibition of talin:integrin interaction. The crystallographic study validates that S-TBS binds to the talin rod through the same interface as TBS. Moreover, the helical S-TBS exhibits excellent cell permeability and effectively suppresses integrin activation in cells in a talin-dependent manner. Our results shed light on a new class of integrin inhibitors and a novel approach to design multi-specific peptidomimetic inhibitors.
Collapse
Affiliation(s)
- Tong Gao
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Eun-Ah Cho
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Pingfeng Zhang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jinhua Wu
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
3
|
Alshehri S, Pavlovič T, Farsinejad S, Behboodi P, Quan L, Centeno D, Kung D, Rezler M, Lee W, Jasiński P, Dziabaszewska E, Nowak-Markwitz E, Kalyon D, Zaborowski MP, Iwanicki M. Extracellular Matrix Modulates Outgrowth Dynamics in Ovarian Cancer. Adv Biol (Weinh) 2022; 6:e2200197. [PMID: 36084257 PMCID: PMC9772079 DOI: 10.1002/adbi.202200197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/18/2022] [Indexed: 01/28/2023]
Abstract
Ovarian carcinoma (OC) forms outgrowths that extend from the outer surface of an afflicted organ into the peritoneum. OC outgrowth formation is poorly understood due to the limited availability of cell culture models examining the behavior of cells that form outgrowths. Prompted by immunochemical evaluation of extracellular matrix (ECM) components in human tissues, laminin and collagen-rich ECM-reconstituted cell culture models amenable to studies of cell clusters that can form outgrowths are developed. It is demonstrated that ECM promotes outgrowth formation in fallopian tube non-ciliated epithelial cells (FNE) expressing mutant p53 and various OC cell lines. Outgrowths are initiated by cells that underwent outward translocation and retained the ability to intercalate into mesothelial cell monolayers. Electron microscopy, optical coherence tomography, and small amplitude oscillatory shear experiments reveal that increased ECM levels led to increased fibrous network thickness and high shear elasticity of the microenvironment. These physical characteristics are associated with outgrowth suppression. The low ECM microenvironment mimicks the viscoelasticity of malignant peritoneal fluid (ascites) and supports cell proliferation, cell translocation, and outgrowth formation. These results highlight the importance of the ECM microenvironment in modulating OC growth and can provide additional insights into the mode of dissemination of primary and recurrent ovarian tumors.
Collapse
Affiliation(s)
- Sarah Alshehri
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Tonja Pavlovič
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Sadaf Farsinejad
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Panteha Behboodi
- Department of Chemical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Li Quan
- Department of Chemical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Daniel Centeno
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Douglas Kung
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Marta Rezler
- Poznań University of Medical Sciences, Collegium Maius, Fredry 10, Poznań, 61-701, Poland
| | - Woo Lee
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
- Department of Chemical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Piotr Jasiński
- Department of Pathology, Poznań University of Medical Sciences, Polna 33, Poznań, 60-535, Poland
| | - Elżbieta Dziabaszewska
- Department of Pathology, Poznań University of Medical Sciences, Polna 33, Poznań, 60-535, Poland
| | - Ewa Nowak-Markwitz
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Poznań University of Medical Sciences, Polna 33, Poznań, 60-535, Poland
| | - Dilhan Kalyon
- Department of Chemical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Mikołaj P Zaborowski
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Poznań University of Medical Sciences, Polna 33, Poznań, 60-535, Poland
| | - Marcin Iwanicki
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| |
Collapse
|
4
|
Hu W, Feng P, Zhang M, Tian T, Wang S, Zhao B, Li Y, Wang S, Wu C. Endotoxins Induced ECM-Receptor Interaction Pathway Signal Effect on the Function of MUC2 in Caco2/HT29 Co-Culture Cells. Front Immunol 2022; 13:916933. [PMID: 35757703 PMCID: PMC9226665 DOI: 10.3389/fimmu.2022.916933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Endotoxins are toxic substances that widely exist in the environment and can enter the intestine with food and other substances. Intestinal epithelial cells are protected by a mucus layer that contains MUC2 as its main structural component. However, a detailed understanding of the mechanisms involved in the function of the mucus barrier in endotoxin penetration is lacking. Here, we established the most suitable proportion of Caco-2/HT-29 co-culture cells as a powerful tool to evaluate the intestinal mucus layer. Our findings significantly advance current knowledge as focal adhesion and ECM-receptor interaction were identified as the two most significantly implicated pathways in MUC2 small interfering RNA (siRNA)-transfected Caco-2/HT-29 co-culture cells after 24 h of LPS stimulation. When the mucus layer was not intact, LPS was found to damage the tight junctions of Caco-2/HT29 co-cultured cells. Furthermore, LPS was demonstrated to inhibit the integrin-mediated focal adhesion structure and damage the matrix network structure of the extracellular and actin microfilament skeletons. Ultimately, LPS inhibited the interactive communication between the extracellular matrix and the cytoskeleton for 24 h in the siMUC2 group compared with the LPS(+) and LPS(-) groups. Overall, we recognized the potential of MUC2 as a tool for barrier function in several intestinal bacterial diseases.
Collapse
Affiliation(s)
- Wenxiang Hu
- College of Animal Veterinary Medicine, Northwest A & F University, Yanling City, China
| | - Ping Feng
- College of Life Sciences, Yulin University, Yulin, China
| | - Mingming Zhang
- College of Animal Veterinary Medicine, Northwest A & F University, Yanling City, China
| | - Tian Tian
- College of Animal Veterinary Medicine, Northwest A & F University, Yanling City, China
| | - Shengxiang Wang
- College of Animal Veterinary Medicine, Northwest A & F University, Yanling City, China
| | - Baoyu Zhao
- College of Animal Veterinary Medicine, Northwest A & F University, Yanling City, China
| | - Yajie Li
- College of Animal Veterinary Medicine, Northwest A & F University, Yanling City, China
| | - Shuo Wang
- College of Animal Veterinary Medicine, Northwest A & F University, Yanling City, China
| | - Chenchen Wu
- College of Animal Veterinary Medicine, Northwest A & F University, Yanling City, China
| |
Collapse
|
5
|
Li X, Lu W, Zhou T, Zhao F, Yang L. Timosaponin AIII Suppresses RAP1 Signaling Pathway to Enhance the Inhibitory Effect of Paclitaxel on Nasopharyngeal Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6756676. [PMID: 35586672 PMCID: PMC9110172 DOI: 10.1155/2022/6756676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022]
Abstract
Although PTX has been identified as an effective drug for nasopharyngeal carcinoma (NPC) therapy, it has serious side effects in the human body. Previous studies have shown that timosaponin AIII (TSAIII) can inhibit the malignant progression of NPC cells. This study investigated the active mechanism of the combination of TSAIII and paclitaxel (PTX) on NPC. Cellular viability, apoptosis, apoptotic factors, and RAP1 signaling regulators were detected in the PNC cells (CNE-1 and HNE-2) and the subcutaneous CNE-1 transplanted nude mice treated with PTX or/and TSAIII. The results showed that TSAIII notably strengthened the inhibitory effect of PTX on the proliferation of NPC cells CNE-1 and HNE-2; upregulated the expression of Bax B-cell lymphoma 2 (Bcl-2)/Bcl-xL-associated death promoter (Bad), and Ras-associated protein1 (RAP1) GTPase activating protein (Rap1GAP); inhibited the level of Bcl-2, RAP1, and Ras guanine nucleotide releasing protein (RasGRP2); and significantly enhanced the promoting effect of PTX on apoptosis in the CNE-1 and HNE-2 cells. Besides, TSAIII strengthened the inhibitory effect of PTX on xenograft tumor in nude mice without adverse reactions. In conclusion, the combination administration of TSAIII and PTX had a significantly therapeutic effect on NPC and avoided the PTX's side effects, which may have acted as a new direction for the study of therapeutic approaches for NPC clinically.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Otorhinolarynology, Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wen Lu
- Department of Otorhinolarynology, Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Tianjiao Zhou
- Department of Otorhinolarynology, Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Feng Zhao
- Department of Otorhinolarynology, Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Li Yang
- Department of Head and Neck Surgery, People's Hospital of Guang'an City, Guang'an 638001, China
| |
Collapse
|
6
|
Dissecting the critical pathway crosstalk mechanisms of thyroid cancer based on drug-target genes and disease genes. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Simons P, Rinaldi DA, Bondu V, Kell AM, Bradfute S, Lidke DS, Buranda T. Integrin activation is an essential component of SARS-CoV-2 infection. Sci Rep 2021; 11:20398. [PMID: 34650161 PMCID: PMC8516859 DOI: 10.1038/s41598-021-99893-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 infection depends on binding its spike (S) protein to angiotensin-converting enzyme 2 (ACE2). The S protein expresses an RGD motif, suggesting that integrins may be co-receptors. Here, we UV-inactivated SARS-CoV-2 and fluorescently labeled the envelope membrane with octadecyl rhodamine B (R18) to explore the role of integrin activation in mediating cell entry and productive infection. We used flow cytometry and confocal microscopy to show that SARS-CoV-2R18 particles engage basal-state integrins. Furthermore, we demonstrate that Mn2+, which induces integrin extension, enhances cell entry of SARS-CoV-2R18. We also show that one class of integrin antagonist, which binds to the αI MIDAS site and stabilizes the inactive, closed conformation, selectively inhibits the engagement of SARS-CoV-2R18 with basal state integrins, but is ineffective against Mn2+-activated integrins. RGD-integrin antagonists inhibited SARS-CoV-2R18 binding regardless of integrin activation status. Integrins transmit signals bidirectionally: 'inside-out' signaling primes the ligand-binding function of integrins via a talin-dependent mechanism, and 'outside-in' signaling occurs downstream of integrin binding to macromolecular ligands. Outside-in signaling is mediated by Gα13. Using cell-permeable peptide inhibitors of talin and Gα13 binding to the cytoplasmic tail of an integrin's β subunit, we demonstrate that talin-mediated signaling is essential for productive infection.
Collapse
Affiliation(s)
- Peter Simons
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Derek A Rinaldi
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Virginie Bondu
- Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Alison M Kell
- Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
- Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Steven Bradfute
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
- Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Diane S Lidke
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Tione Buranda
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.
- Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.
| |
Collapse
|
8
|
Abstract
Thrombocytopoiesis is a complex process beginning at the level of hematopoietic stem cells, which ultimately generate megakaryocytes, large marrow cells with a distinctive morphology, and then, through a process of terminal maturation, megakaryocytes shed thousands of platelets into the circulation. This process is controlled by intrinsic and extrinsic factors. Emerging data indicate that an important intrinsic control on the late stages of thrombopoiesis is exerted by integrins, a family of transmembrane receptors composed of one α and one β subunit. One β subunit expressed by megakaryocytes is the β1 integrin, the role of which in the regulation of platelet formation is beginning to be clarified. Here, we review recent data indicating that activation of β1 integrin by outside-in and inside-out signaling regulates the interaction of megakaryocytes with the endosteal niche, which triggers their maturation, while its inactivation by galactosylation determines the migration of these cells to the perivascular niche, where they complete their terminal maturation and release platelets in the bloodstream. Furthermore, β1 integrin mediates the activation of transforming growth factor β (TGF-β), a protein produced by megakaryocytes that may act in an autocrine fashion to halt their maturation and affect the composition of their surrounding extracellular matrix. These findings suggest that β1 integrin could be a therapeutic target for inherited and acquired disorders of platelet production.
Collapse
Affiliation(s)
- Maria Mazzarini
- Biomedical and Neuromotor Sciences, Alma Mater University Bologna, Italy
| | - Paola Verachi
- Biomedical and Neuromotor Sciences, Alma Mater University Bologna, Italy
| | - Fabrizio Martelli
- National Center for Preclinical and Clinical Research and Evaluation of Pharmaceutical Drugs, Rome, Italy
| | - Anna Rita Migliaccio
- University Campus Biomedico, Rome, Italy
- Myeloproliferative Neoplasm-Research Consortium, New York, NY, USA
| |
Collapse
|
9
|
Simons P, Rinaldi DA, Bondu V, Kell AM, Bradfute S, Lidke D, Buranda T. Integrin activation is an essential component of SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34312625 DOI: 10.1101/2021.07.20.453118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cellular entry of coronaviruses depends on binding of the viral spike (S) protein to a specific cellular receptor, the angiotensin-converting enzyme 2 (ACE2). Furthermore, the viral spike protein expresses an RGD motif, suggesting that cell surface integrins may be attachment co-receptors. However, using infectious SARS-CoV-2 requires a biosafety level 3 laboratory (BSL-3), which limits the techniques that can be used to study the mechanism of cell entry. Here, we UV-inactivated SARS-CoV-2 and fluorescently labeled the envelope membrane with octadecyl rhodamine B (R18) to explore the role of integrin activation in mediating both cell entry and productive infection. We used flow cytometry and confocal fluorescence microscopy to show that fluorescently labeled SARS-CoV-2 R18 particles engage basal-state integrins. Furthermore, we demonstrate that Mn 2+ , which activates integrins and induces integrin extension, enhances cell binding and entry of SARS-CoV-2 R18 in proportion to the fraction of integrins activated. We also show that one class of integrin antagonist, which binds to the αI MIDAS site and stabilizes the inactive, closed conformation, selectively inhibits the engagement of SARS-CoV-2 R18 with basal state integrins, but is ineffective against Mn 2+ -activated integrins. At the same time, RGD-integrin antagonists inhibited SARS-CoV-2 R18 binding regardless of integrin activity state. Integrins transmit signals bidirectionally: 'inside-out' signaling primes the ligand binding function of integrins via a talin dependent mechanism and 'outside-in' signaling occurs downstream of integrin binding to macromolecular ligands. Outside-in signaling is mediated by Gα 13 and induces cell spreading, retraction, migration, and proliferation. Using cell-permeable peptide inhibitors of talin, and Gα 13 binding to the cytoplasmic tail of an integrin's β subunit, we further demonstrate that talin-mediated signaling is essential for productive infection by SARS-CoV-2.
Collapse
|
10
|
Targeting RGD-binding integrins as an integrative therapy for diabetic retinopathy and neovascular age-related macular degeneration. Prog Retin Eye Res 2021; 85:100966. [PMID: 33775825 DOI: 10.1016/j.preteyeres.2021.100966] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Integrins are a class of transmembrane receptors that are involved in a wide range of biological functions. Dysregulation of integrins has been implicated in many pathological processes and consequently, they are attractive therapeutic targets. In the ophthalmology arena, there is extensive evidence suggesting that integrins play an important role in diabetic retinopathy (DR), age-related macular degeneration (AMD), glaucoma, dry eye disease and retinal vein occlusion. For example, there is extensive evidence that arginyl-glycyl-aspartic acid (Arg-Gly-Asp; RGD)-binding integrins are involved in key disease hallmarks of DR and neovascular AMD (nvAMD), specifically inflammation, vascular leakage, angiogenesis and fibrosis. Based on such evidence, drugs that engage integrin-linked pathways have received attention for their potential to block all these vision-threatening pathways. This review focuses on the pathophysiological role that RGD-binding integrins can have in complex multifactorial retinal disorders like DR, diabetic macular edema (DME) and nvAMD, which are leading causes of blindness in developed countries. Special emphasis will be given on how RGD-binding integrins can modulate the intricate molecular pathways and regulate the underlying pathological mechanisms. For instance, the interplay between integrins and key molecular players such as growth factors, cytokines and enzymes will be summarized. In addition, recent clinical advances linked to targeting RGD-binding integrins in the context of DME and nvAMD will be discussed alongside future potential for limiting progression of these diseases.
Collapse
|
11
|
Sang Y, Roest M, de Laat B, de Groot PG, Huskens D. Interplay between platelets and coagulation. Blood Rev 2021; 46:100733. [PMID: 32682574 PMCID: PMC7354275 DOI: 10.1016/j.blre.2020.100733] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/12/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
Haemostasis stops bleeding at the site of vascular injury and maintains the integrity of blood vessels through clot formation. This regulated physiological process consists of complex interactions between endothelial cells, platelets, von Willebrand factor and coagulation factors. Haemostasis is initiated by a damaged vessel wall, followed with a rapid adhesion, activation and aggregation of platelets to the exposed subendothelial extracellular matrix. At the same time, coagulation factors aggregate on the procoagulant surface of activated platelets to consolidate the platelet plug by forming a mesh of cross-linked fibrin. Platelets and coagulation mutually influence each other and there are strong indications that, thanks to the interplay between platelets and coagulation, haemostasis is far more effective than the two processes separately. Clinically this is relevant because impaired interaction between platelets and coagulation may result in bleeding complications, while excessive platelet-coagulation interaction induces a high thrombotic risk. In this review, platelets, coagulation factors and the complex interaction between them will be discussed in detail.
Collapse
Affiliation(s)
- Yaqiu Sang
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Synapse Research Institute, Maastricht, the Netherlands
| | - Mark Roest
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Synapse Research Institute, Maastricht, the Netherlands
| | - Bas de Laat
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Synapse Research Institute, Maastricht, the Netherlands
| | | | - Dana Huskens
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Synapse Research Institute, Maastricht, the Netherlands.
| |
Collapse
|
12
|
Gardelli C, Russo L, Cipolla L, Moro M, Andriani F, Rondinone O, Nicotra F, Sozzi G, Bertolini G, Roz L. Differential glycosylation of collagen modulates lung cancer stem cell subsets through β1 integrin-mediated interactions. Cancer Sci 2020; 112:217-230. [PMID: 33068069 PMCID: PMC7780011 DOI: 10.1111/cas.14700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
In lung cancer, CD133+ cells represent the subset of cancer stem cells (CSC) able to sustain tumor growth and metastatic dissemination. CSC function is tightly regulated by specialized niches composed of both stromal cells and extracellular matrix (ECM) proteins, mainly represented by collagen. The relevance of collagen glycosylation, a fundamental post-translational modification controlling several biological processes, in regulating tumor cell phenotype remains, however, largely unexplored. To investigate the bioactive effects of differential ECM glycosylation on lung cancer cells, we prepared collagen films functionalized with glucose (Glc-collagen) and galactose (Gal-collagen) exploiting a neoglycosylation approach based on a reductive amination of maltose and lactose with the amino residues of collagen lysines. We demonstrate that culturing of tumor cells on collagen determines a glycosylation-dependent positive selection of CSC and triggers their expansion/generation. The functional relevance of CD133+ CSC increase was validated in vivo, proving an augmented tumorigenic and metastatic potential. High expression of integrin β1 in its active form is associated with an increased proficiency of tumor cells to sense signaling from glycosylated matrices (glyco-collagen) and to acquire stemness features. Accordingly, inhibition of integrin β1 in tumor cells prevents CSC enrichment, suggesting that binding of integrin β1 to Glc-collagen subtends CSC expansion/generation. We provide evidence suggesting that collagen glycosylation could play an essential role in modulating the creation of a niche favorable for the generation and selection/survival of lung CSC. Interfering with this crosstalk may represent an innovative therapeutic strategy for lung cancer treatment.
Collapse
Affiliation(s)
- Cecilia Gardelli
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Russo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Massimo Moro
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Andriani
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ornella Rondinone
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesco Nicotra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Gabriella Sozzi
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giulia Bertolini
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Roz
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
13
|
Daunys S, Petrikaitė V. The roles of carbonic anhydrases IX and XII in cancer cell adhesion, migration, invasion and metastasis. Biol Cell 2020; 112:383-397. [PMID: 32894882 DOI: 10.1111/boc.201900099] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 09/02/2012] [Indexed: 12/17/2022]
Abstract
The main function of carbonic anhydrases (CAs) in cancer cells is the pH regulation through a conversion of H2 O and CO2 to H+ and HCO3 - . However, the data of in vitro and in vivo studies have demonstrated that transmembrane isoforms of CA IX and CA XII are involved in various steps of cancer cell migration, invasion and metastasis. According to literature, inhibition of these CAs can affect the expression of multiple proteins. Some scientific groups have reported the possible interactions between CA IX and E-cadherin-catenin system, CA IX and integrins, CA IX, CA XII and ion transporters, which all are highly involved in cell-to-cell adhesion, the formation of membrane protrusions and focal adhesions. Nevertheless, CA IX and CA XII have a high impact on tumour growth and metastases formation. The data discussed in this review are quite recent. It highly support the role of CA IX and CA XII in various cancer metastasis processes through their interactions to other invasion proteins. Nevertheless, all findings show the great potential of these CAs in the context of research and application in clinical use.
Collapse
Affiliation(s)
- Simonas Daunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, LT-10257, Lithuania
| | - Vilma Petrikaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, LT-10257, Lithuania.,Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, LT-50162, Lithuania
| |
Collapse
|
14
|
Lietha D, Izard T. Roles of Membrane Domains in Integrin-Mediated Cell Adhesion. Int J Mol Sci 2020; 21:ijms21155531. [PMID: 32752284 PMCID: PMC7432473 DOI: 10.3390/ijms21155531] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
The composition and organization of the plasma membrane play important functional and regulatory roles in integrin signaling, which direct many physiological and pathological processes, such as development, wound healing, immunity, thrombosis, and cancer metastasis. Membranes are comprised of regions that are thick or thin owing to spontaneous partitioning of long-chain saturated lipids from short-chain polyunsaturated lipids into domains defined as ordered and liquid-disorder domains, respectively. Liquid-ordered domains are typically 100 nm in diameter and sometimes referred to as lipid rafts. We posit that integrin β senses membrane thickness and that mechanical force on the membrane regulates integrin activation through membrane thinning. This review examines what we know about the nature and mechanism of the interaction of integrins with the plasma membrane and its effects on regulating integrins and its binding partners.
Collapse
Affiliation(s)
- Daniel Lietha
- Cell Signaling and Adhesion Group, Structural and Chemical Biology, Margarita Salas Center for Biological Research (CIB-CSIC), E-28040 Madrid, Spain;
| | - Tina Izard
- Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
- Correspondence:
| |
Collapse
|
15
|
Gaspar RS, da Silva SA, Stapleton J, Fontelles JLDL, Sousa HR, Chagas VT, Alsufyani S, Trostchansky A, Gibbins JM, Paes AMDA. Myricetin, the Main Flavonoid in Syzygium cumini Leaf, Is a Novel Inhibitor of Platelet Thiol Isomerases PDI and ERp5. Front Pharmacol 2020; 10:1678. [PMID: 32116678 PMCID: PMC7011086 DOI: 10.3389/fphar.2019.01678] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/23/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Flavonoids have been characterized as a prominent class of compounds to treat thrombotic diseases through the inhibition of thiol isomerases. Syzygium cumini is a flavonoid-rich medicinal plant that contains myricetin and gallic acid. Little is known about the potential antiplatelet properties of S. cumini and its constituent flavonoids. OBJECTIVE To evaluate the antiplatelet effects and mechanism of action of a polyphenol-rich extract (PESc) from S. cumini leaf and its most prevalent polyphenols, myricetin and gallic acid. METHODS PESc, myricetin, and gallic acid were incubated with platelet-rich plasma and washed platelets to assess platelet aggregation and activation. In vitro platelet adhesion and thrombus formation as well as in vivo bleeding time were performed. Finally, myricetin was incubated with recombinant thiol isomerases to assess its potential to bind and inhibit these, while molecular docking studies predicted possible binding sites. RESULTS PESc decreased platelet activation and aggregation induced by different agonists. Myricetin exerted potent antiplatelet effects, whereas gallic acid did not. Myricetin reduced the ability of platelets to spread on collagen, form thrombi in vitro without affecting hemostasis in vivo. Fluorescence quenching studies suggested myricetin binds to different thiol isomerases with similar affinity, despite inhibiting only protein disulfide isomerase (PDI) and ERp5 reductase activities. Finally, molecular docking studies suggested myricetin formed non-covalent bonds with PDI and ERp5. CONCLUSIONS PESc and its most abundant flavonoid myricetin strongly inhibit platelet function. Additionally, myricetin is a novel inhibitor of ERp5 and PDI, unveiling a new therapeutic perspective for the treatment of thrombotic disorders.
Collapse
Affiliation(s)
- Renato Simões Gaspar
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Brazil
| | - Samira Abdalla da Silva
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Brazil
| | - Jennifer Stapleton
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - João Lucas de Lima Fontelles
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Brazil
| | - Hiran Reis Sousa
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Brazil
| | - Vinicyus Teles Chagas
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Brazil
| | - Shuruq Alsufyani
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jonathan M. Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Antonio Marcus de Andrade Paes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, Brazil
| |
Collapse
|
16
|
Irons L, Owen MR, O'Dea RD, Brook BS. Effect of Loading History on Airway Smooth Muscle Cell-Matrix Adhesions. Biophys J 2019; 114:2679-2690. [PMID: 29874617 DOI: 10.1016/j.bpj.2018.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/05/2018] [Accepted: 04/16/2018] [Indexed: 01/06/2023] Open
Abstract
Integrin-mediated adhesions between airway smooth muscle (ASM) cells and the extracellular matrix (ECM) regulate how contractile forces generated within the cell are transmitted to its external environment. Environmental cues are known to influence the formation, size, and survival of cell-matrix adhesions, but it is not yet known how they are affected by dynamic fluctuations associated with tidal breathing in the intact airway. Here, we develop two closely related theoretical models to study adhesion dynamics in response to oscillatory loading of the ECM, representing the dynamic environment of ASM cells in vivo. Using a discrete stochastic-elastic model, we simulate individual integrin binding and rupture events and observe two stable regimes in which either bond formation or bond rupture dominate, depending on the amplitude of the oscillatory loading. These regimes have either a high or low fraction of persistent adhesions, which could affect the level of strain transmission between contracted ASM cells and the airway tissue. For intermediate loading, we observe a region of bistability and hysteresis due to shared loading between existing bonds; the level of adhesion depends on the loading history. These findings are replicated in a related continuum model, which we use to investigate the effect of perturbations mimicking deep inspirations (DIs). Because of the bistability, a DI applied to the high adhesion state could either induce a permanent switch to a lower adhesion state or allow a return of the system to the high adhesion state. Transitions between states are further influenced by the frequency of oscillations, cytoskeletal or ECM stiffnesses, and binding affinities, which modify the magnitudes of the stable adhesion states as well as the region of bistability. These findings could explain (in part) the transient bronchodilatory effect of a DI observed in asthmatics compared to a more sustained effect in normal subjects.
Collapse
Affiliation(s)
- Linda Irons
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom.
| | - Markus R Owen
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Reuben D O'Dea
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Bindi S Brook
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
17
|
Kaneva VN, Martyanov AA, Morozova DS, Panteleev MA, Sveshnikova AN. Platelet Integrin αIIbβ3: Mechanisms of Activation and Clustering; Involvement into the Formation of the Thrombus Heterogeneous Structure. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2019. [DOI: 10.1134/s1990747819010033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Bidone TC, Polley A, Jin J, Driscoll T, Iwamoto DV, Calderwood DA, Schwartz MA, Voth GA. Coarse-Grained Simulation of Full-Length Integrin Activation. Biophys J 2019; 116:1000-1010. [PMID: 30851876 DOI: 10.1016/j.bpj.2019.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/25/2018] [Accepted: 02/13/2019] [Indexed: 01/01/2023] Open
Abstract
Integrin conformational dynamics are critical to their receptor and signaling functions in many cellular processes, including spreading, adhesion, and migration. However, assessing integrin conformations is both experimentally and computationally challenging because of limitations in resolution and dynamic sampling. Thus, structural changes that underlie transitions between conformations are largely unknown. Here, focusing on integrin αvβ3, we developed a modified form of the coarse-grained heterogeneous elastic network model (hENM), which allows sampling conformations at the onset of activation by formally separating local fluctuations from global motions. Both local fluctuations and global motions are extracted from all-atom molecular dynamics simulations of the full-length αvβ3 bent integrin conformer, but whereas the former are incorporated in the hENM as effective harmonic interactions between groups of residues, the latter emerge by systematically identifying and treating weak interactions between long-distance domains with flexible and anharmonic connections. The new hENM model allows integrins and single-point mutant integrins to explore various conformational states, including the initiation of separation between α- and β-subunit cytoplasmic regions, headpiece extension, and legs opening.
Collapse
Affiliation(s)
- Tamara C Bidone
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Anirban Polley
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Jaehyeok Jin
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Tristan Driscoll
- Yale Cardiovascular Research Center and Department of Internal Medicine (Section of Cardiovascular Medicine), Yale School of Medicine, New Haven, Connecticut
| | | | - David A Calderwood
- Department of Pharmacology, New Haven, Connecticut; Department of Cell Biology, Yale University, New Haven, Connecticut
| | - Martin A Schwartz
- Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, Connecticut; Yale Cardiovascular Research Center and Department of Internal Medicine (Section of Cardiovascular Medicine), Yale School of Medicine, New Haven, Connecticut
| | - Gregory A Voth
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
19
|
|
20
|
Huang H, Sun Z, Hill MA, Meininger GA. A Calcium Mediated Mechanism Coordinating Vascular Smooth Muscle Cell Adhesion During KCl Activation. Front Physiol 2018; 9:1810. [PMID: 30618822 PMCID: PMC6305448 DOI: 10.3389/fphys.2018.01810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 12/04/2018] [Indexed: 12/21/2022] Open
Abstract
Efficient mechanotransduction in vascular smooth muscle cells (VSMCs) is intimately coupled to physical coupling of the cell to extracellular matrix proteins (ECM) by integrins. Integrin adhesion receptors are essential for normal vascular function and defective integrin signaling is associated with cardiovascular disease. However, less is known about the mechanism of integrin activation in VSMCs in relation to vasoregulation. Our laboratory previously demonstrated that the vasoconstrictor Angiotensin II increases VSMC stiffness in concert with enhanced adhesion to fibronectin (FN), indicating an important role for adhesion in contraction. However, the mechanism of this coordination remains to be clarified. In this study, intracellular Ca2+ ([Ca2+]i) was hypothesized to link integrin activation through inside-out signaling pathways leading to enhanced adhesion in response to AII. By using atomic force microscopy (AFM) with an anti-α5 antibody coated AFM probe, we confirmed that cell stiffness was increased by AII, while we observed no change in adhesion to an α5 integrin antibody. This indicated that increases in cell adhesion to FN induced by AII were occurring through an integrin activation process, as increased membrane integrin expression/receptor density would have been accompanied by increased adhesion to the anti-α5 antibody. Further studies were performed using either KCl or BAPTA-AM to modulate the level of [Ca2+]i. After KCl, VSMCs showed a rapid transient increase in cell stiffness as well as cell adhesion to FN, and these two events were synchronized with superimposed transient increases in the level of [Ca2+]i, which was measured using the Ca2+ indicator, fluo-4. These relationships were unaffected in VSMCs pretreated with the myosin light chain kinase inhibitor, ML-7. In contrast, unstimulated VSMCs incubated with an intracellular calcium chelator, BAPTA-AM, showed reduced cell adhesion to FN as well the expected decrease in [Ca2+]i. These data suggest that in VSMCs, integrin activation is linked to signaling events tied to levels of [Ca2+]i while being less dependent on events at the level of contractile protein activation. These findings provide additional evidence to support a role for adhesion in VSMC contraction and suggest that following cell contractile activation, that adhesion may be regulated in tandem with the contractile event.
Collapse
Affiliation(s)
- Huang Huang
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - Zhe Sun
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - Michael A Hill
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - Gerald A Meininger
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
21
|
Caspase-8 function, and phosphorylation, in cell migration. Semin Cell Dev Biol 2018; 82:105-117. [PMID: 29410361 DOI: 10.1016/j.semcdb.2018.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 11/22/2022]
Abstract
Caspase-8 is involved in a number of cellular functions, with the most well established being the control of cell death. Yet caspase-8 is unique among the caspases in that it acts as an environmental sensor, transducing a range of signals to cells, modulating responses that extend far beyond simple survival. Ranging from the control of apoptosis and necroptosis and gene regulation to cell adhesion and migration, caspase-8 uses proteolytic and non-proteolytic functions to alter cell behavior. Novel interacting partners provide mechanisms for caspase-8 to position itself at signaling nodes that affect a variety of signaling pathways. Here, we examine the catalytic and noncatalytic modes of action by which caspase-8 influences cell adhesion and migration. The mechanisms vary from post-cleavage remodeling of the cytoskeleton to signaling elements that control focal adhesion turnover. This is facilitated by caspase-8 interaction with a host of cell proteins ranging from the proteases caspase-3 and calpain-2 to adaptor proteins such as p85 and Crk, to the Src family of tyrosine kinases.
Collapse
|
22
|
Hanein D, Volkmann N. Conformational Equilibrium of Human Platelet Integrin Investigated by Three-Dimensional Electron Cryo-Microscopy. Subcell Biochem 2018; 87:353-363. [PMID: 29464566 DOI: 10.1007/978-981-10-7757-9_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Integrins are bidirectional transmembrane receptors that play central roles in hemostasis and arterial thrombosis. They have been subject to structural studies for many years, in particular using X-ray crystallography, nuclear magnetic resonance spectroscopy, and two-dimensional negative stain electron microscopy. Despite considerable progress, a full consensus on the molecular mechanism of integrin activation is still lacking. Three-dimensional reconstructions of full-length human platelet integrin αIIbβ3 in lipid-bilayer nanodiscs obtained by electron cryo-microscopy and single-particle reconstruction have shed new light on the activation process. These studies show that integrin αIIbβ3 exists in a continuous conformational equilibrium ranging from a compact nodular conformation similar to that obtained in crystal structures to a fully extended state with the leg domains separated. This equilibrium is shifted towards the extended conformation when extracellular ligands, cytosolic activators and lipid-bilayer nanodiscs are added. Addition of cytosolic activators and extracellular ligands in the absense of nanodiscs produces significantly less dramatic shifts, emphasizing the importance of the membrane bilayer in the activation process.
Collapse
Affiliation(s)
- Dorit Hanein
- Bioinformatics and Structural Biology Program, Sanford-Burnham-Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Niels Volkmann
- Bioinformatics and Structural Biology Program, Sanford-Burnham-Prebys Medical Discovery Institute, San Diego, CA, USA.
| |
Collapse
|
23
|
Bondu V, Wu C, Cao W, Simons PC, Gillette J, Zhu J, Erb L, Zhang XF, Buranda T. Low-affinity binding in cis to P2Y 2R mediates force-dependent integrin activation during hantavirus infection. Mol Biol Cell 2017; 28:2887-2903. [PMID: 28835374 PMCID: PMC5638590 DOI: 10.1091/mbc.e17-01-0082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/08/2017] [Accepted: 08/17/2017] [Indexed: 12/22/2022] Open
Abstract
Atomic force microscopy is used to establish that low-affinity integrins bind in cis to P2Y2R. Integrin activation is initiated by a membrane-normal switchblade motion triggered by integrin priming after the virus binds to the integrin PSI domain. Tensile force between the P2Y2R and unbending integrin stimulates outside-in signaling. Pathogenic hantaviruses bind to the plexin-semaphorin-integrin (PSI) domain of inactive, β3 integrins. Previous studies have implicated a cognate cis interaction between the bent conformation β5/β3 integrins and an arginine-glycine-aspartic acid (RGD) sequence in the first extracellular loop of P2Y2R. With single-molecule atomic force microscopy, we show a specific interaction between an atomic force microscopy tip decorated with recombinant αIIbβ3 integrins and (RGD)P2Y2R expressed on cell membranes. Mutation of the RGD sequence to RGE in the P2Y2R removes this interaction. Binding of inactivated and fluorescently labeled Sin Nombre virus (SNV) to the integrin PSI domain stimulates higher affinity for (RGD)P2Y2R on cells, as measured by an increase in the unbinding force. In CHO cells, stably expressing αIIbβ3 integrins, virus engagement at the integrin PSI domain, recapitulates physiologic activation of the integrin as indicated by staining with the activation-specific mAB PAC1. The data also show that blocking of the Gα13 protein from binding to the cytoplasmic domain of the β3 integrin prevents outside-in signaling and infection. We propose that the cis interaction with P2Y2R provides allosteric resistance to the membrane-normal motion associated with the switchblade model of integrin activation, where the development of tensile force yields physiological integrin activation.
Collapse
Affiliation(s)
- Virginie Bondu
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Chenyu Wu
- Department of Mechanical Engineering and Mechanics and Department of Bioengineering, Lehigh University, Bethlehem, PA 18015
| | - Wenpeng Cao
- Department of Mechanical Engineering and Mechanics and Department of Bioengineering, Lehigh University, Bethlehem, PA 18015
| | - Peter C Simons
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Jennifer Gillette
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Jieqing Zhu
- Blood Research Institute, Bloodcenter of Wisconsin, Milwaukee, WI 53226
| | - Laurie Erb
- Department of Biochemistry, 540F Bond Life Sciences Center, Columbia, MO 65211
| | - X Frank Zhang
- Department of Mechanical Engineering and Mechanics and Department of Bioengineering, Lehigh University, Bethlehem, PA 18015
| | - Tione Buranda
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131 .,Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM 87131
| |
Collapse
|
24
|
Crystal structure of tissue factor in complex with antibody 10H10 reveals the signaling epitope. Cell Signal 2017; 36:139-144. [DOI: 10.1016/j.cellsig.2017.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 04/28/2017] [Accepted: 05/05/2017] [Indexed: 11/21/2022]
|
25
|
Molica F, Stierlin FB, Fontana P, Kwak BR. Pannexin- and Connexin-Mediated Intercellular Communication in Platelet Function. Int J Mol Sci 2017; 18:E850. [PMID: 28420171 PMCID: PMC5412434 DOI: 10.3390/ijms18040850] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/06/2017] [Accepted: 04/12/2017] [Indexed: 12/11/2022] Open
Abstract
The three major blood cell types, i.e., platelets, erythrocytes and leukocytes, are all produced in the bone marrow. While red blood cells are the most numerous and white cells are the largest, platelets are small fragments and account for a minor part of blood volume. However, platelets display a crucial function by preventing bleeding. Upon vessel wall injury, platelets adhere to exposed extracellular matrix, become activated, and form a platelet plug preventing hemorrhagic events. However, when platelet activation is exacerbated, as in rupture of an atherosclerotic plaque, the same mechanism may lead to acute thrombosis causing major ischemic events such as myocardial infarction or stroke. In the past few years, major progress has been made in understanding of platelet function modulation. In this respect, membrane channels formed by connexins and/or pannexins are of particular interest. While it is still not completely understood whether connexins function as hemichannels or gap junction channels to inhibit platelet aggregation, there is clear-cut evidence for a specific implication of pannexin1 channels in collagen-induced aggregation. The focus of this review is to summarize current knowledge of the role of connexins and pannexins in platelet aggregation and to discuss possible pharmacological approaches along with their limitations and future perspectives for new potential therapies.
Collapse
Affiliation(s)
- Filippo Molica
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.
- Department of Medical Specializations, Cardiology, University of Geneva, 1211 Geneva, Switzerland.
| | - Florian B Stierlin
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.
- Department of Medical Specializations, Cardiology, University of Geneva, 1211 Geneva, Switzerland.
- Geneva Platelet Group, University of Geneva, 1211 Geneva, Switzerland.
| | - Pierre Fontana
- Geneva Platelet Group, University of Geneva, 1211 Geneva, Switzerland.
- Division of Angiology and Haemostasis, Geneva University Hospitals, 1211 Geneva, Switzerland.
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.
- Department of Medical Specializations, Cardiology, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
26
|
Weber MR, Zuka M, Lorger M, Tschan M, Torbett BE, Zijlstra A, Quigley JP, Staflin K, Eliceiri BP, Krueger JS, Marchese P, Ruggeri ZM, Felding BH. Activated tumor cell integrin αvβ3 cooperates with platelets to promote extravasation and metastasis from the blood stream. Thromb Res 2017; 140 Suppl 1:S27-36. [PMID: 27067975 DOI: 10.1016/s0049-3848(16)30095-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Metastasis is the main cause of death in cancer patients, and understanding mechanisms that control tumor cell dissemination may lead to improved therapy. Tumor cell adhesion receptors contribute to cancer spreading. We noted earlier that tumor cells can expressing the adhesion receptor integrin αvβ3 in distinct states of activation, and found that cells which metastasize from the blood stream express it in a constitutively high affinity form. Here, we analyzed steps of the metastatic cascade in vivo and asked, when and how the affinity state of integrin αvβ3 confers a critical advantage to cancer spreading. Following tumor cells by real time PCR, non-invasive bioluminescence imaging, intravital microscopy and histology allowed us to identify tumor cell extravasation from the blood stream as a rate-limiting step supported by high affinity αvβ3. Successful transendothelial migration depended on cooperation between tumor cells and platelets involving the high affinity tumor cell integrin and release of platelet granules. Thus, this study identifies the high affinity conformer of integrin αvβ3 and its interaction with platelets as critical for early steps during hematogenous metastasis and target for prevention of metastatic disease.
Collapse
Affiliation(s)
- Martin R Weber
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Masahiko Zuka
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Mihaela Lorger
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Mario Tschan
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Bruce E Torbett
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Andries Zijlstra
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, USA
| | - James P Quigley
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Karin Staflin
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Brian P Eliceiri
- Department of Surgery, University of California San Diego, San Diego, CA 92103, USA
| | - Joseph S Krueger
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Patrizia Marchese
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Zaverio M Ruggeri
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Brunhilde H Felding
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
27
|
Xu XP, Kim E, Swift M, Smith JW, Volkmann N, Hanein D. Three-Dimensional Structures of Full-Length, Membrane-Embedded Human α(IIb)β(3) Integrin Complexes. Biophys J 2016; 110:798-809. [PMID: 26910421 DOI: 10.1016/j.bpj.2016.01.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/08/2015] [Accepted: 01/13/2016] [Indexed: 10/22/2022] Open
Abstract
Integrins are bidirectional, allosteric transmembrane receptors that play a central role in hemostasis and arterial thrombosis. Using cryo-electron microscopy, multireference single-particle reconstruction methods, and statistics-based computational fitting approaches, we determined three-dimensional structures of human integrin αIIbβ3 embedded in a lipid bilayer (nanodiscs) while bound to domains of the cytosolic regulator talin and to extracellular ligands. We also determined the conformations of integrin in solution by itself to localize the membrane and the talin-binding site. To our knowledge, our data provide unprecedented three-dimensional information about the conformational states of intact, full-length integrin within membrane bilayers under near-physiological conditions and in the presence of cytosolic activators and extracellular ligands. We show that αIIbβ3 integrins exist in a conformational equilibrium clustered around four main states. These conformations range from a compact bent nodule to two partially extended intermediate conformers and finally to a fully upright state. In the presence of nanodiscs and the two ligands, the equilibrium is significantly shifted toward the upright conformation. In this conformation, the receptor extends ∼20 nm upward from the membrane. There are no observable contacts between the two subunits other than those in the headpiece near the ligand-binding pocket, and the α- and β-subunits are well separated with their cytoplasmic tails ∼8 nm apart. Our results indicate that extension of the ectodomain is possible without separating the legs or extending the hybrid domain, and that the ligand-binding pocket is not occluded by the membrane in any conformations of the equilibrium. Further, they suggest that integrin activation may be influenced by equilibrium shifts.
Collapse
Affiliation(s)
- Xiao-Ping Xu
- Bioinformatics and Structural Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Eldar Kim
- Bioinformatics and Structural Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Mark Swift
- Bioinformatics and Structural Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Jeffrey W Smith
- Infectious Disease Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Niels Volkmann
- Bioinformatics and Structural Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| | - Dorit Hanein
- Bioinformatics and Structural Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| |
Collapse
|
28
|
Miyano R, Matsumoto T, Takatsu H, Nakayama K, Shin HW. Alteration of transbilayer phospholipid compositions is involved in cell adhesion, cell spreading, and focal adhesion formation. FEBS Lett 2016; 590:2138-45. [PMID: 27277390 DOI: 10.1002/1873-3468.12247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/01/2016] [Accepted: 06/01/2016] [Indexed: 11/11/2022]
Abstract
We previously showed that P4-ATPases, ATP10A/ATP8B1, and ATP11A/ATP11C have flippase activities toward phosphatidylcholine (PC), and aminophospholipids [phosphatidylserine (PS) and phosphatidylethanolamine], respectively. Here, we investigate the effect of PC-specific flippases versus aminophospholipid-specific flippases in cell spreading on the extracellular matrix. Expression of PC-flippases, but not PS-flippases, delayed cell adhesion, cell spreading and inhibited formation of focal adhesions. In addition, overexpression of a PS-binding probe that sequesters PS in the cytoplasmic leaflet delayed cell spreading and inhibited formation of focal adhesions. These results suggest that elevation of PC at the cytoplasmic leaflet of the plasma membrane by expression of PC-flippases may reduce the local concentration of PS or phosphoinositides, required for efficient cell adhesion, focal adhesion formation, and cell spreading.
Collapse
Affiliation(s)
- Rie Miyano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | | | - Hiroyuki Takatsu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | | | - Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| |
Collapse
|
29
|
Zhang H, Chang YC, Huang Q, Brennan ML, Wu J. Structural and Functional Analysis of a Talin Triple-Domain Module Suggests an Alternative Talin Autoinhibitory Configuration. Structure 2016; 24:721-729. [PMID: 27150043 DOI: 10.1016/j.str.2016.02.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 11/17/2022]
Abstract
Talin plays an important role in regulating integrin-mediated signaling. Talin function is autoinhibited by intramolecular interactions between the integrin-binding F3 domain and the autoinhibitory domain (R9). We determined the crystal structure of a triple-domain fragment, R7R8R9, which contains R9 and the RIAM (Rap1-interacting adaptor molecule) binding domain (R8). The structure reveals a crystallographic contact between R9 and a symmetrically related R8 domain, representing a homodimeric interaction in talin. Strikingly, we demonstrated that the α5 helix of R9 also interacts with the F3 domain, despite no interdomain contact involving the α5 helix in the crystal structure of an F2F3:R9 autoinhibitory complex reported previously. Mutations on the α5 helix significantly diminish the F3:R9 association and lead to elevated talin activity. Our results offer biochemical and functional evidence of the existence of a new talin autoinhibitory configuration, thus providing a more comprehensive understanding of talin autoinhibition, regulation, and quaternary structure assembly.
Collapse
Affiliation(s)
- Hao Zhang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Yu-Chung Chang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | - Mark L Brennan
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jinhua Wu
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
30
|
Lu L, Lin C, Yan Z, Wang S, Zhang Y, Wang S, Wang J, Liu C, Chen J. Kindlin-3 Is Essential for the Resting α4β1 Integrin-mediated Firm Cell Adhesion under Shear Flow Conditions. J Biol Chem 2016; 291:10363-71. [PMID: 26994136 DOI: 10.1074/jbc.m116.717694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Indexed: 11/06/2022] Open
Abstract
Integrin-mediated rolling and firm cell adhesion are two critical steps in leukocyte trafficking. Integrin α4β1 mediates a mixture of rolling and firm cell adhesion on vascular cell adhesion molecule-1 (VCAM-1) when in its resting state but only supports firm cell adhesion upon activation. The transition from rolling to firm cell adhesion is controlled by integrin activation. Kindlin-3 has been shown to bind to integrin β tails and trigger integrin activation via inside-out signaling. However, the role of kindlin-3 in regulating resting α4β1-mediated cell adhesion is not well characterized. Herein we demonstrate that kindlin-3 was required for the resting α4β1-mediated firm cell adhesion but not rolling adhesion. Knockdown of kindlin-3 significantly decreased the binding of kindlin-3 to β1 and down-regulated the binding affinity of the resting α4β1 to soluble VCAM-1. Notably, it converted the resting α4β1-mediated firm cell adhesion to rolling adhesion on VCAM-1 substrates, increased cell rolling velocity, and impaired the stability of cell adhesion. By contrast, firm cell adhesion mediated by Mn(2+)-activated α4β1 was barely affected by knockdown of kindlin-3. Structurally, lack of kindlin-3 led to a more bent conformation of the resting α4β1. Thus, kindlin-3 plays an important role in maintaining a proper conformation of the resting α4β1 to mediate both rolling and firm cell adhesion. Defective kindlin-3 binding to the resting α4β1 leads to a transition from firm to rolling cell adhesion on VCAM-1, implying its potential role in regulating the transition between integrin-mediated rolling and firm cell adhesion.
Collapse
Affiliation(s)
- Ling Lu
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - ChangDong Lin
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - ZhanJun Yan
- The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Shu Wang
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - YouHua Zhang
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - ShiHui Wang
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - JunLei Wang
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - Cui Liu
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| | - JianFeng Chen
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and
| |
Collapse
|
31
|
Lagarrigue F, Vikas Anekal P, Lee HS, Bachir AI, Ablack JN, Horwitz AF, Ginsberg MH. A RIAM/lamellipodin-talin-integrin complex forms the tip of sticky fingers that guide cell migration. Nat Commun 2015; 6:8492. [PMID: 26419705 PMCID: PMC4589889 DOI: 10.1038/ncomms9492] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/26/2015] [Indexed: 01/10/2023] Open
Abstract
The leading edge of migrating cells contains rapidly translocating activated integrins associated with growing actin filaments that form 'sticky fingers' to sense extracellular matrix and guide cell migration. Here we utilized indirect bimolecular fluorescence complementation to visualize a molecular complex containing a Mig-10/RIAM/lamellipodin (MRL) protein (Rap1-GTP-interacting adaptor molecule (RIAM) or lamellipodin), talin and activated integrins in living cells. This complex localizes at the tips of growing actin filaments in lamellipodial and filopodial protrusions, thus corresponding to the tips of the 'sticky fingers.' Formation of the complex requires talin to form a bridge between the MRL protein and the integrins. Moreover, disruption of the MRL protein-integrin-talin (MIT) complex markedly impairs cell protrusion. These data reveal the molecular basis of the formation of 'sticky fingers' at the leading edge of migrating cells and show that an MIT complex drives these protrusions.
Collapse
Affiliation(s)
- Frederic Lagarrigue
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Praju Vikas Anekal
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Ho-Sup Lee
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Alexia I Bachir
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Jailal N Ablack
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Alan F Horwitz
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Mark H Ginsberg
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
32
|
Liu J, Wang Z, Thinn AMM, Ma YQ, Zhu J. The dual structural roles of the membrane distal region of the α-integrin cytoplasmic tail during integrin inside-out activation. J Cell Sci 2015; 128:1718-31. [PMID: 25749862 DOI: 10.1242/jcs.160663] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 03/02/2015] [Indexed: 12/22/2022] Open
Abstract
Studies on the mechanism of integrin inside-out activation have been focused on the role of β-integrin cytoplasmic tails, which are relatively conserved and bear binding sites for the intracellular activators including talin and kindlin. Cytoplasmic tails for α-integrins share a conserved GFFKR motif at the membrane-proximal region and this forms a specific interface with the β-integrin membrane-proximal region to keep the integrin inactive. The α-integrin membrane-distal regions, after the GFFKR motif, are diverse both in length and sequence and their roles in integrin activation have not been well-defined. In this study, we report that the α-integrin cytoplasmic membrane-distal region contributes to maintaining integrin in the resting state and to integrin inside-out activation. Complete deletion of the α-integrin membrane-distal region diminished talin- and kindlin-mediated integrin ligand binding and conformational change. A proper length and suitable amino acids in α-integrin membrane-distal region was found to be important for integrin inside-out activation. Our data establish an essential role for the α-integrin cytoplasmic membrane-distal region in integrin activation and provide new insights into how talin and kindlin induce the high-affinity integrin conformation that is required for fully functional integrins.
Collapse
Affiliation(s)
- Jiafu Liu
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA
| | - Zhengli Wang
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Aye Myat Myat Thinn
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yan-Qing Ma
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jieqing Zhu
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
33
|
Krishan S, Richardson DR, Sahni S. Adenosine Monophosphate–Activated Kinase and Its Key Role in Catabolism: Structure, Regulation, Biological Activity, and Pharmacological Activation. Mol Pharmacol 2014; 87:363-77. [DOI: 10.1124/mol.114.095810] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
34
|
Structural and mechanistic insights into the recruitment of talin by RIAM in integrin signaling. Structure 2014; 22:1810-1820. [PMID: 25465129 DOI: 10.1016/j.str.2014.09.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 11/22/2022]
Abstract
Plasma membrane (PM)-bound GTPase Rap1 recruits the Rap1-interacting-adaptor-molecule (RIAM), which in turn recruits talin to bind and activate integrins. However, it is unclear how RIAM recruits talin and why its close homolog lamellipodin does not. Here, we report that, although RIAM possesses two talin-binding sites (TBS1 and TBS2), only TBS1 is capable of recruiting cytoplasmic talin to the PM, and the R8 domain is the strongest binding site in talin. Crystal structure of an R7R8:TBS1 complex reveals an unexpected kink in the TBS1 helix that is not shared in the homologous region of lamellipodin. This kinked helix conformation is required for the colocalization of RIAM and talin at the PM and proper activation of integrin. Our findings provide the structural and mechanistic insight into talin recruitment by RIAM that underlies integrin activation and explain the differential functions of the otherwise highly homologous RIAM and lamellipodin in integrin signaling.
Collapse
|
35
|
Almahariq M, Chao C, Mei FC, Hellmich MR, Patrikeev I, Motamedi M, Cheng X. Pharmacological inhibition and genetic knockdown of exchange protein directly activated by cAMP 1 reduce pancreatic cancer metastasis in vivo. Mol Pharmacol 2014; 87:142-9. [PMID: 25385424 DOI: 10.1124/mol.114.095158] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
cAMP plays a critical role in regulating migration of various cancers. This role is context dependent and is determined by which of the two main cAMP sensors is at play: cAMP-dependent protein kinase or exchange protein directly activated by cAMP (EPAC). Recently, we have shown that the cAMP sensor protein EPAC1 promotes invasion/migration of pancreatic ductal adenocarcinoma (PDA) in vitro. In this study, we investigated the role of EPAC1 in invasion and metastasis of PDA in vivo, and evaluated the therapeutic potential of EPAC inhibitors as antimetastasis agents for this neoplasm. We employed an orthotopic metastatic mouse model in which the PDA cells MIA PaCa-2 were injected into the pancreas of athymic nude mice, and their local and distant spread was monitored by in vivo imaging and histologic evaluation of the number of metastatic foci in the liver. Either genetic suppression of EPAC1 or its pharmacologic inhibition with 3-(5-tert-butyl-isoxazol-3-yl)-2-[(3-chloro-phenyl)-hydrazono]-3-oxo-propionitrile, an EPAC-specific antagonist recently identified in our laboratory, decreased invasion and metastasis of the PDA cells. Mechanistically, EPAC1 promotes activation and trafficking of integrin β1, which plays an essential role in PDA migration and metastasis. Our data show that EPAC1 facilitates metastasis of PDA cells and EPAC1 might be a potential novel therapeutic target for developing antimetastasis agents for PDA.
Collapse
Affiliation(s)
- Muayad Almahariq
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas (M.A., F.C.M., X.C.); and Departments of Pharmacology and Toxicology (M.A.), Surgery (M.R.H., C.C.), and Ophthalmology and Visual Sciences (I.P., M.M.), University of Texas Medical Branch, Galveston, Texas
| | - Celia Chao
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas (M.A., F.C.M., X.C.); and Departments of Pharmacology and Toxicology (M.A.), Surgery (M.R.H., C.C.), and Ophthalmology and Visual Sciences (I.P., M.M.), University of Texas Medical Branch, Galveston, Texas
| | - Fang C Mei
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas (M.A., F.C.M., X.C.); and Departments of Pharmacology and Toxicology (M.A.), Surgery (M.R.H., C.C.), and Ophthalmology and Visual Sciences (I.P., M.M.), University of Texas Medical Branch, Galveston, Texas
| | - Mark R Hellmich
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas (M.A., F.C.M., X.C.); and Departments of Pharmacology and Toxicology (M.A.), Surgery (M.R.H., C.C.), and Ophthalmology and Visual Sciences (I.P., M.M.), University of Texas Medical Branch, Galveston, Texas
| | - Igor Patrikeev
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas (M.A., F.C.M., X.C.); and Departments of Pharmacology and Toxicology (M.A.), Surgery (M.R.H., C.C.), and Ophthalmology and Visual Sciences (I.P., M.M.), University of Texas Medical Branch, Galveston, Texas
| | - Massoud Motamedi
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas (M.A., F.C.M., X.C.); and Departments of Pharmacology and Toxicology (M.A.), Surgery (M.R.H., C.C.), and Ophthalmology and Visual Sciences (I.P., M.M.), University of Texas Medical Branch, Galveston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas (M.A., F.C.M., X.C.); and Departments of Pharmacology and Toxicology (M.A.), Surgery (M.R.H., C.C.), and Ophthalmology and Visual Sciences (I.P., M.M.), University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
36
|
Tomakidi P, Schulz S, Proksch S, Weber W, Steinberg T. Focal adhesion kinase (FAK) perspectives in mechanobiology: implications for cell behaviour. Cell Tissue Res 2014; 357:515-26. [PMID: 24988914 DOI: 10.1007/s00441-014-1945-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/04/2014] [Indexed: 11/24/2022]
Abstract
Mechanobiology is a scientific interface discipline emerging from engineering and biology. With regard to tissue-regenerative cell-based strategies, mechanobiological concepts, including biomechanics as a target for cell and human mesenchymal stem cell behaviour, are on the march. Based on the periodontium as a paradigm, this mini-review discusses the key role of focal-adhesion kinase (FAK) in mechanobiology, since it is involved in mediating the transformation of environmental biomechanical signals into cell behavioural responses via mechanotransducing signalling cascades. These processes enable cells to adjust quickly to environmental cues, whereas adjustment itself relies on the specific intramolecular phosphorylation of FAK tyrosine residues and the multiple interactions of FAK with distinct partners. Furthermore, interaction-triggered mechanotransducing pathways govern the dynamics of focal adhesion sites and cell behaviour. Facets of behaviour not only include cell spreading and motility, but also proliferation, differentiation and apoptosis. In translational terms, identified and characterized biomechanical parameters can be incorporated into innovative concepts of cell- and tissue-tailored clinically applied biomaterials controlling cell behaviour as desired.
Collapse
Affiliation(s)
- Pascal Tomakidi
- Department of Oral Biotechnology, University Hospital Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany,
| | | | | | | | | |
Collapse
|
37
|
Okada Y, Nishikawa JI, Semma M, Ichikawa A. Role of lipid raft components and actin cytoskeleton in fibronectin-binding, surface expression, and de novo synthesis of integrin subunits in PGE2- or 8-Br-cAMP-stimulated mastocytoma P-815 cells. Biochem Pharmacol 2014; 88:364-71. [PMID: 24518258 DOI: 10.1016/j.bcp.2014.01.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 02/02/2023]
Abstract
Integrins are heterodimeric adhesion receptors essential for adhesion of non-adherent cells to extracellular ligands such as extracellular matrix components. The affinity of integrins for ligands is regulated through a process termed integrin activation and de novo synthesis. Integrin activation is regulated by lipid raft components and the actin structure. However, there is little information on the relationship between integrin activation and its de novo synthesis. Cancerous mouse mast cells, mastocytoma P-815 cells (P-815 cells) are known to bind to fibronectin through de novo synthesis of integrin subtypes by prostaglandin (PG) E2 stimulation. The purpose of this study was to clarify the relationship between lipid raft components and the actin cytoskeleton, and PGE2-induced P-815 cells adhesion to fibronectin and the increase in surface expression and mRNA and protein levels of αvβ3 and αIIbβ3 integrins. Cholesterol inhibitor 6-O-α-maltosyl-β cyclodextrin, glycosylphosphatidylinositol-anchored proteins inhibitor phosphatidylinositol-specific phospholipase C and actin inhibitor cytochalasin D inhibited PGE2-induced cell adhesion to fibronectin, but did not regulate the surface expression and mRNA and protein levels of αv and αIIb, and β3 integrin subunits. In addition, inhibitor of integrin modulate protein CD47 had no effect on PGE2- and 8-Br-cAMP-induced cell adhesion. These results suggest that lipid raft components and the actin cytoskeleton are directly involved in increasing of adhesion activity of integrin αIIb, αv and β3 subunits to fibronectin but not in stimulating of de novo synthesis of them in PGE2-stimulated P-815 cells. The modulation of lipid rafts and the actin structure is essential for P-815 cells adhesion to fibronectin.
Collapse
Affiliation(s)
- Yasuyo Okada
- Department of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Institute for Biosciences, Mukogawa Women's University, 11-68 Koshien-Kyubancho, Nishinomiya-shi, Hyogo 663-8179, Japan
| | - Jyun-ichi Nishikawa
- Department of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Institute for Biosciences, Mukogawa Women's University, 11-68 Koshien-Kyubancho, Nishinomiya-shi, Hyogo 663-8179, Japan
| | - Masanori Semma
- Department of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Institute for Biosciences, Mukogawa Women's University, 11-68 Koshien-Kyubancho, Nishinomiya-shi, Hyogo 663-8179, Japan
| | - Atsushi Ichikawa
- Department of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Institute for Biosciences, Mukogawa Women's University, 11-68 Koshien-Kyubancho, Nishinomiya-shi, Hyogo 663-8179, Japan.
| |
Collapse
|
38
|
Schempp CM, von Schwarzenberg K, Schreiner L, Kubisch R, Müller R, Wagner E, Vollmar AM. V-ATPase inhibition regulates anoikis resistance and metastasis of cancer cells. Mol Cancer Ther 2014; 13:926-37. [PMID: 24482380 DOI: 10.1158/1535-7163.mct-13-0484] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fighting metastasis is a major challenge in cancer therapy and novel therapeutic targets and drugs are highly appreciated. Resistance of invasive cells to anoikis, a particular type of apoptosis induced by loss of cell-matrix contact, is a major prerequisite for their metastatic spread. Inducing anoikis in metastatic cancer cells is therefore a promising therapeutic approach. The vacuolar-ATPase (V-ATPase), a proton pump located at the membrane of acidic organelles, has recently come to focus as an antimetastatic cancer target. As V-ATPase inhibitors have shown to prevent invasion of tumor cells and are able to induce apoptosis, we proposed that V-ATPase inhibition induces anoikis-related pathways in invasive cancer cells. We used the V-ATPase inhibitor archazolid to investigate the mechanism of anoikis induction in various metastatic cancer cells (T24, MDA-MB-231, 4T1, 5637) in vitro. Anoikis induction by archazolid was characterized by decreased c-FLIP expression and caspase-8 activation as well as reduction of active integrin-β1 and an early increase of the proapoptotic protein BIM. However, we observed that archazolid also induces mechanisms opposing anoikis such as degradation of BIM mediated by extracellular signal-regulated kinase (ERK), Akt and Src kinases at later time points and induction of reactive oxygen species. Still, intravenous injection of archazolid-treated 4T1-Luc2 mouse breast cancer cells resulted in reduced metastasis in mouse lungs. Thus, V-ATPase inhibition is not only an interesting option to reduce cancer metastasis, but also to better understand anoikis resistance and to find choices to fight against it.
Collapse
Affiliation(s)
- Christina M Schempp
- Authors' Affiliations: Department of Pharmacy, Pharmaceutical Biology and Department of Pharmacy, Pharmaceutical Biotechnology, University of Munich, Munich; and Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The molecular pathways that regulate megakaryocyte production have historically been identified through multiple candidate gene approaches. Several transcription factors critical for generating megakaryocytes were identified by promoter analysis of megakaryocyte-specific genes, and their biological roles then verified by gene knockout studies; for example, GATA-1, NF-E2, and RUNX1 were identified in this way. In contrast, other transcription factors important for megakaryopoiesis were discovered through a systems approach; for example, c-Myb was found to be critical for the erythroid versus megakaryocyte lineage decision by genome-wide loss-of-function studies. The regulation of the levels of these transcription factors is, for the most part, cell intrinsic, although that assumption has recently been challenged. Epigenetics also impacts megakaryocyte gene expression, mediated by histone acetylation and methylation. Several cytokines have been identified to regulate megakaryocyte survival, proliferation, and differentiation, most prominent of which is thrombopoietin. Upon binding to its receptor, the product of the c-Mpl proto-oncogene, thrombopoietin induces a conformational change that activates a number of secondary messengers that promote cell survival, proliferation, and differentiation, and down-modulate receptor signaling. Among the best studied are the signal transducers and activators of transcription (STAT) proteins; phosphoinositol-3-kinase; mitogen-activated protein kinases; the phosphatases PTEN, SHP1, SHP2, and SHIP1; and the suppressors of cytokine signaling (SOCS) proteins. Additional signals activated by these secondary mediators include mammalian target of rapamycin; β(beta)-catenin; the G proteins Rac1, Rho, and CDC42; several transcription factors, including hypoxia-inducible factor 1α(alpha), the homeobox-containing proteins HOXB4 and HOXA9, and a number of signaling mediators that are reduced, including glycogen synthase kinase 3α(alpha) and the FOXO3 family of forkhead proteins. More recently, systematic interrogation of several aspects of megakaryocyte formation have been conducted, employing genomics, proteomics, and chromatin immunoprecipitation (ChIP) analyses, among others, and have yielded many previously unappreciated signaling mechanisms that regulate megakaryocyte lineage determination, proliferation, and differentiation. This chapter focuses on these pathways in normal and neoplastic megakaryopoiesis, and suggests areas that are ripe for further study.
Collapse
|
40
|
Jahed Z, Shams H, Mehrbod M, Mofrad MRK. Mechanotransduction pathways linking the extracellular matrix to the nucleus. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:171-220. [PMID: 24725427 DOI: 10.1016/b978-0-12-800180-6.00005-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cells contain several mechanosensing components that transduce mechanical signals into biochemical cascades. During cell-ECM adhesion, a complex network of molecules mechanically couples the extracellular matrix (ECM), cytoskeleton, and nucleoskeleton. The network comprises transmembrane receptor proteins and focal adhesions, which link the ECM and cytoskeleton. Additionally, recently identified protein complexes extend this linkage to the nucleus by linking the cytoskeleton and the nucleoskeleton. Despite numerous studies in this field, due to the complexity of this network, our knowledge of the mechanisms of cell-ECM adhesion at the molecular level remains remarkably incomplete. Herein, we present a review of the structures of key molecules involved in cell-ECM adhesion, along with an evaluation of their predicted roles in mechanical sensing. Additionally, specific binding events prompted by force-induced conformational changes of each molecule are discussed. Finally, we propose a model for the biomechanical events prominent in cell-ECM adhesion.
Collapse
Affiliation(s)
- Zeinab Jahed
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA
| | - Hengameh Shams
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA
| | - Mehrdad Mehrbod
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA.
| |
Collapse
|
41
|
Taylor J, Pampillo M, Bhattacharya M, Babwah AV. Kisspeptin/KISS1R signaling potentiates extravillous trophoblast adhesion to type-I collagen in a PKC- and ERK1/2-dependent manner. Mol Reprod Dev 2013; 81:42-54. [PMID: 24273038 DOI: 10.1002/mrd.22279] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/01/2013] [Indexed: 12/16/2022]
Abstract
During the first trimester of human pregnancy, cytotrophoblasts proliferate within the tips of the chorionic villi to form cell columns that anchor the placenta to the uterus. This migration coincides with a widespread change in the adhesion molecule repertoire of these trophoblasts. Kisspeptin and its receptor, KISS1R, are best known as potent triggers of gonadotropin-releasing hormone secretion. The kisspeptin/KISS1R signaling system is also highly expressed in the human placenta, where it was demonstrated to inhibit extra-villous trophoblast (EVT) migration and invasion in vitro. Here we show that kisspeptin, in a dose- and time-dependent manner, induces increased adhesion of human EVTs to type-I collagen, a major component of the human placenta. This increased adhesion was both rapid and transient, suggesting that it likely occurred through the activation of KISS1R secondary effectors such as PKC and ERK, which underwent rapid and transient kisspeptin-dependent activation in EVTs. We then showed that inhibition of both PKC and ERK1/2 attenuated the kisspeptin-dependent increase in EVT adhesion, suggesting that these molecules are key positive regulators of trophoblast adhesion. We therefore propose that kisspeptin/KISS1R signaling potentiates EVT adhesion to type-I collagen via "inside-out signaling." Furthermore, kisspeptin treatment increased mouse blastocyst adhesion to collagen I, suggesting that kisspeptin signaling is a key regulator of trophoblast function during implantation as well as early placentation.
Collapse
Affiliation(s)
- Jay Taylor
- The Children's Health Research Institute, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
42
|
Chang YN, Guo H, Li J, Song Y, Zhang M, Jin J, Xing G, Zhao Y. Adjusting the balance between effective loading and vector migration of macrophage vehicles to deliver nanoparticles. PLoS One 2013; 8:e76024. [PMID: 24116086 PMCID: PMC3792996 DOI: 10.1371/journal.pone.0076024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/22/2013] [Indexed: 11/18/2022] Open
Abstract
The nature of macrophage allows the possibility that this cell type could be used as drug delivery system to track therapeutic drug nanoparticles (NPs) in cancer. However, there is no existing research on the regulation between effective loading of NPs and targeted delivery of macrophages. Here, we investigated the important parameters of intracellular NP quantity and the vector migration rate. Macrophage loading capacity was obtained by comparing the uptake quantity of varisized NPs, and the delivery ability of loaded cells was determined by measuring vector migration rates. We observed a positive correlation between the size of NPs and directed macrophage migration. Our findings suggest that the molecular mechanism of migration vector rate regulation involved increased expression levels of colony-stimulating factor-1 (CSF-1) receptor and integrin induced by 100-nm and 500-nm particles. The ability of macrophages uptake to varisized NPs showed the opposite trend, with the increased vector rate of cell migration influenced by NPs. We are able to demonstrate the important balance between effective macrophage loading and targeted delivery. By adjusting the balance parameters, it will be possible to utilize NPs in macrophage-mediated disease diagnosis and therapy.
Collapse
Affiliation(s)
- Ya-Nan Chang
- Chinese Academy of Science Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science, Beijing, China
| | - Haili Guo
- Chinese Academy of Science Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science, Beijing, China
| | - Juan Li
- Chinese Academy of Science Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science, Beijing, China
| | - Yan Song
- Chinese Academy of Science Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science, Beijing, China
| | - Mingyi Zhang
- Chinese Academy of Science Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science, Beijing, China
| | - Junjiang Jin
- Chinese Academy of Science Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science, Beijing, China
| | - Gengmei Xing
- Chinese Academy of Science Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science, Beijing, China
- * E-mail: (GX); (YZ)
| | - Yuliang Zhao
- Chinese Academy of Science Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science, Beijing, China
- Chinese Academy of Science Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, China
- * E-mail: (GX); (YZ)
| |
Collapse
|
43
|
Norton J, Cooley J, Islam AFMT, Cota CD, Davidson B. Matrix adhesion polarizes heart progenitor induction in the invertebrate chordate Ciona intestinalis. Development 2013; 140:1301-11. [PMID: 23444358 DOI: 10.1242/dev.085548] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cell-matrix adhesion strongly influences developmental signaling. Resulting impacts on cell migration and tissue morphogenesis are well characterized. However, the in vivo impact of adhesion on fate induction remains ambiguous. Here, we employ the invertebrate chordate Ciona intestinalis to delineate an essential in vivo role for matrix adhesion in heart progenitor induction. In Ciona pre-cardiac founder cells, invasion of the underlying epidermis promotes localized induction of the heart progenitor lineage. We found that these epidermal invasions are associated with matrix adhesion along the pre-cardiac cell/epidermal boundary. Through targeted manipulations of RAP GTPase activity, we were able to manipulate pre-cardiac cell-matrix adhesion. Targeted disruption of pre-cardiac cell-matrix adhesion blocked heart progenitor induction. Conversely, increased matrix adhesion generated expanded induction. We were also able to selectively restore cell-matrix adhesion and heart progenitor induction through targeted expression of Ci-Integrin β2. These results indicate that matrix adhesion functions as a necessary and sufficient extrinsic cue for regional heart progenitor induction. Furthermore, time-lapse imaging suggests that cytokinesis acts as an intrinsic temporal regulator of heart progenitor adhesion and induction. Our findings highlight a potentially conserved role for matrix adhesion in early steps of vertebrate heart progenitor specification.
Collapse
Affiliation(s)
- Jennifer Norton
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
44
|
Yue J, Pan Y, Sun L, Zhang K, Liu J, Lu L, Chen J. The unique disulfide bond-stabilized W1 β4-β1 loop in the α4 β-propeller domain regulates integrin α4β7 affinity and signaling. J Biol Chem 2013; 288:14228-14237. [PMID: 23553626 DOI: 10.1074/jbc.m113.462630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin α4β7 mediates rolling and firm adhesion of lymphocytes pre- and post-activation, which is distinct from most integrins only mediating firm cell adhesion upon activation. This two-phase cell adhesion suggests a unique molecular basis for the dynamic interaction of α4β7 with its ligand, mucosal addressin cell adhesion molecule 1 (MAdCAM-1). Here we report that a disulfide bond-stabilized W1 β4-β1 loop in α4 β-propeller domain plays critical roles in regulating integrin α4β7 affinity and signaling. Either breaking the disulfide bond or deleting the disulfide bond-occluded segment in the W1 β4-β1 loop inhibited rolling cell adhesion supported by the low-affinity interaction between MAdCAM-1 and inactive α4β7 but negligibly affected firm cell adhesion supported by the high-affinity interaction between MAdCAM-1 and Mn(2+)-activated α4β7. Additionally, disrupting the disulfide bond or deleting the disulfide bond-occluded segment not only blocked the conformational change and activation of α4β7 triggered by talin or phorbol-12-myristate-13-acetate via inside-out signaling but also disrupted integrin-mediated outside-in signaling and impaired phosphorylation of focal adhesion kinase and paxillin. Thus, these findings reveal a particular molecular basis for α4β7-mediated rolling cell adhesion and a novel regulatory element of integrin affinity and signaling.
Collapse
Affiliation(s)
- Jiao Yue
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - YouDong Pan
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - LiFang Sun
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kun Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jie Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ling Lu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - JianFeng Chen
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
45
|
Widgerow AD. Chronic wounds - is cellular 'reception' at fault? Examining integrins and intracellular signalling. Int Wound J 2013; 10:185-92. [PMID: 22494436 PMCID: PMC7950432 DOI: 10.1111/j.1742-481x.2012.00967.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
As with all physiologic processes, chronic wounds are associated with unique intracellular and cellular/extracellular matrix (ECM) receptor types and signalling messages. These cellular receptors mediate responses of the epidermis to provisional wound matrix and change in form and number in cases of impaired wound healing. Integrins are the major cell-surface receptors for cell adhesion and migration and epidermal keratinocytes express several integrins that bind ECM ligands in provisional wound ECM. Integrin receptors and more particularly integrin clusters and focal adhesion points appear to influence epidermal and dermal cell matrix interactions, cell motility, cell phenotype and ultimate healing trajectory. In chronic wounds, a variety of changes in receptors have been identified: decreased integrin α5β1 receptors affect the integration of fibronectin and subsequent keratinocyte migration; integrin αvβ6 stimulate transforming growth factor (TGF)-β and may increase the susceptibility to ulceration and fibrosis; however, TGF-β signal receptors have been found to be dysfunctional in many chronic wounds; additionally receptor interactions result in increased senescent cells including fibroblasts, myofibroblasts and even keratinocytes - this produces a degradative ECM and wound bed and corrosive chronic wound fluid. The activation or inhibition of integrin receptors by various agents may provide an excellent means of influencing wound healing. This process offers an earlier intervention into the wound healing cascade promoting intrinsic healing and elaboration of growth factors and ECM proteins, which may be more cost effective than the traditional attempts at extrinsic addition of these agents.
Collapse
Affiliation(s)
- Alan D Widgerow
- Faculty of Health Sciences, Plastic Surgery Department, University of the Witwatersrand, Johannnesburg, South Africa and Adar science Inc., Irvine, CA, USA.
| |
Collapse
|
46
|
Localized lipid packing of transmembrane domains impedes integrin clustering. PLoS Comput Biol 2013; 9:e1002948. [PMID: 23516344 PMCID: PMC3597534 DOI: 10.1371/journal.pcbi.1002948] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 01/11/2013] [Indexed: 12/12/2022] Open
Abstract
Integrin clustering plays a pivotal role in a host of cell functions. Hetero-dimeric integrin adhesion receptors regulate cell migration, survival, and differentiation by communicating signals bidirectionally across the plasma membrane. Thus far, crystallographic structures of integrin components are solved only separately, and for some integrin types. Also, the sequence of interactions that leads to signal transduction remains ambiguous. Particularly, it remains controversial whether the homo-dimerization of integrin transmembrane domains occurs following the integrin activation (i.e. when integrin ectodomain is stretched out) or if it regulates integrin clustering. This study employs molecular dynamics modeling approaches to address these questions in molecular details and sheds light on the crucial effect of the plasma membrane. Conducting a normal mode analysis of the intact αllbβ3 integrin, it is demonstrated that the ectodomain and transmembrane-cytoplasmic domains are connected via a membrane-proximal hinge region, thus merely transmembrane-cytoplasmic domains are modeled. By measuring the free energy change and force required to form integrin homo-oligomers, this study suggests that the β-subunit homo-oligomerization potentially regulates integrin clustering, as opposed to α-subunit, which appears to be a poor regulator for the clustering process. If α-subunits are to regulate the clustering they should overcome a high-energy barrier formed by a stable lipid pack around them. Finally, an outside-in activation-clustering scenario is speculated, explaining how further loading the already-active integrin affects its homo-oligomerization so that focal adhesions grow in size. Focal adhesions are complex, dynamic structures of multiple proteins that act as the cell's mechanical anchorage to its surrounding. Integrins are proteins linking the cell inner and outer environments, which act as a bridge that crosses the cell membrane. Integrins respond to mechanical loads exerted to them by changing their conformations. Several diseases, such as atherosclerosis and different types of cancer, are caused by altered function of integrins. Essential to the formation of focal adhesions is the process of integrin clustering. Bidirectional integrin signaling involves conformational changes in this protein, clustering, and finally the assembly of a large intracellular adhesion complex. Integrin clustering is defined as the interaction of integrins to form lateral assemblies that eventually lead to focal adhesion formation. The effect of the plasma membrane on formation of integrin clusters has been largely neglected in current literature; subsequently some apparently contradictory data has been reported by a number of researchers in the field. Using a molecular dynamics modeling approach, a computational method that simulates systems in a full-atomic scale, we probe the role of the plasma membrane in integrin clustering and hypothesize a clustering scenario that explains the relationship between integrin activation and focal adhesion growth.
Collapse
|
47
|
A spatial model for integrin clustering as a result of feedback between integrin activation and integrin binding. Biophys J 2013; 103:1379-89. [PMID: 22995511 DOI: 10.1016/j.bpj.2012.08.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 07/19/2012] [Accepted: 08/01/2012] [Indexed: 12/16/2022] Open
Abstract
Integrins are transmembrane adhesion receptors that bind extracellular matrix (ECM) proteins and signal bidirectionally to regulate cell adhesion and migration. In many cell types, integrins cluster at cell-ECM contacts to create the foundation for adhesion complexes that transfer force between the cell and the ECM. Even though the temporal and spatial regulation of these integrin clusters is essential for cell migration, how cells regulate their formation is currently unknown. It has been shown that integrin cluster formation is independent of actin stress fiber formation, but requires active (high-affinity) integrins, phosphoinositol-4,5-bisphosphate (PIP2), talin, and immobile ECM ligand. Based on these observations, we propose a minimal model for initial formation of integrin clusters, facilitated by localized activation and binding of integrins to ECM ligands as a result of biochemical feedback between integrin binding and integrin activation. By employing a diffusion-reaction framework for modeling these reactions, we show how spatial organization of bound integrins into clusters may be achieved by a local source of active integrins, namely protein complexes formed on the cytoplasmic tails of bound integrins. Further, we show how such a mechanism can turn small local increases in the concentration of active talin or active integrin into integrin clusters via positive feedback. Our results suggest that the formation of integrin clusters by the proposed mechanism depends on the relationships between production and diffusion of integrin-activating species, and that changes to the relative rates of these processes may affect the resulting properties of integrin clusters.
Collapse
|
48
|
Association study of integrins beta 1 and beta 2 gene polymorphism and papillary thyroid cancer. Am J Surg 2013; 205:631-5. [PMID: 23388428 DOI: 10.1016/j.amjsurg.2012.05.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 04/24/2012] [Accepted: 05/10/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND We investigated whether single nucleotide polymorphisms (SNPs) of integrin beta 1 (ITGB1) and integrin beta 2 (ITGB2) contribute to the development of papillary thyroid cancer (PTC). METHODS Two synonymous SNPs (rs2230396 and rs2298141) of ITGB1 and 1 synonymous SNP (rs2352326), 1 5' URT-region SNP (rs2070947), and 1 promoter SNP (rs2070946) of ITGB2 SNPs were genotyped using direct sequencing in 94 patients with PTC and 213 healthy controls. Genetic data were analyzed using SNPStats (http://bioinfo.iconcologia.net/SNPstats), Helix Tree (Golden Helix Inc, Bozeman, MT), and SNPAnalyzer (ISTECH Corp, Goyang City, Republic of Korea). RESULTS The promoter SNP (rs2070946) of ITGB2 was significantly associated with the development of PTC (dominant model, log-additive model). The G allele frequencies of the promoter SNP (rs2070946) of ITBG2 in patients with PTC (19.9%) were increased by about 2-fold compared with controls (10.2%). CONCLUSIONS Our results suggest that a promoter SNP (rs2070946) of ITGB2 might be associated with a risk of PTC.
Collapse
|
49
|
Zhang K, Pan Y, Qi J, Yue J, Zhang M, Xu C, Li G, Chen J. Disruption of disulfide-restriction at integrin knees induces activation and ligand-independent signaling of α4β7. J Cell Sci 2013; 126:5030-41. [DOI: 10.1242/jcs.134528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Control of integrin activation and signaling plays critical roles in cell adhesion, spreading, and migration. Here, we report that selective breakage of two conserved disulfide bonds located at the knees of integrin, α4C589–C594 and β7C494–C526, induced α4β7 activation. This activated α4β7 had a unique structure different from the typical extended conformation of active integrin. In addition, these activated α4β7 integrins spontaneously clustered on the cell membrane and triggered integrin downstream signaling independent of ligand binding. Although these disulfide bonds were not broken during α4β7 activation by inside-out signaling or Mn2+, they could be specifically reduced by 0.1 mM dithiothreitol, a reducing strength that could be produced in vivo under certain conditions. Our findings reveal a novel mechanism of integrin activation under specific reducing conditions by which integrin can signal and promote cell spreading in the absence of ligand.
Collapse
|
50
|
Mischnik M, Boyanova D, Hubertus K, Geiger J, Philippi N, Dittrich M, Wangorsch G, Timmer J, Dandekar T. A Boolean view separates platelet activatory and inhibitory signalling as verified by phosphorylation monitoring including threshold behaviour and integrin modulation. MOLECULAR BIOSYSTEMS 2013; 9:1326-39. [DOI: 10.1039/c3mb25597b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|