1
|
Li Y, Kocot KM, Tassia MG, Cannon JT, Bernt M, Halanych KM. Mitogenomics Reveals a Novel Genetic Code in Hemichordata. Genome Biol Evol 2019; 11:29-40. [PMID: 30476024 PMCID: PMC6319601 DOI: 10.1093/gbe/evy254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2018] [Indexed: 01/26/2023] Open
Abstract
The diverse array of codon reassignments demonstrate that the genetic code is not universal in nature. Exploring mechanisms underlying codon reassignment is critical for understanding the evolution of the genetic code during translation. Hemichordata, comprising worm-like Enteropneusta and colonial filter-feeding Pterobranchia, is the sister taxon of echinoderms and is more distantly related to chordates. However, only a few hemichordate mitochondrial genomes have been sequenced, hindering our understanding of mitochondrial genome evolution within Deuterostomia. In this study, we sequenced four mitochondrial genomes and two transcriptomes, including representatives of both major hemichordate lineages and analyzed together with public available data. Contrary to the current understanding of the mitochondrial genetic code in hemichordates, our comparative analyses suggest that UAA encodes Tyr instead of a "Stop" codon in the pterobranch lineage Cephalodiscidae. We also predict that AAA encodes Lys in pterobranch and enteropneust mitochondrial genomes, contradicting the previous assumption that hemichordates share the same genetic code with echinoderms for which AAA encodes Asn. Thus, we propose a new mitochondrial genetic code for Cephalodiscus and a revised code for enteropneusts. Moreover, our phylogenetic analyses are largely consistent with previous phylogenomic studies. The only exception is the phylogenetic position of the enteropneust Stereobalanus, whose placement as sister to all other described enteropneusts. With broader taxonomic sampling, we provide evidence that evolution of mitochondrial gene order and genetic codes in Hemichordata are more dynamic than previously thought and these findings provide insights into mitochondrial genome evolution within this clade.
Collapse
Affiliation(s)
- Yuanning Li
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University
| | - Kevin M Kocot
- Department of Biological Sciences & Alabama Museum of Natural History, The University of Alabama
| | - Michael G Tassia
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University
| | - Johanna T Cannon
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara
| | - Matthias Bernt
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Kenneth M Halanych
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University
| |
Collapse
|
2
|
Dalla Rosa I, Zhang H, Khiati S, Wu X, Pommier Y. Transcription profiling suggests that mitochondrial topoisomerase IB acts as a topological barrier and regulator of mitochondrial DNA transcription. J Biol Chem 2017; 292:20162-20172. [PMID: 29021209 DOI: 10.1074/jbc.m117.815241] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/01/2017] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial DNA (mtDNA) is essential for cell viability because it encodes subunits of the respiratory chain complexes. Mitochondrial topoisomerase IB (TOP1MT) facilitates mtDNA replication by removing DNA topological tensions produced during mtDNA transcription, but it appears to be dispensable. To test whether cells lacking TOP1MT have aberrant mtDNA transcription, we performed mitochondrial transcriptome profiling. To that end, we designed and implemented a customized tiling array, which enabled genome-wide, strand-specific, and simultaneous detection of all mitochondrial transcripts. Our technique revealed that Top1mt KO mouse cells process the mitochondrial transcripts normally but that protein-coding mitochondrial transcripts are elevated. Moreover, we found discrete long noncoding RNAs produced by H-strand transcription and encompassing the noncoding regulatory region of mtDNA in human and murine cells and tissues. Of note, these noncoding RNAs were strongly up-regulated in the absence of TOP1MT. In contrast, 7S DNA, produced by mtDNA replication, was reduced in the Top1mt KO cells. We propose that the long noncoding RNA species in the D-loop region are generated by the extension of H-strand transcripts beyond their canonical stop site and that TOP1MT acts as a topological barrier and regulator for mtDNA transcription and D-loop formation.
Collapse
Affiliation(s)
- Ilaria Dalla Rosa
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Hongliang Zhang
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Salim Khiati
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Xiaolin Wu
- Laboratory of Molecular Technology, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
3
|
Polyadenylation and degradation of RNA in the mitochondria. Biochem Soc Trans 2017; 44:1475-1482. [PMID: 27911729 DOI: 10.1042/bst20160126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 12/20/2022]
Abstract
Mitochondria have their own gene expression machinery and the relative abundance of RNA products in these organelles in animals is mostly dictated by their rate of degradation. The molecular mechanisms regulating the differential accumulation of the transcripts in this organelle remain largely elusive. Here, we summarize the present knowledge of how RNA is degraded in human mitochondria and describe the coexistence of stable poly(A) tails and the nonabundant tails, which have been suggested to play a role in the RNA degradation process.
Collapse
|
4
|
Feaga HA, Quickel MD, Hankey-Giblin PA, Keiler KC. Human Cells Require Non-stop Ribosome Rescue Activity in Mitochondria. PLoS Genet 2016; 12:e1005964. [PMID: 27029019 PMCID: PMC4814080 DOI: 10.1371/journal.pgen.1005964] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/07/2016] [Indexed: 12/04/2022] Open
Abstract
Bacteria use trans-translation and the alternative rescue factors ArfA (P36675) and ArfB (Q9A8Y3) to hydrolyze peptidyl-tRNA on ribosomes that stall near the 3' end of an mRNA during protein synthesis. The eukaryotic protein ICT1 (Q14197) is homologous to ArfB. In vitro ribosome rescue assays of human ICT1 and Caulobacter crescentus ArfB showed that these proteins have the same activity and substrate specificity. Both ArfB and ICT1 hydrolyze peptidyl-tRNA on nonstop ribosomes or ribosomes stalled with ≤6 nucleotides extending past the A site, but are unable to hydrolyze peptidyl-tRNA when the mRNA extends ≥14 nucleotides past the A site. ICT1 provided sufficient ribosome rescue activity to support viability in C. crescentus cells that lacked both trans-translation and ArfB. Likewise, expression of ArfB protected human cells from death when ICT1 was silenced with siRNA. These data indicate that ArfB and ICT1 are functionally interchangeable, and demonstrate that ICT1 is a ribosome rescue factor. Because ICT1 is essential in human cells, these results suggest that ribosome rescue activity in mitochondria is required in humans. Ribosomes can stall during protein synthesis on truncated or damaged mRNAs that lack a stop codon. In bacteria, these “non-stop” ribosomes are rescued by trans-translation or by an alternative rescue factor, ArfA or ArfB. Most eukaryotes do not have trans-translation, but mammals have a homolog of ArfB named ICT1. ICT1 is targeted to mitochondria, and is essential in human cells. Here, we show that human ICT1 and ArfB from the bacterium Caulobacter crescentus have the same biochemical activity and specificity. We also demonstrate that ICT1 and ArfB are functionally interchangeable in both bacteria and human cells. Collectively, this work demonstrates a new essential function in human cells—rescue of mitochondrial non-stop translation complexes.
Collapse
Affiliation(s)
- Heather A. Feaga
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Michael D. Quickel
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Pamela A. Hankey-Giblin
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kenneth C. Keiler
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
5
|
Fiedler M, Rossmanith W, Wahle E, Rammelt C. Mitochondrial poly(A) polymerase is involved in tRNA repair. Nucleic Acids Res 2015; 43:9937-49. [PMID: 26354863 PMCID: PMC4787750 DOI: 10.1093/nar/gkv891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/26/2015] [Indexed: 11/12/2022] Open
Abstract
Transcription of the mitochondrial genome results in polycistronic precursors, which are processed mainly by the release of tRNAs interspersed between rRNAs and mRNAs. In many metazoan mitochondrial genomes some tRNA genes overlap with downstream genes; in the case of human mitochondria the genes for tRNATyr and tRNACys overlap by one nucleotide. It has previously been shown that processing of the common precursor releases an incomplete tRNATyr lacking the 3′-adenosine. The 3′-terminal adenosine has to be added before addition of the CCA end and subsequent aminoacylation. We show that the mitochondrial poly(A) polymerase (mtPAP) is responsible for this A addition. In vitro, a tRNATyr lacking the discriminator is a substrate for mtPAP. In vivo, an altered mtPAP protein level affected tRNATyr maturation, as shown by sequencing the 3′ ends of mitochondrial tRNAs. Complete repair could be reconstituted in vitro with three enzymes: mtPAP frequently added more than one A to the 3′ end of the truncated tRNA, and either the mitochondrial deadenylase PDE12 or the endonuclease RNase Z trimmed the oligo(A) tail to a single A before CCA addition. An enzyme machinery that evolved primarily for other purposes thus allows to tolerate the frequent evolutionary occurrence of gene overlaps.
Collapse
Affiliation(s)
- Mario Fiedler
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Christiane Rammelt
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| |
Collapse
|
6
|
Kyriakou E, Chatzoglou E, Zouros E, Rodakis GC. The rRNA and tRNA transcripts of maternally and paternally inherited mitochondrial DNAs of Mytilus galloprovincialis suggest presence of a "degradosome" in mussel mitochondria and necessitate the re-annotation of the l-rRNA/CR boundary. Gene 2014; 540:78-85. [PMID: 24561285 DOI: 10.1016/j.gene.2014.01.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/15/2014] [Accepted: 01/21/2014] [Indexed: 11/24/2022]
Abstract
Species of the genus Mytilus carry two mitochondrial genomes in obligatory coexistence; one transmitted though the eggs (the F type) and one through the sperm (the M type). We have studied the 3' and 5' ends of rRNA and tRNA transcripts using RT-PCR and RNA circularization techniques in both the F and M genomes of Mytilus galloprovincialis. We have found polyadenylated and non-adenylated transcripts for both ribosomal and transfer RNAs. In all these genes the 5' ends of the transcripts coincided with the first nucleotide of the annotated genes, but the 3' ends were heterogeneous. The l-rRNA 3' end is 47 or 48 nucleotides upstream from the one assigned by a previous annotation, which makes the adjacent first domain (variable domain one, VD1) of the main control region (CR) correspondingly longer. We have observed s-rRNA and l-rRNA transcripts with truncated 3' end and polyadenylated tRNA transcripts carrying the CCA trinucleotide. We have also detected polyadenylated RNA remnants carrying the sequences of the control region, which strongly suggests RNA degradation activity and thus presence of degradosomes in Mytilus mitochondria.
Collapse
Affiliation(s)
- Eleni Kyriakou
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15701 Athens, Greece
| | - Evanthia Chatzoglou
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15701 Athens, Greece
| | - Eleftherios Zouros
- Department of Biology, University of Crete, 71409 Heraklion, Crete, Greece
| | - George C Rodakis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15701 Athens, Greece.
| |
Collapse
|
7
|
Rorbach J, Bobrowicz A, Pearce S, Minczuk M. Polyadenylation in bacteria and organelles. Methods Mol Biol 2014; 1125:211-27. [PMID: 24590792 DOI: 10.1007/978-1-62703-971-0_18] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Polyadenylation is a posttranscriptional modification present throughout all the kingdoms of life with important roles in regulation of RNA stability, translation, and quality control. Functions of polyadenylation in prokaryotic and organellar RNA metabolism are still not fully characterized, and poly(A) tails appear to play contrasting roles in different systems. Here we present a general overview of the polyadenylation process and the factors involved in its regulation, with an emphasis on the diverse functions of 3' end modification in the control of gene expression in different biological systems.
Collapse
Affiliation(s)
- Joanna Rorbach
- Mitochondrial Genetics Group, MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK,
| | | | | | | |
Collapse
|
8
|
Transcriptome sequencing and de novo annotation of the critically endangered Adriatic sturgeon. BMC Genomics 2013; 14:407. [PMID: 23773438 PMCID: PMC3691660 DOI: 10.1186/1471-2164-14-407] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 06/04/2013] [Indexed: 12/14/2022] Open
Abstract
Background Sturgeons are a group of Condrostean fish with very high evolutionary, economical and conservation interest. The eggs of these living fossils represent one of the most high prized foods of animal origin. The intense fishing pressure on wild stocks to harvest caviar has caused in the last decades a dramatic decline of their distribution and abundance leading the International Union for Conservation of Nature to list them as the more endangered group of species. As a direct consequence, world-wide efforts have been made to develop sturgeon aquaculture programmes for caviar production. In this context, the characterization of the genes involved in sex determination could provide relevant information for the selective farming of the more profitable females. Results The 454 sequencing of two cDNA libraries from the gonads and brain of one male and one female full-sib A. naccarii, yielded 182,066 and 167,776 reads respectively, which, after strict quality control, were iterative assembled into more than 55,000 high quality ESTs. The average per-base coverage reached by assembling the two libraries was 4X. The multi-step annotation process resulted in 16% successfully annotated sequences with GO terms. We screened the transcriptome for 32 sex-related genes and highlighted 7 genes that are potentially specifically expressed, 5 in male and 2 in females, at the first life stage at which sex is histologically identifiable. In addition we identified 21,791 putative EST-linked SNPs and 5,295 SSRs. Conclusions This study represents the first large massive release of sturgeon transcriptome information that we organized into the public database AnaccariiBase, which is freely available at http://compgen.bio.unipd.it/anaccariibase/. This transcriptomic data represents an important source of information for further studies on sturgeon species. The hundreds of putative EST-linked molecular makers discovered in this study will be invaluable for sturgeon reintroduction and breeding programs.
Collapse
|
9
|
Bernt M, Braband A, Schierwater B, Stadler PF. Genetic aspects of mitochondrial genome evolution. Mol Phylogenet Evol 2012; 69:328-38. [PMID: 23142697 DOI: 10.1016/j.ympev.2012.10.020] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 10/20/2012] [Accepted: 10/22/2012] [Indexed: 11/30/2022]
Abstract
Many years of extensive studies of metazoan mitochondrial genomes have established differences in gene arrangements and genetic codes as valuable phylogenetic markers. Understanding the underlying mechanisms of replication, transcription and the role of the control regions which cause e.g. different gene orders is important to assess the phylogenetic signal of such events. This review summarises and discusses, for the Metazoa, the general aspects of mitochondrial transcription and replication with respect to control regions as well as several proposed models of gene rearrangements. As whole genome sequencing projects accumulate, more and more observations about mitochondrial gene transfer to the nucleus are reported. Thus occurrence and phylogenetic aspects concerning nuclear mitochondrial-like sequences (NUMTS) is another aspect of this review.
Collapse
Affiliation(s)
- Matthias Bernt
- Parallel Computing and Complex Systems Group, Department of Computer Science, University of Leipzig, Augustusplatz 10, D-04109 Leipzig, Germany.
| | | | | | | |
Collapse
|
10
|
Read-through therapy for mitochondrial DNA nonsense mutations. Drug Discov Today 2012; 17:1063-7. [DOI: 10.1016/j.drudis.2012.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/27/2012] [Accepted: 04/23/2012] [Indexed: 12/11/2022]
|
11
|
Chang JH, Tong L. Mitochondrial poly(A) polymerase and polyadenylation. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1819:992-7. [PMID: 22172994 PMCID: PMC3307840 DOI: 10.1016/j.bbagrm.2011.10.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/25/2011] [Accepted: 10/27/2011] [Indexed: 01/22/2023]
Abstract
Polyadenylation of mitochondrial RNAs in higher eukaryotic organisms have diverse effects on their function and metabolism. Polyadenylation completes the UAA stop codon of a majority of mitochondrial mRNAs in mammals, regulates the translation of the mRNAs, and has diverse effects on their stability. In contrast, polyadenylation of most mitochondrial mRNAs in plants leads to their degradation, consistent with the bacterial origin of this organelle. PAPD1 (mtPAP, TUTase1), a noncanonical poly(A) polymerase (ncPAP), is responsible for producing the poly(A) tails in mammalian mitochondria. The crystal structure of human PAPD1 was reported recently, offering molecular insights into its catalysis. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Jeong Ho Chang
- Department of Biological Sciences, Columbia University, New York, NY10027, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY10027, USA
| |
Collapse
|
12
|
Rackham O, Mercer TR, Filipovska A. The human mitochondrial transcriptome and the RNA-binding proteins that regulate its expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:675-95. [DOI: 10.1002/wrna.1128] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Mohanty BK, Kushner SR. Bacterial/archaeal/organellar polyadenylation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 2:256-76. [PMID: 21344039 DOI: 10.1002/wrna.51] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although the first poly(A) polymerase (PAP) was discovered in Escherichia coli in 1962, the study of polyadenylation in bacteria was largely ignored for the next 30 years. However, with the identification of the structural gene for E. coli PAP I in 1992, it became possible to analyze polyadenylation using both biochemical and genetic approaches. Subsequently, it has been shown that polyadenylation plays a multifunctional role in prokaryotic RNA metabolism. Although the bulk of our current understanding of prokaryotic polyadenylation comes from studies on E. coli, recent limited experiments with Cyanobacteria, organelles, and Archaea have widened our view on the diversity, complexity, and universality of the polyadenylation process. For example, the identification of polynucleotide phosphorylase (PNPase), a reversible phosphorolytic enzyme that is highly conserved in bacteria, as an additional PAP in E. coli caught everyone by surprise. In fact, PNPase has now been shown to be the source of post-transcriptional RNA modifications in a wide range of cells of prokaryotic origin including those that lack a eubacterial PAP homolog. Accordingly, the past few years have witnessed increased interest in the mechanism and role of post-transcriptional modifications in all species of prokaryotic origin. However, the fact that many of the poly(A) tails are very short and unstable as well as the presence of polynucleotide tails has posed significant technical challenges to the scientific community trying to unravel the mystery of polyadenylation in prokaryotes. This review discusses the current state of knowledge regarding polyadenylation and its functions in bacteria, organelles, and Archaea.
Collapse
Affiliation(s)
- Bijoy K Mohanty
- Department of Genetics, University of Georgia, Athens, GA 30605, USA
| | | |
Collapse
|
14
|
The human Suv3 helicase interacts with replication protein A and flap endonuclease 1 in the nucleus. Biochem J 2012; 440:293-300. [PMID: 21846330 DOI: 10.1042/bj20100991] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The hSuv3 (human Suv3) helicase has been shown to be a major player in mitochondrial RNA surveillance and decay, but its physiological role might go beyond this functional niche. hSuv3 has been found to interact with BLM (Bloom's syndrome protein) and WRN (Werner's syndrome protein), members of the RecQ helicase family involved in multiple DNA metabolic processes, and in protection and stabilization of the genome. In the present study, we have addressed the possible role of hSuv3 in genome maintenance by examining its potential association with key interaction partners of the RecQ helicases. By analysis of hSuv3 co-IP (co-immunoprecipitation) complexes, we identify two new interaction partners of hSuv3: the RPA (replication protein A) and FEN1 (flap endonuclease 1). Utilizing an in vitro biochemical assay we find that low amounts of RPA inhibit helicase activity of hSuv3 on a forked substrate. Another single-strand-binding protein, mtSSB (mitochondrial single-strand-binding protein), fails to affect hSuv3 activity, indicating that the functional interaction is specific for hSuv3 and RPA. Further in vitro studies demonstrate that the flap endonuclease activity of FEN1 is stimulated by hSuv3 independently of flap length. hSuv3 is generally thought to be a mitochondrial helicase, but the physical and functional interactions between hSuv3 and known RecQ helicase-associated proteins strengthen the hypothesis that hSuv3 may play a significant role in nuclear DNA metabolism as well.
Collapse
|
15
|
Szczesny RJ, Borowski LS, Malecki M, Wojcik MA, Stepien PP, Golik P. RNA degradation in yeast and human mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:1027-34. [PMID: 22178375 DOI: 10.1016/j.bbagrm.2011.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 01/23/2023]
Abstract
Expression of mitochondrially encoded genes must be finely tuned according to the cell's requirements. Since yeast and human mitochondria have limited possibilities to regulate gene expression by altering the transcription initiation rate, posttranscriptional processes, including RNA degradation, are of great importance. In both organisms mitochondrial RNA degradation seems to be mostly depending on the RNA helicase Suv3. Yeast Suv3 functions in cooperation with Dss1 ribonuclease by forming a two-subunit complex called the mitochondrial degradosome. The human ortholog of Suv3 (hSuv3, hSuv3p, SUPV3L1) is also indispensable for mitochondrial RNA decay but its ribonucleolytic partner has so far escaped identification. In this review we summarize the current knowledge about RNA degradation in human and yeast mitochondria. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Roman J Szczesny
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
16
|
Rackham O, Filipovska A. The role of mammalian PPR domain proteins in the regulation of mitochondrial gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:1008-16. [PMID: 22051507 DOI: 10.1016/j.bbagrm.2011.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/14/2011] [Accepted: 10/17/2011] [Indexed: 12/26/2022]
Abstract
Pentatricopeptide repeat (PPR) domain proteins are a large family of RNA-binding proteins that are involved in the maturation and translation of organelle transcripts in eukaryotes. They were first identified in plant organelles and their important role in mammalian mitochondrial gene regulation is now emerging. Mammalian PPR proteins, like their plant counterparts, have diverse roles in mitochondrial transcription, RNA metabolism and translation and consequently are important for mitochondrial function and cell health. Here we discuss the current knowledge about the seven mammalian PPR proteins identified to date and their roles in the regulation of mitochondrial gene expression. Furthermore we discuss the mitochondrial RNA targets of the mammalian PPR proteins and methods to investigate the RNA targets of these mitochondrial RNA-binding proteins. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Oliver Rackham
- Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA 6000, Australia
| | | |
Collapse
|
17
|
Bratic A, Wredenberg A, Grönke S, Stewart JB, Mourier A, Ruzzenente B, Kukat C, Wibom R, Habermann B, Partridge L, Larsson NG. The bicoid stability factor controls polyadenylation and expression of specific mitochondrial mRNAs in Drosophila melanogaster. PLoS Genet 2011; 7:e1002324. [PMID: 22022283 PMCID: PMC3192837 DOI: 10.1371/journal.pgen.1002324] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 08/04/2011] [Indexed: 11/18/2022] Open
Abstract
The bicoid stability factor (BSF) of Drosophila melanogaster has been reported to be present in the cytoplasm, where it stabilizes the maternally contributed bicoid mRNA and binds mRNAs expressed from early zygotic genes. BSF may also have other roles, as it is ubiquitously expressed and essential for survival of adult flies. We have performed immunofluorescence and cell fractionation analyses and show here that BSF is mainly a mitochondrial protein. We studied two independent RNAi knockdown fly lines and report that reduced BSF protein levels lead to a severe respiratory deficiency and delayed development at the late larvae stage. Ubiquitous knockdown of BSF results in a severe reduction of the polyadenylation tail lengths of specific mitochondrial mRNAs, accompanied by an enrichment of unprocessed polycistronic RNA intermediates. Furthermore, we observed a significant reduction in mRNA steady state levels, despite increased de novo transcription. Surprisingly, mitochondrial de novo translation is increased and abnormal mitochondrial translation products are present in knockdown flies, suggesting that BSF also has a role in coordinating the mitochondrial translation in addition to its role in mRNA maturation and stability. We thus report a novel function of BSF in flies and demonstrate that it has an important intra-mitochondrial role, which is essential for maintaining mtDNA gene expression and oxidative phosphorylation. The majority of the cellular energy currency ATP is formed in a tubular network, termed mitochondria, present within virtually all eukaryotic cells. The mitochondria are unique among cellular organelles in that they contain their own genome, which encodes critical proteins necessary for cellular energy production. However, the vast majority of mitochondrial proteins are encoded in the nucleus and imported into mitochondria. Gene expression thus needs to be coordinated between the two genomes to ensure efficient mitochondrial function and sufficient adaptation to different physiological demands. The regulation of the mitochondrial genome is poorly understood, with many of the basic regulators not yet being characterized. We used RNAi in the fruit fly to study the in vivo function of the bicoid stability factor (BSF), previously thought to be a cytoplasmic and nuclear protein important for fly development. We show here that BSF is mainly localized to mitochondria, where it is essential for mtDNA gene expression, regulating the polyadenylation and maturation of specific mRNAs. Furthermore, BSF coordinates the translation and assembly of mitochondrial peptides in the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Ana Bratic
- Department of Laboratory Medicine, Karolinska Institutet, Solna, Sweden
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Anna Wredenberg
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | | | - Arnaud Mourier
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Christian Kukat
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Rolf Wibom
- Department of Laboratory Medicine, Karolinska Institutet, Solna, Sweden
| | | | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Nils-Göran Larsson
- Department of Laboratory Medicine, Karolinska Institutet, Solna, Sweden
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- * E-mail:
| |
Collapse
|
18
|
Rorbach J, Nicholls TJJ, Minczuk M. PDE12 removes mitochondrial RNA poly(A) tails and controls translation in human mitochondria. Nucleic Acids Res 2011; 39:7750-63. [PMID: 21666256 PMCID: PMC3177208 DOI: 10.1093/nar/gkr470] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Polyadenylation of mRNA in human mitochondria is crucial for gene expression and perturbation of poly(A) tail length has been linked to a human neurodegenerative disease. Here we show that 2′-phosphodiesterase (2′-PDE), (hereafter PDE12), is a mitochondrial protein that specifically removes poly(A) extensions from mitochondrial mRNAs both in vitro and in mitochondria of cultured cells. In eukaryotes, poly(A) tails generally stabilize mature mRNAs, whereas in bacteria they increase mRNA turnover. In human mitochondria, the effects of increased PDE12 expression were transcript dependent. An excess of PDE12 led to an increase in the level of three mt-mRNAs (ND1, ND2 and CytB) and two (CO1 and CO2) were less abundant than in mitochondria of control cells and there was no appreciable effect on the steady-state level of the remainder of the mitochondrial transcripts. The alterations in poly(A) tail length accompanying elevated PDE12 expression were associated with severe inhibition of mitochondrial protein synthesis, and consequently respiratory incompetence. Therefore, we propose that mRNA poly(A) tails are important in regulating protein synthesis in human mitochondria, as it is the case for nuclear-encoded eukaryotic mRNA.
Collapse
Affiliation(s)
- Joanna Rorbach
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge CB2 0XY, UK
| | | | | |
Collapse
|
19
|
Margam VM, Coates BS, Hellmich RL, Agunbiade T, Seufferheld MJ, Sun W, Ba MN, Sanon A, Binso-Dabire CL, Baoua I, Ishiyaku MF, Covas FG, Srinivasan R, Armstrong J, Murdock LL, Pittendrigh BR. Mitochondrial genome sequence and expression profiling for the legume pod borer Maruca vitrata (Lepidoptera: Crambidae). PLoS One 2011; 6:e16444. [PMID: 21311752 PMCID: PMC3032770 DOI: 10.1371/journal.pone.0016444] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/20/2010] [Indexed: 11/18/2022] Open
Abstract
We report the assembly of the 14,054 bp near complete sequencing of the mitochondrial genome of the legume pod borer (LPB), Maruca vitrata (Lepidoptera: Crambidae), which we subsequently used to estimate divergence and relationships within the lepidopteran lineage. The arrangement and orientation of the 13 protein-coding, 2 rRNA, and 19 tRNA genes sequenced was typical of insect mitochondrial DNA sequences described to date. The sequence contained a high A+T content of 80.1% and a bias for the use of codons with A or T nucleotides in the 3rd position. Transcript mapping with midgut and salivary gland ESTs for mitochondrial genome annotation showed that translation from protein-coding genes initiates and terminates at standard mitochondrial codons, except for the coxI gene, which may start from an arginine CGA codon. The genomic copy of coxII terminates at a T nucleotide, and a proposed polyadenylation mechanism for completion of the TAA stop codon was confirmed by comparisons to EST data. EST contig data further showed that mature M. vitrata mitochondrial transcripts are monocistronic, except for bicistronic transcripts for overlapping genes nd4/nd4L and nd6/cytb, and a tricistronic transcript for atp8/atp6/coxIII. This processing of polycistronic mitochondrial transcripts adheres to the tRNA punctuated cleavage mechanism, whereby mature transcripts are cleaved only at intervening tRNA gene sequences. In contrast, the tricistronic atp8/atp6/coxIII in Drosophila is present as separate atp8/atp6 and coxIII transcripts despite the lack of an intervening tRNA. Our results indicate that mitochondrial processing mechanisms vary between arthropod species, and that it is crucial to use transcriptional information to obtain full annotation of mitochondrial genomes.
Collapse
Affiliation(s)
- Venu M. Margam
- Department of Entomology, Purdue University, West Lafayette, Indiana, United States of America
| | - Brad S. Coates
- United States Department of Agriculture – Agricultural Research Service, Corn Insect and Crop Genetics Research Unit, Genetics Laboratory, Iowa State University, Ames, Iowa, United States of America
| | - Richard L. Hellmich
- United States Department of Agriculture – Agricultural Research Service, Corn Insect and Crop Genetics Research Unit, Genetics Laboratory, Iowa State University, Ames, Iowa, United States of America
| | - Tolulope Agunbiade
- Department of Entomology, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Manfredo J. Seufferheld
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Weilin Sun
- Department of Entomology, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Malick N. Ba
- Station de Kamboinsé,Institut de l'Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
| | - Antoine Sanon
- Station de Kamboinsé,Institut de l'Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
| | - Clementine L. Binso-Dabire
- Station de Kamboinsé,Institut de l'Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
| | - Ibrahim Baoua
- Institut National de Recherche Agronomique du Niger, Maradi, Niger
| | - Mohammad F. Ishiyaku
- Department of Plant Science, Institute for Agricultural Research, Ahmadu Bello University, Zaria, Nigeria
| | - Fernando G. Covas
- University of Puerto Rico, Mayaguez, Puerto Rico, United States of America
| | | | - Joel Armstrong
- Entomology, The Commonweatlth of Scientific and Industrial Research Organization, Black Mountain, Australian Capital Territory, Australia
| | - Larry L. Murdock
- Department of Entomology, Purdue University, West Lafayette, Indiana, United States of America
| | - Barry R. Pittendrigh
- Department of Entomology, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| |
Collapse
|
20
|
Shutt TE, Shadel GS. A compendium of human mitochondrial gene expression machinery with links to disease. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:360-79. [PMID: 20544879 PMCID: PMC2886302 DOI: 10.1002/em.20571] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Mammalian mitochondrial DNA encodes 37 essential genes required for ATP production via oxidative phosphorylation, instability or misregulation of which is associated with human diseases and aging. Other than the mtDNA-encoded RNA species (13 mRNAs, 12S and 16S rRNAs, and 22 tRNAs), the remaining factors needed for mitochondrial gene expression (i.e., transcription, RNA processing/modification, and translation), including a dedicated set of mitochondrial ribosomal proteins, are products of nuclear genes that are imported into the mitochondrial matrix. Herein, we inventory the human mitochondrial gene expression machinery, and, while doing so, we highlight specific associations of these regulatory factors with human disease. Major new breakthroughs have been made recently in this burgeoning area that set the stage for exciting future studies on the key outstanding issue of how mitochondrial gene expression is regulated differentially in vivo. This should promote a greater understanding of why mtDNA mutations and dysfunction cause the complex and tissue-specific pathology characteristic of mitochondrial disease states and how mitochondrial dysfunction contributes to more common human pathology and aging.
Collapse
Affiliation(s)
- Timothy E. Shutt
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, P.O. Box 208023, New haven, CT 06520-8023
| | - Gerald S. Shadel
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, P.O. Box 208023, New haven, CT 06520-8023
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208005, New haven, CT 06520-8005
- corresponding author: Department of Pathology, Yale University School of Medicine, P.O. Box 208023, New Haven, CT 06520-8023 phone: (203) 785-2475 FAX: (203) 785-2628
| |
Collapse
|
21
|
Borowski LS, Szczesny RJ, Brzezniak LK, Stepien PP. RNA turnover in human mitochondria: more questions than answers? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1066-70. [PMID: 20117077 DOI: 10.1016/j.bbabio.2010.01.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 01/19/2010] [Accepted: 01/25/2010] [Indexed: 01/16/2023]
Abstract
Protein complexes responsible for RNA degradation play important role in three key aspects of RNA metabolism: they control stability of physiologically functional transcripts, remove the unnecessary RNA processing intermediates and destroy aberrantly formed RNAs. In mitochondria the post-transcriptional events seem to play a major role in regulation of gene expression, therefore RNA turnover is of particular importance. Despite many years of research, the details of this process are still a challenge. This review summarizes emerging landscape of interplay between the Suv3p helicase (SUPV3L1, Suv3), poly(A) polymerase and polynucleotide phosphorylase in controlling RNA degradation in human mitochondria.
Collapse
Affiliation(s)
- Lukasz S Borowski
- Institute of Genetics and Biotechnology, Faculty of Biology, Warsaw University, Pawinskiego 5a, 02-106 Warsaw, Poland
| | | | | | | |
Collapse
|
22
|
Szczesny RJ, Borowski LS, Brzezniak LK, Dmochowska A, Gewartowski K, Bartnik E, Stepien PP. Human mitochondrial RNA turnover caught in flagranti: involvement of hSuv3p helicase in RNA surveillance. Nucleic Acids Res 2009; 38:279-98. [PMID: 19864255 PMCID: PMC2800237 DOI: 10.1093/nar/gkp903] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The mechanism of human mitochondrial RNA turnover and surveillance is still a matter of debate. We have obtained a cellular model for studying the role of hSuv3p helicase in human mitochondria. Expression of a dominant-negative mutant of the hSUV3 gene which encodes a protein with no ATPase or helicase activity results in perturbations of mtRNA metabolism and enables to study the processing and degradation intermediates which otherwise are difficult to detect because of their short half-lives. The hSuv3p activity was found to be necessary in the regulation of stability of mature, properly formed mRNAs and for removal of the noncoding processing intermediates transcribed from both H and L-strands, including mirror RNAs which represent antisense RNAs transcribed from the opposite DNA strand. Lack of hSuv3p function also resulted in accumulation of aberrant RNA species, molecules with extended poly(A) tails and degradation intermediates truncated predominantly at their 3′-ends. Moreover, we present data indicating that hSuv3p co-purifies with PNPase; this may suggest participation of both proteins in mtRNA metabolism.
Collapse
Affiliation(s)
- Roman J Szczesny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
23
|
Jacob JEM, Vanholme B, Van Leeuwen T, Gheysen G. A unique genetic code change in the mitochondrial genome of the parasitic nematode Radopholus similis. BMC Res Notes 2009; 2:192. [PMID: 19778425 PMCID: PMC2761399 DOI: 10.1186/1756-0500-2-192] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 09/24/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondria (mt) contain their own autonomously replicating DNA, constituted as a small circular genome encoding essential subunits of the respiratory chain. Mt DNA is characterized by a genetic code which differs from the standard one. Interestingly, the mt genome of nematodes share some peculiar features, such as small transfer RNAs, truncated ribosomal RNAs and - in the class of Chromadorean nematodes - unidirectional transcription. FINDINGS We present the complete mt genomic sequence (16,791 bp) of the plant-parasitic nematode Radopholus similis (class Chromadorea). Although it has a gene content similar to most other nematodes, many idiosyncrasies characterize the extremely AT-rich mt genome of R. similis (85.4% AT). The secondary structure of the large (16S) rRNA is further reduced, the gene order is unique, the large non-coding region contains two large repeats, and most interestingly, the UAA codon is reassigned from translation termination to tyrosine. In addition, 7 out of 12 protein-coding genes lack a canonical stop codon and analysis of transcriptional data showed the absence of polyadenylation. Northern blot analysis confirmed that only one strand is transcribed and processed. Furthermore, using nucleotide content bias methods, regions for the origin of replication are suggested. CONCLUSION The extraordinary mt genome of R. similis with its unique genetic code appears to contain exceptional features correlated to DNA decoding. Therefore the genome may provide an incentive to further elucidate these barely understood processes in nematodes. This comprehension may eventually lead to parasitic nematode-specific control targets as healthy mitochondria are imperative for organism survival. In addition, the presented genome is an interesting exceptional event in genetic code evolution.
Collapse
Affiliation(s)
- Joachim E M Jacob
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| | | | | | | |
Collapse
|
24
|
Schuster G, Stern D. RNA polyadenylation and decay in mitochondria and chloroplasts. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:393-422. [PMID: 19215778 DOI: 10.1016/s0079-6603(08)00810-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mitochondria and chloroplasts were originally acquired by eukaryotic cells through endosymbiotic events and retain their own gene expression machinery. One hallmark of gene regulation in these two organelles is the predominance of posttranscriptional control, which is exerted both at the gene-specific and global levels. This review focuses on their mechanisms of RNA degradation, and therefore mainly on the polyadenylation-stimulated degradation pathway. Overall, mitochondria and chloroplasts have retained the prokaryotic RNA decay system, despite evolution in the number and character of the enzymes involved. However, several significant differences exist, of which the presence of stable poly(A) tails, and the location of PNPase in the intermembrane space in animal mitochondria, are perhaps the most remarkable. The known and predicted proteins taking part in polyadenylation-stimulated degradation pathways are described, both in chloroplasts and four mitochondrial types: plant, yeast, trypanosome, and animal.
Collapse
Affiliation(s)
- Gadi Schuster
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|