1
|
Hanazono Y, Takeda K, Miki K. Characterization of the Nqo5 subunit of bacterial complex I in the isolated state. FEBS Open Bio 2016; 6:687-95. [PMID: 27398308 PMCID: PMC4932448 DOI: 10.1002/2211-5463.12070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 11/09/2022] Open
Abstract
The subunits that comprise bacterial complex I (NADH:ubiquinone oxidoreductase) are also found in more complicated mitochondrial enzymes in eukaryotic organisms. Although the Nqo5 subunit is one of these conserved components and important for the formation of complex, it has been little studied. Here, we report structure analyses of isolated Nqo5 from Thermus thermophilus. Biochemical studies indicated that the C-terminal region following the 30-Kd subunit motif is disordered in the isolated state, while the remaining portion is already folded. Crystallographic studies of a trypsin-resistant fragment revealed detailed structural differences in the folded domain between the isolated and complexed states.
Collapse
Affiliation(s)
- Yuya Hanazono
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto Japan
| | - Kazuki Takeda
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto Japan; RIKEN SPring-8 Center at Harima Institute Sayo Hyogo Japan
| | - Kunio Miki
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto Japan; RIKEN SPring-8 Center at Harima Institute Sayo Hyogo Japan
| |
Collapse
|
2
|
Hellwig P, Kriegel S, Friedrich T. Infrared spectroscopic studies on reaction induced conformational changes in the NADH ubiquinone oxidoreductase (complex I). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:922-7. [PMID: 26702948 DOI: 10.1016/j.bbabio.2015.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/08/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Redox-dependent conformational changes are currently discussed to be a crucial part of the reaction mechanism of the respiratory complex I. Specialized difference Fourier transform infrared techniques allow the detection of side-chain movements and minute secondary structure changes. For complex I, (1)H/(2)H exchange kinetics of the amide modes revealed a better accessibility of the backbone in the presence of NADH and quinone. Interestingly, the presence of phospholipids, that is crucial for the catalytic activity of the isolated enzyme complex, changes the overall conformation. When comparing complex I samples from different species, very similar electrochemically induced FTIR difference spectra and very similar rearrangements are reported. Finally, the information obtained with variants and from Zn(2+) inhibited samples for the conformational reorganization of complex I upon electron transfer are discussed in this review. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
- Petra Hellwig
- Laboratoire de bioelectrochimie et spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, Strasbourg, France
| | - Sébastien Kriegel
- Laboratoire de bioelectrochimie et spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, Strasbourg, France
| | - Thorsten Friedrich
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, Albertstr. 21, 79104 Freiburg i. Br., Germany
| |
Collapse
|
3
|
Abstract
Complex I functions as a redox-linked proton pump in the respiratory chains of mitochondria and bacteria, driven by the reduction of quinone (Q) by NADH. Remarkably, the distance between the Q reduction site and the most distant proton channels extends nearly 200 Å. To elucidate the molecular origin of this long-range coupling, we apply a combination of large-scale molecular simulations and a site-directed mutagenesis experiment of a key residue. In hybrid quantum mechanics/molecular mechanics simulations, we observe that reduction of Q is coupled to its local protonation by the His-38/Asp-139 ion pair and Tyr-87 of subunit Nqo4. Atomistic classical molecular dynamics simulations further suggest that formation of quinol (QH2) triggers rapid dissociation of the anionic Asp-139 toward the membrane domain that couples to conformational changes in a network of conserved charged residues. Site-directed mutagenesis data confirm the importance of Asp-139; upon mutation to asparagine the Q reductase activity is inhibited by 75%. The current results, together with earlier biochemical data, suggest that the proton pumping in complex I is activated by a unique combination of electrostatic and conformational transitions.
Collapse
|
4
|
A novel cytosolic NADH:quinone oxidoreductase from Methanothermobacter marburgensis. Biosci Rep 2014; 34:e00167. [PMID: 25372605 PMCID: PMC4274662 DOI: 10.1042/bsr20140143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Methanothermobacter marburgensis is a strictly anaerobic, thermophilic methanogenic archaeon that uses methanogenesis to convert H2 and CO2 to energy. M. marburgensis is one of the best-studied methanogens, and all genes required for methanogenic metabolism have been identified. Nonetheless, the present study describes a gene (Gene ID 9704440) coding for a putative NAD(P)H:quinone oxidoreductase that has not yet been identified as part of the metabolic machinery. The gene product, MmNQO, was successfully expressed, purified and characterized biochemically, as well as structurally. MmNQO was identified as a flavin-dependent NADH:quinone oxidoreductase with the capacity to oxidize NADH in the presence of a wide range of electron acceptors, whereas NADPH was oxidized with only three acceptors. The 1.50 Å crystal structure of MmNQO features a homodimeric enzyme where each monomer comprises 196 residues folding into flavodoxin-like α/β domains with non-covalently bound FMN (flavin mononucleotide). The closest structural homologue is the modulator of drug activity B from Streptococcus mutans with 1.6 Å root-mean-square deviation on 161 Cα atoms and 28% amino-acid sequence identity. The low similarity at sequence and structural level suggests that MmNQO is unique among NADH:quinone oxidoreductases characterized to date. Based on preliminary bioreactor experiments, MmNQO could provide a useful tool to prevent overflow metabolism in applications that require cells with high energy demand. A novel NADH:quinone oxidoreductase, MmNQO, from Methanothermobacter marburgensis was identified. MmNQO oxidizes NADH with several electron acceptors and is structurally similar to bacterial MdaB. It is localized in the cytosol and may provide a useful tool to prevent overflow metabolism.
Collapse
|
5
|
Verkhovskaya M, Wikström M. Oxidoreduction properties of bound ubiquinone in Complex I from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:246-50. [PMID: 24216024 DOI: 10.1016/j.bbabio.2013.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/31/2013] [Accepted: 11/04/2013] [Indexed: 12/12/2022]
Abstract
The exploration of the redox chemistry of bound ubiquinone during catalysis is a prerequisite for the understanding of the mechanism by which Complex I (nicotinamide adenine dinucleotide (NADH):ubiquinone oxidoreductase) transduces redox energy into an electrochemical proton gradient. Studies of redox dependent changes in the spectrum of Complex I from Escherichia coli in the mid- and near-ultraviolet (UV) and visible areas were performed to identify the spectral contribution, and to determine the redox properties, of the tightly bound ubiquinone. A very low midpoint redox potential (<-300mV) was found for the bound ubiquinone, more than 400mV lower than when dissolved in a phospholipid membrane. This thermodynamic property of bound ubiquinone has important implications for the mechanism by which Complex I catalyzes proton translocation.
Collapse
Affiliation(s)
- Marina Verkhovskaya
- Helsinki Bioenergetics Group, Institute of Biotechnology, University of Helsinki, PO Box 65 (Viikinkaari 1), FIN-00014 Helsinki, Finland.
| | - Mårten Wikström
- Helsinki Bioenergetics Group, Institute of Biotechnology, University of Helsinki, PO Box 65 (Viikinkaari 1), FIN-00014 Helsinki, Finland
| |
Collapse
|
6
|
Batista AP, Marreiros BC, Pereira MM. The role of proton and sodium ions in energy transduction by respiratory complex I. IUBMB Life 2012; 64:492-8. [PMID: 22576956 DOI: 10.1002/iub.1050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/17/2012] [Indexed: 11/08/2022]
Abstract
Respiratory complex I plays a central role in energy transduction. It catalyzes the oxidation of NADH and the reduction of quinone, coupled to cation translocation across the membrane, thereby establishing an electrochemical potential. For more than half a century, data on complex I has been gathered, including recently determined crystal structures, yet complex I is the least understood complex of the respiratory chain. The mechanisms of quinone reduction, charge translocation and their coupling are still unknown. The H(+) is accepted to be the coupling ion of the system; however, Na(+) has also been suggested to perform such a role. In this article, we address the relation of those two ions with complex I and refer ion pump and Na(+)/H(+) antiporter as possible transport mechanisms of the system. We put forward a hypothesis to explain some apparently contradictory data on the nature of the coupling ion, and we revisit the role of H(+) and Na(+) cycles in the overall bioenergetics of the cell.
Collapse
Affiliation(s)
- Ana P Batista
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | | | | |
Collapse
|
7
|
Stress-induced evolution of Escherichia coli points to original concepts in respiratory cofactor selectivity. Proc Natl Acad Sci U S A 2011; 108:1278-83. [PMID: 21205901 DOI: 10.1073/pnas.1010431108] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial metabolism is characterized by a remarkable capacity to rapidly adapt to environmental changes. We restructured the central metabolic network in Escherichia coli to force a higher production of NADPH, and then grew this strain in conditions favoring adaptive evolution. A six-fold increase in growth capacity was attained that could be attributed in multiple clones, after whole genome mutation mapping, to a specific single mutation. Each clone had an evolved NuoF*(E183A) enzyme in the respiratory complex I that can now oxidize both NADH and NADPH. When a further strain was constructed with an even higher degree of NADPH stress such that growth was impossible on glucose mineral medium, a solid-state screening for mutations restoring growth, led to two different types of NuoF mutations in strains having recovered growth capacity. In addition to the previously seen E183A mutation other clones showed a E183G mutation, both having NADH and NADPH oxidizing ability. These results demonstrate the unique solution used by E. coli to overcome the NADPH stress problem. This solution creates a new function for NADPH that is no longer restricted to anabolic synthesis reactions but can now be also used to directly produce catabolic energy.
Collapse
|
8
|
Hielscher R, Friedrich T, Hellwig P. Far- and Mid-Infrared Spectroscopic Analysis of the Substrate-Induced Structural Dynamics of Respiratory Complex I. Chemphyschem 2010; 12:217-24. [DOI: 10.1002/cphc.201000688] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/22/2010] [Indexed: 11/07/2022]
|
9
|
Spin labeling of the Escherichia coli NADH ubiquinone oxidoreductase (complex I). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1894-900. [PMID: 20959113 DOI: 10.1016/j.bbabio.2010.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 09/29/2010] [Accepted: 10/13/2010] [Indexed: 11/20/2022]
Abstract
The proton-pumping NADH:ubiquinone oxidoreductase, the respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. Electron microscopy revealed the two-part structure of the complex with a peripheral arm involved in electron transfer and a membrane arm most likely involved in proton translocation. It was proposed that the quinone binding site is located at the joint of the two arms. Most likely, proton translocation in the membrane arm is enabled by the energy of the electron transfer reaction in the peripheral arm transmitted by conformational changes. For the detection of the conformational changes and the localization of the quinone binding site, we set up a combination of site-directed spin labeling and EPR spectroscopy. Cysteine residues were introduced to the surface of the Escherichia coli complex I. The spin label (1-oxyl-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl)-methanethiosulfonate (MTSL) was exclusively bound to the engineered positions. Neither the mutation nor the labeling had an effect on the NADH:decyl-ubiquinone oxidoreductase activity. The characteristic signals of the spin label were detected by EPR spectroscopy, which did not change by reducing the preparation with NADH. A decyl-ubiquinone derivative with the spin label covalently attached to the alkyl chain was synthesized in order to localize the quinone binding site. The distance between a MTSL labeled complex I variant and the bound quinone was determined by continuous-wave (cw) EPR allowing an inference on the location of the quinone binding site. The distances between the labeled quinone and other complex I variants will be determined in future experiments to receive further geometry information by triangulation.
Collapse
|
10
|
Koopman WJH, Nijtmans LGJ, Dieteren CEJ, Roestenberg P, Valsecchi F, Smeitink JAM, Willems PHGM. Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. Antioxid Redox Signal 2010; 12:1431-70. [PMID: 19803744 DOI: 10.1089/ars.2009.2743] [Citation(s) in RCA: 307] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Virtually every mammalian cell contains mitochondria. These double-membrane organelles continuously change shape and position and contain the complete metabolic machinery for the oxidative conversion of pyruvate, fatty acids, and amino acids into ATP. Mitochondria are crucially involved in cellular Ca2+ and redox homeostasis and apoptosis induction. Maintenance of mitochondrial function and integrity requires an inside-negative potential difference across the mitochondrial inner membrane. This potential is sustained by the electron-transport chain (ETC). NADH:ubiquinone oxidoreductase or complex I (CI), the first and largest protein complex of the ETC, couples the oxidation of NADH to the reduction of ubiquinone. During this process, electrons can escape from CI and react with ambient oxygen to produce superoxide and derived reactive oxygen species (ROS). Depending on the balance between their production and removal by antioxidant systems, ROS may function as signaling molecules or induce damage to a variety of biomolecules or both. The latter ultimately leads to a loss of mitochondrial and cellular function and integrity. In this review, we discuss (a) the role of CI in mitochondrial functioning; (b) the composition, structure, and biogenesis of CI; (c) regulation of CI function; (d) the role of CI in ROS generation; and (e) adaptive responses to CI deficiency.
Collapse
Affiliation(s)
- Werner J H Koopman
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
11
|
Redox-induced conformational changes within the Escherichia coli NADH ubiquinone oxidoreductase (complex I): an analysis by mutagenesis and FT-IR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:659-63. [PMID: 20214873 DOI: 10.1016/j.bbabio.2010.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/11/2010] [Accepted: 03/02/2010] [Indexed: 01/24/2023]
Abstract
The proton-pumping NADH:ubiquinone oxidoreductase couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. This process is suggested to be accompanied by conformational changes of the enzyme that may be monitored by redox-induced FT-IR difference spectroscopy. Signals observed in the amide I range are partially attributed to local rearrangements that occur as an electrostatic response to the redox reactions of the FeS clusters. In addition, conformational changes can be reported that depend on pH and at the same time can be perturbed by site-directed mutagenesis of residue E67 on subunit B (the bacterial homologue of the mitochondrial PSST subunit). This residue is located in the vicinity of the cluster N2. Re-evaluating these previous data we here discuss a mechanism, by which the redox reaction of N2 induces conformational changes possibly leading to proton translocation.
Collapse
|
12
|
Couch VA, Medvedev ES, Stuchebrukhov AA. Electrostatics of the FeS clusters in respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1266-71. [PMID: 19445896 DOI: 10.1016/j.bbabio.2009.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 04/29/2009] [Accepted: 05/07/2009] [Indexed: 10/20/2022]
Abstract
Respiratory complex I couples the transfer of electrons from NADH to ubiquinone and the translocation of protons across the mitochondrial membrane. A detailed understanding of the midpoint reduction potentials (E(m)) of each redox center and the factors which influence those potentials are critical in the elucidation of the mechanism of electron transfer in this enzyme. We present accurate electrostatic interaction energies for the iron-sulfur (FeS) clusters of complex I to facilitate the development of models and the interpretation of experiments in connection to electron transfer (ET) in this enzyme. To calculate redox titration curves for the FeS clusters it is necessary to include interactions between clusters, which in turn can be used to refine E(m) values and validate spectroscopic assignments of each cluster. Calculated titration curves for clusters N4, N5, and N6a are discussed. Furthermore, we present some initial findings on the electrostatics of the redox centers of complex I under the influence of externally applied membrane potentials. A means of determining the location of the FeS cofactors within the holo-complex based on electrostatic arguments is proposed. A simple electrostatic model of the protein/membrane system is examined to illustrate the viability of our hypothesis.
Collapse
Affiliation(s)
- Vernon A Couch
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
13
|
Seelert H, Dani DN, Dante S, Hauss T, Krause F, Schäfer E, Frenzel M, Poetsch A, Rexroth S, Schwassmann HJ, Suhai T, Vonck J, Dencher NA. From protons to OXPHOS supercomplexes and Alzheimer's disease: structure-dynamics-function relationships of energy-transducing membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:657-71. [PMID: 19281792 DOI: 10.1016/j.bbabio.2009.02.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/20/2009] [Accepted: 02/20/2009] [Indexed: 11/29/2022]
Abstract
By the elucidation of high-resolution structures the view of the bioenergetic processes has become more precise. But in the face of these fundamental advances, many problems are still unresolved. We have examined a variety of aspects of energy-transducing membranes from large protein complexes down to the level of protons and functional relevant picosecond protein dynamics. Based on the central role of the ATP synthase for supplying the biological fuel ATP, one main emphasis was put on this protein complex from both chloroplast and mitochondria. In particular the stoichiometry of protons required for the synthesis of one ATP molecule and the supramolecular organisation of ATP synthases were examined. Since formation of supercomplexes also concerns other complexes of the respiratory chain, our work was directed to unravel this kind of organisation, e.g. of the OXPHOS supercomplex I(1)III(2)IV(1), in terms of structure and function. Not only the large protein complexes or supercomplexes work as key players for biological energy conversion, but also small components as quinones which facilitate the transfer of electrons and protons. Therefore, their location in the membrane profile was determined by neutron diffraction. Physico-chemical features of the path of protons from the generators of the electrochemical gradient to the ATP synthase, as well as of their interaction with the membrane surface, could be elucidated by time-resolved absorption spectroscopy in combination with optical pH indicators. Diseases such as Alzheimer's dementia (AD) are triggered by perturbation of membranes and bioenergetics as demonstrated by our neutron scattering studies.
Collapse
Affiliation(s)
- H Seelert
- Department of Chemistry, Technische Universität Darmstadt, Petersenstrasse 22, D-64287 Darmstadt, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
|