1
|
Yu B, Liang Y, Qin Q, Zhao Y, Yang C, Liu R, Gan Y, Zhou H, Qiu Z, Chen L, Yan S, Cao B. Transcription Cofactor CsMBF1c Enhances Heat Tolerance of Cucumber and Interacts with Heat-Related Proteins CsNFYA1 and CsDREB2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15586-15600. [PMID: 38949485 DOI: 10.1021/acs.jafc.4c02398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Multiprotein bridging factor 1 (MBF1) is a very important transcription factor (TF) in plants, whose members influence numerous defense responses. Our study found that MBF1c in Cucurbitaceae was highly conserved. CsMBF1c expression was induced by temperature, salt stress, and abscisic acid (ABA) in cucumber. Overexpressed CsMBF1c enhanced the heat resistance of a cucumber, and the Csmbf1c mutant showed decreased resistance to high temperatures (HTs). CsMBF1c played an important role in stabilizing the photosynthetic system of cucumber under HT, and its expression was significantly associated with heat-related TFs and genes related to protein processing in the endoplasmic reticulum (ER). Protein interaction showed that CsMBF1c interacted with dehydration-responsive element binding protein 2 (CsDREB2) and nuclear factor Y A1 (CsNFYA1). Overexpression of CsNFYA1 in Arabidopsis improved the heat resistance. Transcriptional activation of CsNFYA1 was elevated by CsMBF1c. Therefore, CsMBF1c plays an important regulatory role in cucumber's resistance to high temperatures.
Collapse
Affiliation(s)
- Bingwei Yu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Yonggui Liang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Qiteng Qin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yafei Zhao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chenyu Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Renjian Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yuwei Gan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Huoyan Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zhengkun Qiu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shuangshuang Yan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Bihao Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Zheng Z, Liu H, Luo X, Liu R, Joe AD, Li H, Sun H, Lin Y, Li Y, Wang Y. Comparative transcriptome analysis provides insights into the resistance regulation mechanism and inhibitory effect of fungicide phenamacril in Fusarium asiaticum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105848. [PMID: 38685210 DOI: 10.1016/j.pestbp.2024.105848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 05/02/2024]
Abstract
Fusarium asiaticum is a destructive phytopathogenic fungus that causes Fusarium head blight of wheat (FHB), leading to serious yield and economic losses to cereal crops worldwide. Our previous studies indicated that target-site mutations (K216R/E, S217P/L, or E420K/G/D) of Type I myosin FaMyo5 conferred high resistance to phenamacril. Here, we first constructed one sensitive strain H1S and three point mutation resistant strains HA, HC and H1R. Then we conducted comparative transcriptome analysis of these F. asiaticum strains after 1 and 10 μg·mL-1 phenamacril treatment. Results indicated that 2135 genes were differentially expressed (DEGs) among the sensitive and resistant strains. The DEGs encoding ammonium transporter MEP1/MEP2, nitrate reductase, copper amine oxidase 1, 4-aminobutyrate aminotransferase, amino-acid permease inda1, succinate-semialdehyde dehydrogenase, 2, 3-dihydroxybenzoic acid decarboxylase, etc., were significantly up-regulated in all the phenamacril-resistant strains. Compared to the control group, a total of 1778 and 2097 DEGs were identified in these strains after 1 and 10 μg·mL-1 phenamacril treatment, respectively. These DEGs involved in 4-aminobutyrate aminotransferase, chitin synthase 1, multiprotein-bridging factor 1, transcriptional regulatory protein pro-1, amino-acid permease inda1, ATP-dependent RNA helicase DED1, acetyl-coenzyme A synthetase, sarcoplasmic/endoplasmic reticulum calcium ATPase 2, etc., showed significantly down-regulated expression in phenamacril-sensitive strain but not in resistant strains after phenamacril treatment. In addition, cyanide hydratase, mating-type protein MAT-1, putative purine nucleoside permease, plasma membrane protein yro2, etc., showed significantly co-down-regulated expression in all the strains after phenamacril treatment. Taken together, This study provides deep insights into the resistance regulation mechanism and the inhibitory effect of fungicide phenamacril and these new annotated proteins or enzymes are worth for the discovery of new fungicide targets.
Collapse
Affiliation(s)
- Zhitian Zheng
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Huaqi Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xiao Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Runze Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Alexander Dumbi Joe
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Haolin Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Haiyan Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjng 210014, China
| | - Yanling Lin
- Jiangsu GOOD HARVEST-WEIEN Agrochemical Co., Ltd, Beijing 101318, China
| | - Yanzhong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Yunpeng Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| |
Collapse
|
3
|
Salgado-Blanco D, López-Urías F, Ovando-Vázquez C, Jaimes-Miranda F. DNA-MBF1 study using molecular dynamics simulations : On the road to understanding the heat stress response in DNA-protein interactions in plants. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:1055-1067. [PMID: 34387715 DOI: 10.1007/s00249-021-01565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/24/2022]
Abstract
Regulatory factor MBF1 is highly conserved between species and has been described as a cofactor and transcription factor. In plants, several reports associate MBF1 with heat stress response. Nevertheless, the specific physical processes involved in the MBF1-DNA interaction are still far from clearly understood. We thus performed extensive molecular dynamics simulations of DNA with a homology-based modethel of the MBF1 protein. Based on recent experimental data, we proposed two B-DNA sequences, analyzing their interaction with our model of the Arabidopsis MBF1c protein (AtMBF1c) at three different temperatures: 293, 300, and 320 K, maintaining a constant pressure of 1 bar. The simulations suggest that MBF1 binds directly to the DNA, supporting the idea of its role as a transcription factor. We identified two different conformations of the MBF1 protein when bound, and characterized the specific groups of amino acids involved in the formation of the DNA-MBF1 complex. These regions of amino acids are bound mostly to the minor groove of DNA by the attraction of positively charged residues and the negatively charged backbone, but subject to the compatibility of shapes, much in the sense of a lock-and-key mechanism. We found that only with a sequence rich in CTAGA motifs at 300 K does MBF1 bind to DNA in the DNA-binding domain Cro/C1-type HTH predicted. In the rest of the systems tested, we observed non-specific DNA-MBF1 interactions. This study complements findings previously reported by others on the role of CTAGA as a DNA-binding element for MBF1c at a heat stress temperature.
Collapse
Affiliation(s)
- Daniel Salgado-Blanco
- Cátedras CONACyT-Centro Nacional de Supercómputo, IPICYT, Camino a la Presa San José 2055, 78216, San Luis Potosí, SLP, 78216, Mexico. .,División de Materiales Avanzados, IPICYT, Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP, 78216, Mexico.
| | - Florentino López-Urías
- División de Materiales Avanzados, IPICYT, Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP, 78216, Mexico
| | - Cesaré Ovando-Vázquez
- Cátedras CONACyT-Centro Nacional de Supercómputo, IPICYT, Camino a la Presa San José 2055, 78216, San Luis Potosí, SLP, 78216, Mexico
| | - Fabiola Jaimes-Miranda
- Cátedras CONACyT-División de Biología Molecular, IPICYT, Camino a la Presa San José 2055, 78216, San Luis Potosí, SLP, 78216, Mexico.
| |
Collapse
|
4
|
Amorim-Vaz S, Coste AT, Tran VDT, Pagni M, Sanglard D. Function Analysis of MBF1, a Factor Involved in the Response to Amino Acid Starvation and Virulence in Candida albicans. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:658899. [PMID: 37744106 PMCID: PMC10512259 DOI: 10.3389/ffunb.2021.658899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/15/2021] [Indexed: 09/26/2023]
Abstract
Candida albicans is a commensal of human mucosae, but also one of the most common fungal pathogens of humans. Systemic infections caused by this fungus, mostly affecting immunocompromised patients, are associated to fatality rates as high as 50% despite the available treatments. In order to improve this situation, it is necessary to fully understand how C. albicans is able to cause disease and how it copes with the host defenses. Our previous studies have revealed the importance of the C. albicans gene MBF1 in virulence and ability to colonize internal organs of mammalian and insect hosts. MBF1 encodes a putative transcriptional regulator, and as such it likely has an impact in the regulation of C. albicans gene expression during host infection. Here, recent advances in RNA-seq technologies were used to obtain a detailed analysis of the impact of MBF1 on C. albicans gene expression both in vitro and during infection. MBF1 was involved in the regulation of several genes with a role in glycolysis and response to stress, particularly to nutritional stress. We also investigated whether an interaction existed between MBF1 and GCN4, a master regulator of response to starvation, and found that both genes were needed for resistance to amino acid starvation, suggesting some level of interaction between the two. Reinforcing this idea, we showed that the proteins encoded by both genes could interact. Consistent with the role of MBF1 in virulence, we also established that GCN4 was necessary for virulence in the mouse model of systemic infection as well as in the Galleria mellonella infection model.
Collapse
Affiliation(s)
- Sara Amorim-Vaz
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Alix T. Coste
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Van Du T. Tran
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marco Pagni
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
5
|
A Novel Multiprotein Bridging Factor 1-Like Protein Induces Cyst Wall Protein Gene Expression and Cyst Differentiation in Giardia lamblia. Int J Mol Sci 2021; 22:ijms22031370. [PMID: 33573049 PMCID: PMC7866390 DOI: 10.3390/ijms22031370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/05/2022] Open
Abstract
The capacity to synthesize a protective cyst wall is critical for infectivity of Giardia lamblia. It is of interest to know the mechanism of coordinated synthesis of three cyst wall proteins (CWPs) during encystation, a differentiation process. Multiprotein bridging factor 1 (MBF1) gene family is a group of transcription coactivators that bridge various transcription factors. They are involved in cell growth and differentiation in yeast and animals, or in stress response in fungi and plants. We asked whether Giardia has MBF1-like genes and whether their products influence gene expression. BLAST searches of the Giardia genome database identified one gene encoding a putative MBF1 protein with a helix-turn-helix domain. We found that it can specifically bind to the AT-rich initiator promoters of the encystation-induced cwp1-3 and myb2 genes. MBF1 localized to cell nuclei and cytoplasm with higher expression during encystation. In addition, overexpression of MBF1 induced cwp1-3 and myb2 gene expression and cyst generation. Mutation of the helixes in the helix-turn-helix domain reduced cwp1-3 and myb2 gene expression and cyst generation. Chromatin immunoprecipitation assays confirmed the binding of MBF1 to the promoters with its binding sites in vivo. We also found that MBF1 can interact with E2F1, Pax2, WRKY, and Myb2 transcription factors that coordinately up-regulate the cwp genes during encystation. Using a CRISPR/Cas9 system for targeted disruption of mbf1 gene, we found a downregulation of cwp1-3 and myb2 genes and decrease of cyst generation. Our results suggest that MBF1 is functionally conserved and positively regulates Giardia cyst differentiation.
Collapse
|
6
|
Sinha NK, Ordureau A, Best K, Saba JA, Zinshteyn B, Sundaramoorthy E, Fulzele A, Garshott DM, Denk T, Thoms M, Paulo JA, Harper JW, Bennett EJ, Beckmann R, Green R. EDF1 coordinates cellular responses to ribosome collisions. eLife 2020; 9:e58828. [PMID: 32744497 PMCID: PMC7486125 DOI: 10.7554/elife.58828] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022] Open
Abstract
Translation of aberrant mRNAs induces ribosomal collisions, thereby triggering pathways for mRNA and nascent peptide degradation and ribosomal rescue. Here we use sucrose gradient fractionation combined with quantitative proteomics to systematically identify proteins associated with collided ribosomes. This approach identified Endothelial differentiation-related factor 1 (EDF1) as a novel protein recruited to collided ribosomes during translational distress. Cryo-electron microscopic analyses of EDF1 and its yeast homolog Mbf1 revealed a conserved 40S ribosomal subunit binding site at the mRNA entry channel near the collision interface. EDF1 recruits the translational repressors GIGYF2 and EIF4E2 to collided ribosomes to initiate a negative-feedback loop that prevents new ribosomes from translating defective mRNAs. Further, EDF1 regulates an immediate-early transcriptional response to ribosomal collisions. Our results uncover mechanisms through which EDF1 coordinates multiple responses of the ribosome-mediated quality control pathway and provide novel insights into the intersection of ribosome-mediated quality control with global transcriptional regulation.
Collapse
Affiliation(s)
- Niladri K Sinha
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Alban Ordureau
- Department of Cell Biology, Blavatnik Institute of Harvard Medical SchoolBostonUnited States
| | - Katharina Best
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - James A Saba
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Boris Zinshteyn
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Elayanambi Sundaramoorthy
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San DiegoSan DiegoUnited States
| | - Amit Fulzele
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San DiegoSan DiegoUnited States
| | - Danielle M Garshott
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San DiegoSan DiegoUnited States
| | - Timo Denk
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - Matthias Thoms
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - Joao A Paulo
- Department of Cell Biology, Blavatnik Institute of Harvard Medical SchoolBostonUnited States
| | - J Wade Harper
- Department of Cell Biology, Blavatnik Institute of Harvard Medical SchoolBostonUnited States
| | - Eric J Bennett
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San DiegoSan DiegoUnited States
| | - Roland Beckmann
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
7
|
Jaimes-Miranda F, Chávez Montes RA. The plant MBF1 protein family: a bridge between stress and transcription. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1782-1791. [PMID: 32037452 PMCID: PMC7094072 DOI: 10.1093/jxb/erz525] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 02/06/2020] [Indexed: 05/20/2023]
Abstract
The Multiprotein Bridging Factor 1 (MBF1) proteins are transcription co-factors whose molecular function is to form a bridge between transcription factors and the basal machinery of transcription. MBF1s are present in most archaea and all eukaryotes, and numerous reports show that they are involved in developmental processes and in stress responses. In this review we summarize almost three decades of research on the plant MBF1 family, which has mainly focused on their role in abiotic stress responses, in particular the heat stress response. However, despite the amount of information available, there are still many questions that remain about how plant MBF1 genes, transcripts, and proteins respond to stress, and how they in turn modulate stress response transcriptional pathways.
Collapse
Affiliation(s)
- Fabiola Jaimes-Miranda
- CONACyT-Instituto Potosino de Investigación Científica y Tecnológica AC, División de Biología Molecular, San Luis Potosí, San Luis Potosí, México
- Correspondence:
| | - Ricardo A Chávez Montes
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, México
| |
Collapse
|
8
|
Zhang L, Wang Y, Zhang Q, Jiang Y, Zhang H, Li R. Overexpression of HbMBF1a, encoding multiprotein bridging factor 1 from the halophyte Hordeum brevisubulatum, confers salinity tolerance and ABA insensitivity to transgenic Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2020; 102:1-17. [PMID: 31655970 PMCID: PMC6976555 DOI: 10.1007/s11103-019-00926-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/13/2019] [Indexed: 05/11/2023]
Abstract
HbMBF1a was isolated and characterized in H. brevisubulatum, and overexpressed HbMBF1a could enhance the salt tolerance and ABA insensitivity in Arabidopsis thaliana. The transcript levels of stress-responsive genes were significantly increased in the transgenic lines under salt and ABA conditions. Salinity is an abiotic stress that considerably affects plant growth, yield, and distribution. Hordeum brevisubulatum is a halophyte that evolved to become highly tolerant to salinity. Multiprotein bridging factor 1 (MBF1) is a transcriptional coactivator and an important regulator of stress tolerance. In this study, we isolated and characterized HbMBF1a based on the transcriptome data of H. brevisubulatum grown under saline conditions. We overexpressed HbMBF1a in Arabidopsis thaliana and compared the phenotypes of the transgenic lines and the wild-type in response to stresses. The results indicated that HbMBF1a expression was induced by salt and ABA treatments during the middle and late stages. The overexpression of HbMBF1a in A. thaliana resulted in enhanced salt tolerance and ABA insensitivity. More specifically, the enhanced salt tolerance manifested as the increased seed germination and seedling growth and development. Similarly, under ABA treatments, the cotyledon greening rate and seedling root length were higher in the HbMBF1a-overexpressing lines, suggesting the transgenic plants were better adapted to high exogenous ABA levels. Furthermore, the transcript levels of stress-responsive genes were significantly increased in the transgenic lines under salt and ABA conditions. Thus, HbMBF1a is a positive regulator of salt and ABA responses, and the corresponding gene may be useful for producing transgenic plants that are salt tolerant and/or ABA insensitive, with few adverse effects. This study involved a comprehensive analysis of HbMBF1a. The results may provide the basis and insight for the application of MBF1 family genes for developing stress-tolerant crops.
Collapse
Affiliation(s)
- Lili Zhang
- Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing, 100097 China
| | - Yunxiao Wang
- Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing, 100097 China
| | - Qike Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024 China
| | - Ying Jiang
- Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing, 100097 China
| | - Haiwen Zhang
- Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing, 100097 China
| | - Ruifen Li
- Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing, 100097 China
| |
Collapse
|
9
|
Zhao S, Liu Q, Wang JX, Liao XZ, Guo H, Li CX, Zhang FF, Liao LS, Luo XM, Feng JX. Differential transcriptomic profiling of filamentous fungus during solid-state and submerged fermentation and identification of an essential regulatory gene PoxMBF1 that directly regulated cellulase and xylanase gene expression. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:103. [PMID: 31164922 PMCID: PMC6489320 DOI: 10.1186/s13068-019-1445-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/18/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Solid-state fermentation (SSF) mimics the natural decay environment of soil fungi and can be employed to investigate the production of plant biomass-degrading enzymes. However, knowledge on the transcriptional regulation of fungal genes during SSF remains limited. Herein, transcriptional profiling was performed on the filamentous fungus Penicillium oxalicum strain HP7-1 cultivated in medium containing wheat bran plus rice straw (WR) under SSF (WR_SSF) and submerged fermentation (WR_SmF; control) conditions. Novel key transcription factors (TFs) regulating fungal cellulase and xylanase gene expression during SSF were identified via comparative transcriptomic and genetic analyses. RESULTS Expression of major cellulase genes was higher under WR_SSF condition than that under WR_SmF, but the expression of genes involved in the citric acid cycle was repressed under WR_SSF condition. Fifty-six candidate regulatory genes for cellulase production were screened out from transcriptomic profiling of P. oxalicum HP7-1 for knockout experiments in the parental strain ∆PoxKu70, resulting in 43 deletion mutants including 18 constructed in the previous studies. Enzyme activity assays revealed 14 novel regulatory genes involved in cellulase production in P. oxalicum during SSF. Remarkably, deletion of the essential regulatory gene PoxMBF1, encoding Multiprotein Bridging Factor 1, resulted in doubled cellulase and xylanase production at 2 days after induction during both SSF and SmF. PoxMBF1 dynamically and differentially regulated transcription of a subset of cellulase and xylanase genes during SSF and SmF, and conferred stress resistance. Importantly, PoxMBF1 bound specifically to the putative promoters of major cellulase and xylanase genes in vitro. CONCLUSIONS We revealed differential transcriptional regulation of P. oxalicum during SSF and SmF, and identified PoxMBF1, a novel TF that directly regulates cellulase and xylanase gene expression during SSF and SmF. These findings expand our understanding of regulatory mechanisms of cellulase and xylanase gene expression during fungal fermentation.
Collapse
Affiliation(s)
- Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Qi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Jiu-Xiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Xu-Zhong Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Hao Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Cheng-Xi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Feng-Fei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Lu-Sheng Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| |
Collapse
|
10
|
Wang Y, Wei X, Huang J, Wei J. Modification and functional adaptation of the MBF1 gene family in the lichenized fungus Endocarpon pusillum under environmental stress. Sci Rep 2017; 7:16333. [PMID: 29180801 PMCID: PMC5703946 DOI: 10.1038/s41598-017-16716-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 11/16/2017] [Indexed: 11/09/2022] Open
Abstract
The multiprotein-bridging factor 1 (MBF1) gene family is well known in archaea, non-lichenized fungi, plants, and animals, and contains stress tolerance-related genes. Here, we identified four unique mbf1 genes in the lichenized fungi Endocarpon spp. A phylogenetic analysis based on protein sequences showed the translated MBF1 proteins of the newly isolated mbf1 genes formed a monophyletic clade different from other lichen-forming fungi and Ascomycota groups in general, which may reflect the evolution of the biological functions of MBF1s. In contrast to the lack of function reported in yeast, we determined that lysine114 in the deduced Endocarpon pusillum MBF1 protein (EpMBF1) had a specific function that was triggered by environmental stress. Further, the Endocarpon-specific C-terminus of EpMBF1 was found to participate in stress tolerance. Epmbf1 was induced by a number of abiotic stresses in E. pusillum and transgenic yeast, and its stress-resistant ability was stronger than that of the yeast mbf1. These findings highlight the evolution and function of EpMBF1 and provide new insights into the co-evolution hypothesis of MBF1 and TATA-box-binding proteins.
Collapse
Affiliation(s)
- Yanyan Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 10010, China
| | - Xinli Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 10010, China.
| | - Jenpan Huang
- Science & Education, The Field Museum, Chicago, IL, 60605, USA
| | - Jiangchun Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 10010, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Fan G, Zhang K, Huang H, Zhang H, Zhao A, Chen L, Chen R, Li G, Wang Z, Lu GD. Multiprotein-bridging factor 1 regulates vegetative growth, osmotic stress, and virulence in Magnaporthe oryzae. Curr Genet 2016; 63:293-309. [DOI: 10.1007/s00294-016-0636-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 11/25/2022]
|
12
|
Song C, Ortiz-Urquiza A, Ying SH, Zhang JX, Keyhani NO. Interaction between TATA-Binding Protein (TBP) and Multiprotein Bridging Factor-1 (MBF1) from the Filamentous Insect Pathogenic Fungus Beauveria bassiana. PLoS One 2015; 10:e0140538. [PMID: 26466369 PMCID: PMC4605657 DOI: 10.1371/journal.pone.0140538] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/28/2015] [Indexed: 01/27/2023] Open
Abstract
TATA-binding protein (TBP) is a ubiquitous component of eukaryotic transcription factors that acts to nucleate assembly and position pre-initiation complexes. Multiprotein bridging factor 1 (MBF1) is thought to interconnect TBP with gene specific transcriptional activators, modulating transcriptional networks in response to specific signal and developmental programs. The insect pathogen, Beauveria bassiana, is a cosmopolitan fungus found in most ecosystems where it acts as an important regulator of insect populations and can form intimate associations with certain plants. In order to gain a better understanding of the function of MBF1 in filamentous fungi, its interaction with TBP was demonstrated. The MBF1 and TBP homologs in B. bassiana were cloned and purified from a heterologous E. coli expression system. Whereas purified BbTBP was shown to be able to bind oligonucleotide sequences containing the TATA-motif (Kd ≈ 1.3 nM) including sequences derived from the promoters of the B. bassiana chitinase and protease genes. In contrast, BbMBF1 was unable to bind to these same target sequences. However, the formation of a ternary complex between BbMBF1, BbTBP, and a TATA-containing target DNA sequence was seen in agarose gel electrophoretic mobility shift assays (EMSA). These data indicate that BbMBF1 forms direct interactions with BbTBP, and that the complex is capable of binding to DNA sequences containing TATA-motifs, confirming that BbTBP can link BbMBF1 to target sequences as part of the RNA transcriptional machinery in fungi.
Collapse
Affiliation(s)
- Chi Song
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences; Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing 100081, China
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Bldg 981, Museum Rd., Gainesville, FL 32611, United States of America
| | - Almudena Ortiz-Urquiza
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Bldg 981, Museum Rd., Gainesville, FL 32611, United States of America
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jin-Xia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences; Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing 100081, China
| | - Nemat O. Keyhani
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Bldg 981, Museum Rd., Gainesville, FL 32611, United States of America
| |
Collapse
|
13
|
Abstract
MBF1 (multi-protein bridging factor 1) is a protein containing a conserved HTH (helix-turn-helix) domain in both eukaryotes and archaea. Eukaryotic MBF1 has been reported to function as a transcriptional co-activator that physically bridges transcription regulators with the core transcription initiation machinery of RNA polymerase II. In addition, MBF1 has been found to be associated with polyadenylated mRNA in yeast as well as in mammalian cells. aMBF1 (archaeal MBF1) is very well conserved among most archaeal lineages; however, its function has so far remained elusive. To address this, we have conducted a molecular characterization of this aMBF1. Affinity purification of interacting proteins indicates that aMBF1 binds to ribosomal subunits. On sucrose density gradients, aMBF1 co-fractionates with free 30S ribosomal subunits as well as with 70S ribosomes engaged in translation. Binding of aMBF1 to ribosomes does not inhibit translation. Using NMR spectroscopy, we show that aMBF1 contains a long intrinsically disordered linker connecting the predicted N-terminal zinc-ribbon domain with the C-terminal HTH domain. The HTH domain, which is conserved in all archaeal and eukaryotic MBF1 homologues, is directly involved in the association of aMBF1 with ribosomes. The disordered linker of the ribosome-bound aMBF1 provides the N-terminal domain with high flexibility in the aMBF1-ribosome complex. Overall, our findings suggest a role for aMBF1 in the archaeal translation process.
Collapse
|
14
|
Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation. Microbiol Mol Biol Rev 2014; 78:89-175. [PMID: 24600042 DOI: 10.1128/mmbr.00041-13] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The metabolism of Archaea, the third domain of life, resembles in its complexity those of Bacteria and lower Eukarya. However, this metabolic complexity in Archaea is accompanied by the absence of many "classical" pathways, particularly in central carbohydrate metabolism. Instead, Archaea are characterized by the presence of unique, modified variants of classical pathways such as the Embden-Meyerhof-Parnas (EMP) pathway and the Entner-Doudoroff (ED) pathway. The pentose phosphate pathway is only partly present (if at all), and pentose degradation also significantly differs from that known for bacterial model organisms. These modifications are accompanied by the invention of "new," unusual enzymes which cause fundamental consequences for the underlying regulatory principles, and classical allosteric regulation sites well established in Bacteria and Eukarya are lost. The aim of this review is to present the current understanding of central carbohydrate metabolic pathways and their regulation in Archaea. In order to give an overview of their complexity, pathway modifications are discussed with respect to unusual archaeal biocatalysts, their structural and mechanistic characteristics, and their regulatory properties in comparison to their classic counterparts from Bacteria and Eukarya. Furthermore, an overview focusing on hexose metabolic, i.e., glycolytic as well as gluconeogenic, pathways identified in archaeal model organisms is given. Their energy gain is discussed, and new insights into different levels of regulation that have been observed so far, including the transcript and protein levels (e.g., gene regulation, known transcription regulators, and posttranslational modification via reversible protein phosphorylation), are presented.
Collapse
|
15
|
Zhalnina KV, Dias R, Leonard MT, Dorr de Quadros P, Camargo FAO, Drew JC, Farmerie WG, Daroub SH, Triplett EW. Genome sequence of Candidatus Nitrososphaera evergladensis from group I.1b enriched from Everglades soil reveals novel genomic features of the ammonia-oxidizing archaea. PLoS One 2014; 9:e101648. [PMID: 24999826 PMCID: PMC4084955 DOI: 10.1371/journal.pone.0101648] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/09/2014] [Indexed: 12/11/2022] Open
Abstract
The activity of ammonia-oxidizing archaea (AOA) leads to the loss of nitrogen from soil, pollution of water sources and elevated emissions of greenhouse gas. To date, eight AOA genomes are available in the public databases, seven are from the group I.1a of the Thaumarchaeota and only one is from the group I.1b, isolated from hot springs. Many soils are dominated by AOA from the group I.1b, but the genomes of soil representatives of this group have not been sequenced and functionally characterized. The lack of knowledge of metabolic pathways of soil AOA presents a critical gap in understanding their role in biogeochemical cycles. Here, we describe the first complete genome of soil archaeon Candidatus Nitrososphaera evergladensis, which has been reconstructed from metagenomic sequencing of a highly enriched culture obtained from an agricultural soil. The AOA enrichment was sequenced with the high throughput next generation sequencing platforms from Pacific Biosciences and Ion Torrent. The de novo assembly of sequences resulted in one 2.95 Mb contig. Annotation of the reconstructed genome revealed many similarities of the basic metabolism with the rest of sequenced AOA. Ca. N. evergladensis belongs to the group I.1b and shares only 40% of whole-genome homology with the closest sequenced relative Ca. N. gargensis. Detailed analysis of the genome revealed coding sequences that were completely absent from the group I.1a. These unique sequences code for proteins involved in control of DNA integrity, transporters, two-component systems and versatile CRISPR defense system. Notably, genomes from the group I.1b have more gene duplications compared to the genomes from the group I.1a. We suggest that the presence of these unique genes and gene duplications may be associated with the environmental versatility of this group.
Collapse
Affiliation(s)
- Kateryna V. Zhalnina
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Raquel Dias
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Michael T. Leonard
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | | | - Flavio A. O. Camargo
- Soil Science Department, Federal Unviersity of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jennifer C. Drew
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - William G. Farmerie
- Genome Sequencing Services Laboratory, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, United States of America
| | - Samira H. Daroub
- Everglades Research and Education Center, University of Florida, Belle Glade, Florida, United States of America
| | - Eric W. Triplett
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
16
|
Bokszczanin KL, Fragkostefanakis S. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. FRONTIERS IN PLANT SCIENCE 2013; 4:315. [PMID: 23986766 PMCID: PMC3750488 DOI: 10.3389/fpls.2013.00315] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/27/2013] [Indexed: 05/17/2023]
Abstract
Global warming is a major threat for agriculture and food safety and in many cases the negative effects are already apparent. The current challenge of basic and applied plant science is to decipher the molecular mechanisms of heat stress response (HSR) and thermotolerance in detail and use this information to identify genotypes that will withstand unfavorable environmental conditions. Nowadays X-omics approaches complement the findings of previous targeted studies and highlight the complexity of HSR mechanisms giving information for so far unrecognized genes, proteins and metabolites as potential key players of thermotolerance. Even more, roles of epigenetic mechanisms and the involvement of small RNAs in thermotolerance are currently emerging and thus open new directions of yet unexplored areas of plant HSR. In parallel it is emerging that although the whole plant is vulnerable to heat, specific organs are particularly sensitive to elevated temperatures. This has redirected research from the vegetative to generative tissues. The sexual reproduction phase is considered as the most sensitive to heat and specifically pollen exhibits the highest sensitivity and frequently an elevation of the temperature just a few degrees above the optimum during pollen development can have detrimental effects for crop production. Compared to our knowledge on HSR of vegetative tissues, the information on pollen is still scarce. Nowadays, several techniques for high-throughput X-omics approaches provide major tools to explore the principles of pollen HSR and thermotolerance mechanisms in specific genotypes. The collection of such information will provide an excellent support for improvement of breeding programs to facilitate the development of tolerant cultivars. The review aims at describing the current knowledge of thermotolerance mechanisms and the technical advances which will foster new insights into this process.
Collapse
Affiliation(s)
- Kamila L. Bokszczanin
- GenXPro GmbH, Frankfurt am MainGermany
- *Correspondence: Kamila L. Bokszczanin, GenXPro GmbH, Altenhöferallee 3, Frankfurt am Main 60438, Germany e-mail: ; Sotirios Fragkostefanakis, Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Street 9, Frankfurt am Main 60438, Germany e-mail:
| | | | - Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am MainGermany
- *Correspondence: Kamila L. Bokszczanin, GenXPro GmbH, Altenhöferallee 3, Frankfurt am Main 60438, Germany e-mail: ; Sotirios Fragkostefanakis, Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Street 9, Frankfurt am Main 60438, Germany e-mail:
| |
Collapse
|
17
|
Babini E, Hu X, Parigi G, Vignali M. Human multiprotein bridging factor 1 and Calmodulin do not interact in vitro as confirmed by NMR spectroscopy and CaM-agarose affinity chromatography. Protein Expr Purif 2011; 80:1-7. [PMID: 21782027 DOI: 10.1016/j.pep.2011.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/28/2011] [Accepted: 07/05/2011] [Indexed: 10/18/2022]
Abstract
The human multiprotein bridging factor 1 (hMBF1) has been established in different cellular types to have the role of transcriptional coactivator. It is also reported to be a putative Calmodulin (CaM) target, able to bind CaM in its calcium-free state, but little is known about the structural features and the biological relevance of this interaction. We applied NMR to investigate the interaction between the two proteins in solution and compared the results with those obtained with CaM-agarose affinity chromatography. No changes in ¹H-¹⁵N HSQC spectrum of both apo-CaM and Ca²⁺-CaM upon addition of hMBF1 prove that the two proteins do not interact in vitro. These results were confirmed by CaM-agarose affinity chromatography when operating under the same conditions. The discrepancy between present and previous experiments performed with CaM-agarose affinity chromatography depends on different experimental parameters suggesting that particular attention must be paid when CaM, or other immobilized proteins, are used to measure their affinity with putative partners. These results also imply that if an interaction between the two proteins exists in vivo, as reported for hMBF1 of endothelial cells, it might involve a posttranslational modified form of the proteins or it relies on other conditions imposed by the cellular environment.
Collapse
Affiliation(s)
- Elena Babini
- Department of Food Science, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy.
| | | | | | | |
Collapse
|
18
|
Suzuki N, Sejima H, Tam R, Schlauch K, Mittler R. Identification of the MBF1 heat-response regulon of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:844-51. [PMID: 21457365 PMCID: PMC4372994 DOI: 10.1111/j.1365-313x.2011.04550.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Brief periods of heat stress of even a few days can have a detrimental effect on yield production worldwide, causing devastating economic and societal impacts. Here we report on the identification of a new heat-response regulon in plants controlled by the multiprotein bridging factor 1c (MBF1c) protein of Arabidopsis thaliana. Members of the highly conserved MBF1 protein family function as non-DNA-binding transcriptional co-activators involved in regulating metabolic and development pathways in different organisms from yeast to humans. Nonetheless, our studies suggest that MBF1c from Arabidopsis functions as a transcriptional regulator which binds DNA and controls the expression of 36 different transcripts during heat stress, including the important transcriptional regulator DRE-binding protein 2A (DREB2A), two heat shock transcription factors (HSFs), and several zinc finger proteins. We further identify CTAGA as a putative response element for MBF1c, demonstrate that the DNA-binding domain of MBF1c has a dominant-negative effect on heat tolerance when constitutively expressed in plants, and show that constitutive expression of MBF1c in soybean enhances yield production in plants grown under controlled growth conditions without causing adverse effects on growth. Our findings could have a significant impact on improving heat tolerance and yield of different crops subjected to heat stress.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203
| | - Hiroe Sejima
- Department of Biochemistry and Molecular Biology, University of Nevada, Mail Stop 200, Reno NV 89557, USA
| | - Rachel Tam
- Department of Biochemistry and Molecular Biology, University of Nevada, Mail Stop 200, Reno NV 89557, USA
| | - Karen Schlauch
- Department of Biochemistry and Molecular Biology, University of Nevada, Mail Stop 200, Reno NV 89557, USA
| | - Ron Mittler
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203
- Department of Plant Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
19
|
Marrero Coto J, Ehrenhofer-Murray AE, Pons T, Siebers B. Functional analysis of archaeal MBF1 by complementation studies in yeast. Biol Direct 2011; 6:18. [PMID: 21392374 PMCID: PMC3062615 DOI: 10.1186/1745-6150-6-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/10/2011] [Indexed: 11/21/2022] Open
Abstract
Background Multiprotein-bridging factor 1 (MBF1) is a transcriptional co-activator that bridges a sequence-specific activator (basic-leucine zipper (bZIP) like proteins (e.g. Gcn4 in yeast) or steroid/nuclear-hormone receptor family (e.g. FTZ-F1 in insect)) and the TATA-box binding protein (TBP) in Eukaryotes. MBF1 is absent in Bacteria, but is well- conserved in Eukaryotes and Archaea and harbors a C-terminal Cro-like Helix Turn Helix (HTH) domain, which is the only highly conserved, classical HTH domain that is vertically inherited in all Eukaryotes and Archaea. The main structural difference between archaeal MBF1 (aMBF1) and eukaryotic MBF1 is the presence of a Zn ribbon motif in aMBF1. In addition MBF1 interacting activators are absent in the archaeal domain. To study the function and therefore the evolutionary conservation of MBF1 and its single domains complementation studies in yeast (mbf1Δ) as well as domain swap experiments between aMBF1 and yMbf1 were performed. Results In contrast to previous reports for eukaryotic MBF1 (i.e. Arabidopsis thaliana, insect and human) the two archaeal MBF1 orthologs, TMBF1 from the hyperthermophile Thermoproteus tenax and MMBF1 from the mesophile Methanosarcina mazei were not functional for complementation of an Saccharomyces cerevisiae mutant lacking Mbf1 (mbf1Δ). Of twelve chimeric proteins representing different combinations of the N-terminal, core domain, and the C-terminal extension from yeast and aMBF1, only the chimeric MBF1 comprising the yeast N-terminal and core domain fused to the archaeal C-terminal part was able to restore full wild-type activity of MBF1. However, as reported previously for Bombyx mori, the C-terminal part of yeast Mbf1 was shown to be not essential for function. In addition phylogenetic analyses revealed a common distribution of MBF1 in all Archaea with available genome sequence, except of two of the three Thaumarchaeota; Cenarchaeum symbiosum A and Nitrosopumilus maritimus SCM1. Conclusions The absence of MBF1-interacting activators in the archaeal domain, the presence of a Zn ribbon motif in the divergent N-terminal domain of aMBF1 and the complementation experiments using archaeal- yeast chimeric proteins presented here suggests that archaeal MBF1 is not able to functionally interact with the transcription machinery and/or Gcn4 of S. cerevisiae. Based on modeling and structural prediction it is tempting to speculate that aMBF1 might act as a single regulator or non-essential transcription factor, which directly interacts with DNA via the positive charged linker or the basal transcription machinery via its Zn ribbon motif and the HTH domain. However, also alternative functions in ribosome biosynthesis and/or functionality have been discussed and therefore further experiments are required to unravel the function of MBF1 in Archaea. Reviewers This article was reviewed by William Martin, Patrick Forterre, John van der Oost and Fabian Blombach (nominated by Eugene V Koonin (United States)). For the full reviews, please go to the Reviewer's Reports section.
Collapse
Affiliation(s)
- Jeannette Marrero Coto
- Faculty of Chemistry, Biofilm Centre, Molecular Enzyme Technology and Biochemistry, University of Duisburg-Essen, Universitätsstr. 5, (S05 V03 F41), 45141 Essen, Germany
| | | | | | | |
Collapse
|
20
|
Spang A, Hatzenpichler R, Brochier-Armanet C, Rattei T, Tischler P, Spieck E, Streit W, Stahl DA, Wagner M, Schleper C. Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol 2010; 18:331-40. [PMID: 20598889 DOI: 10.1016/j.tim.2010.06.003] [Citation(s) in RCA: 253] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/26/2010] [Accepted: 06/04/2010] [Indexed: 11/25/2022]
|
21
|
The nucleosome remodeling factor ISWI functionally interacts with an evolutionarily conserved network of cellular factors. Genetics 2010; 185:129-40. [PMID: 20194965 DOI: 10.1534/genetics.110.114256] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ISWI is an evolutionarily conserved ATP-dependent chromatin remodeling factor playing central roles in DNA replication, RNA transcription, and chromosome organization. The variety of biological functions dependent on ISWI suggests that its activity could be highly regulated. Our group has previously isolated and characterized new cellular activities that positively regulate ISWI in Drosophila melanogaster. To identify factors that antagonize ISWI activity we developed a novel in vivo eye-based assay to screen for genetic suppressors of ISWI. Our screen revealed that ISWI interacts with an evolutionarily conserved network of cellular and nuclear factors that escaped previous genetic and biochemical analyses.
Collapse
|