1
|
Ozkarafakili MA, Kara ZMY, Musluman AM, Bek TT. The Association of Plasma Asymmetric Dimethylarginine Concentrations and Inflammation Markers in Non-small Cell Lung Cancer. SISLI ETFAL HASTANESI TIP BULTENI 2024; 58:460-467. [PMID: 39816429 PMCID: PMC11729830 DOI: 10.14744/semb.2024.29939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 01/18/2025]
Abstract
Objectives Nonsmall cell lung cancer (NSCLC) accounts for about 85% of all lung cancers. Asymmetric dimethylarginine (ADMA) is an emerging molecule that is highlighted in carcinogenesis and tumor progression in lung cancer. Since elevated concentrations of ADMA are observed in lung cancer patients, we aimed to explore its associations with inflammation markers and established prognostic indices. Methods 78 newly diagnosed non-small cell lung cancer patients who were presented with brain metastases at the initial admission and 41 Stage 1 patients with NSCLC were included in the study. ADMA concentrations among the groups were correlated. Further, the relationship between ADMA levels and the other inflammatory markers was analyzed. Results ADMA levels were significantly higher in the group of NSCLC patients with brain metastases than in the Stage 1 patients control group (p<0.001). A significant negative correlation was found between ADMA levels and BMI, albumin and hemoglobin (p<0.001), whereas it was positively correlated with platelet, WBC, neutrophil-to-lymphocyte ratio, RDW, RDW/albumin ratio, LDH, CRP, fibrinogen, platelet, and CRP/albumin ratio (p<0.001). Conclusion Increased circulating concentrations of ADMA were significantly correlated with higher NLR, CRP and LDH; which were accepted as indicators of poor prognosis in NSCLC patients. ADMA might contribute to tumor growth and dissemination via systemic inflammatory pathways.
Collapse
Affiliation(s)
- Mufide Arzu Ozkarafakili
- Department of Chest Diseases, University of Health Sciences Türkiye, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye
| | - Zeynep Mine Yalcinkaya Kara
- Department of Biochemistry, University of Health Sciences Türkiye, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye
| | - Ahmet Murat Musluman
- Department of Neurosurgery, University of Health Sciences Türkiye, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye
| | - Tuba Tulin Bek
- Department of Radiation Oncology, University of Health Sciences Türkiye, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye
| |
Collapse
|
2
|
Ruggiero D, Nutile T, Nappo S, Tirozzi A, Bellenguez C, Leutenegger AL, Ciullo M. Genetics of PlGF plasma levels highlights a role of its receptors and supports the link between angiogenesis and immunity. Sci Rep 2021; 11:16821. [PMID: 34413389 PMCID: PMC8376970 DOI: 10.1038/s41598-021-96256-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022] Open
Abstract
Placental growth factor (PlGF) is a member of the vascular endothelial growth factor family and is involved in bone marrow-derived cell activation, endothelial stimulation and pathological angiogenesis. High levels of PlGF have been observed in several pathological conditions especially in cancer, cardiovascular, autoimmune and inflammatory diseases. Little is known about the genetics of circulating PlGF levels. Indeed, although the heritability of circulating PlGF levels is around 40%, no studies have assessed the relation between PlGF plasma levels and genetic variants at a genome-wide level. In the current study, PlGF plasma levels were measured in a population-based sample of 2085 adult individuals from three isolated populations of South Italy. A GWAS was performed in a discovery cohort (N = 1600), followed by a de novo replication (N = 468) from the same populations. The meta-analysis of the discovery and replication samples revealed one signal significantly associated with PlGF circulating levels. This signal was mapped to the PlGF co-receptor coding gene NRP1, indicating its important role in modulating the PlGF plasma levels. Two additional signals, at the PlGF receptor coding gene FLT1 and RAPGEF5 gene, were identified at a suggestive level. Pathway and TWAS analyses highlighted genes known to be involved in angiogenesis and immune response, supporting the link between these processes and PlGF regulation. Overall, these data improve our understanding of the genetic variation underlying circulating PlGF levels. This in turn could lead to new preventive and therapeutic strategies for a wide variety of PlGF-related pathologies.
Collapse
Affiliation(s)
- Daniela Ruggiero
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", National Research Council of Italy (CNR), Via Pietro Castellino, 111, 80131, Naples, Italy.
- IRCCS Neuromed, Pozzilli, Isernia, Italy.
| | - Teresa Nutile
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", National Research Council of Italy (CNR), Via Pietro Castellino, 111, 80131, Naples, Italy
| | | | | | - Celine Bellenguez
- CHU Lille, U1167 - Labex DISTALZ - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Inserm, Institut Pasteur de Lille, Univ. Lille, 59000, Lille, France
| | - Anne-Louise Leutenegger
- UMR 946, Genetic Variation and Human Diseases, Inserm, 75010, Paris, France
- UMR946, Université Paris-Diderot, Sorbonne Paris Cité, 75010, Paris, France
| | - Marina Ciullo
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", National Research Council of Italy (CNR), Via Pietro Castellino, 111, 80131, Naples, Italy.
- IRCCS Neuromed, Pozzilli, Isernia, Italy.
| |
Collapse
|
3
|
Singh I, Kim J, Saxena N, Choi S, Islam SMT, Singh AK, Khan M, Won J. Vascular and immunopathological role of Asymmetric Dimethylarginine (ADMA) in Experimental Autoimmune Encephalomyelitis. Immunology 2021; 164:602-616. [PMID: 34310708 DOI: 10.1111/imm.13396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Asymmetric dimethylarginine (ADMA) is an endogenous nitric oxide synthase (NOS) inhibitor/uncoupler inducing vascular pathology. Vascular pathology is an important factor for the development and progression of CNS pathology of MS, yet the role of ADMA in MS remains elusive. Patients with multiple sclerosis (MS) are reported to have elevated blood levels of ADMA, and mice with experimental autoimmune encephalomyelitis (EAE, an animal model of MS) generated by auto-immunization of myelin oligodendrocyte glycoprotein (MOG) and blood-brain barrier (BBB) disruption by pertussis toxin also had increased blood ADMA levels in parallel with induction of clinical disease. To explore the role of ADMA in EAE pathogenesis, EAE mice were treated with a daily dose of ADMA. It is of special interest that ADMA treatment enhanced the BBB disruption in EAE mice and exacerbated the clinical and CNS disease of EAE. ADMA treatment also induced the BBB disruption and EAE disease in MOG-immunized mice even without pertussis toxin treatment, suggesting the role of ADMA in BBB dysfunction in EAE. T-cell polarization studies also documented that ADMA treatment promotes TH 1- and TH 17-mediated immune responses but without affecting Treg-mediated immune response in EAE mice as well as in in vitro T-cell culture. Taken together, these data, for the first time, document the vascular and immunopathogenic roles of ADMA in EAE, thus pointing to the potential of ADMA-mediated mechanism as a new target of potential therapy for MS.
Collapse
Affiliation(s)
- Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA.,Research Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina, USA
| | - Judong Kim
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Nishant Saxena
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Seungho Choi
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - S M Touhidul Islam
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.,Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina, USA
| | - Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
4
|
Kawarazaki W, Fujita T. Role of Rho in Salt-Sensitive Hypertension. Int J Mol Sci 2021; 22:ijms22062958. [PMID: 33803946 PMCID: PMC8001214 DOI: 10.3390/ijms22062958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
A high amount of salt in the diet increases blood pressure (BP) and leads to salt-sensitive hypertension in individuals with impaired renal sodium excretion. Small guanosine triphosphatase (GTP)ase Rho and Rac, activated by salt intake, play important roles in the pathogenesis of salt-sensitive hypertension as key switches of intracellular signaling. Focusing on Rho, high salt intake in the central nervous system increases sodium concentrations of cerebrospinal fluid in salt-sensitive subjects via Rho/Rho kinase and renin-angiotensin system activation and causes increased brain salt sensitivity and sympathetic nerve outflow in BP control centers. In vascular smooth muscle cells, Rho-guanine nucleotide exchange factors and Rho determine sensitivity to vasoconstrictors such as angiotensin II (Ang II), and facilitate vasoconstriction via G-protein and Wnt pathways, leading to increased vascular resistance, including in the renal arteries, in salt-sensitive subjects with high salt intake. In the vascular endothelium, Rho/Rho kinase inhibits nitric oxide (NO) production and function, and high salt amounts further augment Rho activity via asymmetric dimethylarginine, an endogenous inhibitor of NO synthetase, causing aberrant relaxation and increased vascular tone. Rho-associated mechanisms are deeply involved in the development of salt-sensitive hypertension, and their further elucidation can help in developing effective protection and new therapies.
Collapse
|
5
|
Hulin JA, Gubareva EA, Jarzebska N, Rodionov RN, Mangoni AA, Tommasi S. Inhibition of Dimethylarginine Dimethylaminohydrolase (DDAH) Enzymes as an Emerging Therapeutic Strategy to Target Angiogenesis and Vasculogenic Mimicry in Cancer. Front Oncol 2020; 9:1455. [PMID: 31993367 PMCID: PMC6962312 DOI: 10.3389/fonc.2019.01455] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/05/2019] [Indexed: 01/01/2023] Open
Abstract
The small free radical gas nitric oxide (NO) plays a key role in various physiological and pathological processes through enhancement of endothelial cell survival and proliferation. In particular, NO has emerged as a molecule of interest in carcinogenesis and tumor progression due to its crucial role in various cancer-related events including cell invasion, metastasis, and angiogenesis. The dimethylarginine dimethylaminohydrolase (DDAH) family of enzymes metabolize the endogenous nitric oxide synthase (NOS) inhibitors, asymmetric dimethylarginine (ADMA) and monomethyl arginine (L-NMMA), and are thus key for maintaining homeostatic control of NO. Dysregulation of the DDAH/ADMA/NO pathway resulting in increased local NO availability often promotes tumor growth, angiogenesis, and vasculogenic mimicry. Recent literature has demonstrated increased DDAH expression in tumors of different origins and has also suggested a potential ADMA-independent role for DDAH enzymes in addition to their well-studied ADMA-mediated influence on NO. Inhibition of DDAH expression and/or activity in cell culture models and in vivo studies has indicated the potential therapeutic benefit of this pathway through inhibition of both angiogenesis and vasculogenic mimicry, and strategies for manipulating DDAH function in cancer are currently being actively pursued by several research groups. This review will thus provide a timely discussion on the expression, regulation, and function of DDAH enzymes in regard to angiogenesis and vasculogenic mimicry, and will offer insight into the therapeutic potential of DDAH inhibition in cancer based on preclinical studies.
Collapse
Affiliation(s)
- Julie-Ann Hulin
- Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Ekaterina A Gubareva
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - Natalia Jarzebska
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Anesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Roman N Rodionov
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Arduino A Mangoni
- Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Sara Tommasi
- Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
6
|
Wieczór AM, Wieczór R, Kulwas A, Rość D. Asymmetric dimethylarginine and angiogenesis: biological significance. INT ANGIOL 2018; 37:431-436. [DOI: 10.23736/s0392-9590.18.04017-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Dovinová I, Hrabárová E, Jansen E, Kvandová M, Majzúnová M, Berenyiová A, Barančík M. ADMA, homocysteine and redox status improvement affected by 7-nitroindazole in spontaneously hypertensive rats. Biomed Pharmacother 2018; 106:1478-1483. [PMID: 30119222 DOI: 10.1016/j.biopha.2018.07.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 12/31/2022] Open
Abstract
Inhibition of nitric oxide (NO) production can influence blood pressure regulation and increase hypertension. Asymmetric dimethylarginine, ADMA, an analogue of L-arginine, can inhibit NO synthesis, impair endothelial function, and is a risk marker of cardiovascular diseases. Homocysteine (Hcy) level affects oxidative stress production of reactive oxygen species (ROS) in hypertension and also influences changes in signaling and cell damage. The present study was focused on experimental effects of exogenous NOS inhibitors and their effect on ADMA, an endogenous NOS inhibitor, homocysteine and ROS production measured as reactive oxidative metabolites (ROM). We compared effects of the two potential exogenous NO-inhibitors: NG-nitro L-arginine methyl ester (L-NAME) and 7-nitroindazole (7-NI). Levels of ADMA, Hcy, ROM and total thiols (TTL) were not changed in the L-NAME group. With 7-NI administration, we observed unchanged NOS activity in the left ventricle and a pronounced decrease of ADMA and Hcy levels, accompanied by ROM over-production in plasma. TTL/ROM ratio was more favorable than in the L-NAME group. We observed that 7-NI, an exogenous NOinhibitor, can decrease and improve the levels of ADMA, Hcy, and ROM, and increase TTL/ROM ratio in the plasma of spontaneously hypertensive rats.
Collapse
Affiliation(s)
- Ima Dovinová
- Center of Experimental Medicine - Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 81371 Bratislava, Slovak Republic; Faculty of Health Sciences and Social Work, Trnava University, Univerzitné námestie 1, 918 43 Trnava, Slovak Republic.
| | - Eva Hrabárová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovak Republic
| | - Eugene Jansen
- Center for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Miroslava Kvandová
- Center of Experimental Medicine - Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 81371 Bratislava, Slovak Republic
| | - Miroslava Majzúnová
- Center of Experimental Medicine - Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 81371 Bratislava, Slovak Republic
| | - Andrea Berenyiová
- Center of Experimental Medicine - Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 81371 Bratislava, Slovak Republic
| | - Miroslav Barančík
- Center of Experimental Medicine - Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 84104 Bratislava, Slovak Republic.
| |
Collapse
|
8
|
Hong S, Chen S, Wang X, Sun D, Yan Z, Tai J, Bi M. ATAD2 silencing decreases VEGFA secretion through targeting has-miR-520a to inhibit angiogenesis in colorectal cancer. Biochem Cell Biol 2018; 96:761-768. [PMID: 29958090 DOI: 10.1139/bcb-2018-0081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
ATPase family AAA domain-containing protein 2 (ATAD2) is involved in various types of cancers, including colorectal cancer. This study aimed to determine the role of ATAD2 in angiogenesis in colorectal cancer. Here, we downregulated ATAD2 expression in HCT116 and SW480 cells, and collected the conditioned medium (CM) from control and ATAD2-silenced cells. The effect of CM on human umbilical vein endothelial cells (HUVEC) was evaluated by using CCK-8, wound healing, tube formation, Western blot, and dual-luciferase reporter assays. Our results showed that the proliferation, migration, and tube formation of HUVEC were reduced in presence of ATAD2-silenced CM, and the levels of phosphorylated vascular endothelial growth factor receptor 2 (P-VEGFR2), CD31, and CD34 were downregulated. Mechanism studies showed that ATAD2 silencing regulated the expression of vascular endothelial growth factor A (VEGFA) and miR-520a. Moreover, we found that miR-520a could bind to ATAD2, and its inhibitor partly reversed the alterations in HUVEC induced by CM from ATAD2-silenced cells. In addition, we demonstrated that miR-520a directly bound to 3'-UTR of VEGFA and inhibited its expression. Collectively, our results indicate that ATAD2 inhibition suppresses VEGFA secretion by increasing miR-520a levels. Our study suggests ATAD2 as a potential therapeutic target for angiogenesis in colorectal cancer.
Collapse
Affiliation(s)
- Sen Hong
- a Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Si Chen
- a Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Xu Wang
- a Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Di Sun
- a Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Zhenkun Yan
- b Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Jiandong Tai
- a Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Miaomiao Bi
- c Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| |
Collapse
|
9
|
MiR-193b regulates breast cancer cell migration and vasculogenic mimicry by targeting dimethylarginine dimethylaminohydrolase 1. Sci Rep 2017; 7:13996. [PMID: 29070803 PMCID: PMC5656623 DOI: 10.1038/s41598-017-14454-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 10/11/2017] [Indexed: 12/27/2022] Open
Abstract
Dimethylarginine dimethylaminohydrolase 1 (DDAH1) is responsible for metabolism of an endogenous inhibitor of nitric oxide synthase (NOS), asymmetric dimethylarginine (ADMA), which plays a key role in modulating angiogenesis. In addition to angiogenesis, tumours can establish a vascular network by forming vessel-like structures from tumour cells; a process termed vasculogenic mimicry (VM). Here, we identified over-expression of DDAH1 in aggressive MDA-MB-231, MDA-MB-453 and BT549 breast cancer cell lines when compared to normal mammary epithelial cells. DDAH1 expression was inversely correlated with the microRNA miR-193b. In DDAH1+ MDA-MB-231 cells, ectopic expression of miR-193b reduced DDAH1 expression and the conversion of ADMA to citrulline. In DDAH1− MCF7 cells, inhibition of miR-193b elevated DDAH1 expression. Luciferase reporter assays demonstrated DDAH1 as a direct target of miR-193b. MDA-MB-231 cells organised into tube structures in an in vitro assay of VM, which was significantly inhibited by DDAH1 knockdown or miR-193b expression. Mechanistically, we found miR-193b regulates cell proliferation and migration of MDA-MB-231 cells, whilst DDAH1 knockdown inhibited cell migration. These studies represent the first evidence for DDAH1 expression, regulation and function in breast cancer cells, and highlights that targeting DDAH1 expression and/or enzymatic activity may be a valid option in the treatment of aggressive breast cancers.
Collapse
|
10
|
Buijs N, Oosterink JE, Jessup M, Schierbeek H, Stolz DB, Houdijk AP, Geller DA, van Leeuwen PA. A new key player in VEGF-dependent angiogenesis in human hepatocellular carcinoma: dimethylarginine dimethylaminohydrolase 1. Angiogenesis 2017; 20:557-565. [PMID: 28741166 PMCID: PMC5660142 DOI: 10.1007/s10456-017-9567-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 07/14/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Anti-angiogenic therapies, targeting VEGF, are a promising treatment for hepatocellular carcinoma (HCC). To enhance this potential therapy, identification of novel targets in this pathway is of major interest. Nitric oxide (NO) plays a crucial role in VEGF-dependent angiogenesis. NO production depends on arginine as substrate and asymmetric dimethylarginine (ADMA) as inhibitor. Dimethylarginine dimethylaminohydrolase 1 (DDAH-1) catabolizes ADMA and therefore regulates NO and VEGF expression. This study unravels additional mechanisms to improve VEGF targeting therapies. METHODS The expression of DDAH-1 was examined in HCC specimen and non-tumorous background liver of 20 patients undergoing liver resection. Subsequently, arginine/ADMA balance, NO production, and VEGF expression were analyzed. The influence of hypoxia on DDAH-1 and angiogenesis promoting factors was evaluated in HepG2 cells and primary human hepatocytes. RESULTS DDAH-1 expression was significantly induced in primary HCC tumors compared to non-tumorous background liver. This was associated with an increased arginine/ADMA ratio, higher NO formation, and higher VEGF expression in human HCC compared to non-tumorous liver. Hypoxia induced DDAH-1, iNOS, and VEGF expression in a time-dependent manner in HepG2 cells. CONCLUSIONS Our results indicate that DDAH-1 expression is increased in human HCC, which is associated with an increase in the arginine/ADMA ratio and enhanced NO formation. Hypoxia may be an initiating factor for the increase in DDAH-1 expression. DDAH-1 expression is associated with promotion of angiogenesis stimulating factor VEGF. Together, our findings for the first time identified DDAH-1 as a key player in the regulation of angiogenesis in human HCC, and by understanding this mechanism, future therapeutic strategies targeting VEGF can be improved.
Collapse
Affiliation(s)
- Nikki Buijs
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA. .,Department of Surgery, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands. .,Department of Surgery, Medical Center Alkmaar, Trial Center Holland Health, Alkmaar, The Netherlands.
| | - J Efraim Oosterink
- Department of Pediatrics, Academic Medical Center, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Morgan Jessup
- Department of Cell Biology and Physiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Henk Schierbeek
- Department of Pediatrics, Academic Medical Center, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Donna B Stolz
- Department of Cell Biology and Physiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Alexander P Houdijk
- Department of Surgery, Medical Center Alkmaar, Trial Center Holland Health, Alkmaar, The Netherlands
| | - David A Geller
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Paul A van Leeuwen
- Department of Surgery, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Mistry RK, Brewer AC. Redox regulation of gasotransmission in the vascular system: A focus on angiogenesis. Free Radic Biol Med 2017; 108:500-516. [PMID: 28433660 PMCID: PMC5698259 DOI: 10.1016/j.freeradbiomed.2017.04.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species have emerged as key participants in a broad range of physiological and pathophysiological processes, not least within the vascular system. Diverse cellular functions which have been attributed to some of these pro-oxidants within the vasculature include the regulation of blood pressure, neovascularisation and vascular inflammation. We here highlight the emerging roles of the enzymatically-generated reaction oxygen species, O2- and H2O2, in the regulation of the functions of the gaseous signalling molecules: nitric oxide (NO), carbon monoxide (CO), and hydrogen sulphide (H2S). These gasotransmitters are produced on demand from distinct enzymatic sources and in recent years it has become apparent that they are capable of mediating a number of homeostatic processes within the cardiovascular system including enhanced vasodilation, angiogenesis, wound healing and improved cardiac function following myocardial infarction. In common with O2- and/or H2O2 they signal by altering the functions of target proteins, either by the covalent modification of thiol groups or by direct binding to metal centres within metalloproteins, most notably haem proteins. The regulation of the enzymes which generate NO, CO and H2S have been shown to be influenced at both the transcriptional and post-translational levels by redox-dependent mechanisms, while the activity and bioavailability of the gasotransmitters themselves are also subject to oxidative modification. Within vascular cells, the family of nicotinamide adenine dinucleotide phosphate oxidases (NAPDH oxidases/Noxs) have emerged as functionally significant sources of regulated O2- and H2O2 production and accordingly, direct associations between Nox-generated oxidants and the functions of specific gasotransmitters are beginning to be identified. This review focuses on the current knowledge of the redox-dependent mechanisms which regulate the generation and activity of these gases, with particular reference to their roles in angiogenesis.
Collapse
Affiliation(s)
- Rajesh K Mistry
- Cardiovascular Division, James Black Centre, King's College London BHF Centre of Excellence, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Alison C Brewer
- Cardiovascular Division, James Black Centre, King's College London BHF Centre of Excellence, 125 Coldharbour Lane, London SE5 9NU, UK.
| |
Collapse
|
12
|
Shai AN, Fedulova MV, Kvacheva YE, Shigeev SV, Kovalev AV. [The importance of marker proteins of the nervous tissue for morphological diagnostics of the craniocerebral injury]. Sud Med Ekspert 2017; 60:40-45. [PMID: 28766528 DOI: 10.17116/sudmed201760440-45] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The present review of the literature involves 50 publications concerning various substrates of importance as the biological markers of axonal damages with special reference to the secondary molecular and cellular mechanisms on which to base in vitro and in vivo modeling of the craniocerebral injury. The results of the investigations with the application of mass-spectrometry for the identification of the proteins specifically synthesized in response to the injury are presented; their biological functions are described. The use of the sequential microscopic imaging technique and the immunohistochemical methods made it possible to determine that the majority of the marker proteins are involved in the specific intracellular processes that are triggered in response to the traumatic impact including apoptosis, proliferation, formation of lamellipodia, axon regeneration, actin remodeling, cell migration and inflammation. In addition, a rise in the amount of intracellular actin-associated proteins has been observed. It is concluded that the investigations into the properties and the physiological role of beta-amyloid precursor protein (beta-APP) are of special value for the characteristic of nervous tissue damages and morphological diagnostics of the craniocerebral injury.
Collapse
Affiliation(s)
- A N Shai
- Russian Federal Centre of Forensic Medical Expertise, Ministry of Health of the Russia, Moscow, Russia, 125284
| | - M V Fedulova
- Russian Federal Centre of Forensic Medical Expertise, Ministry of Health of the Russia, Moscow, Russia, 125284
| | - Yu E Kvacheva
- Russian Federal Centre of Forensic Medical Expertise, Ministry of Health of the Russia, Moscow, Russia, 125284
| | - S V Shigeev
- Russian Federal Centre of Forensic Medical Expertise, Ministry of Health of the Russia, Moscow, Russia, 125284
| | - A V Kovalev
- Russian Federal Centre of Forensic Medical Expertise, Ministry of Health of the Russia, Moscow, Russia, 125284
| |
Collapse
|
13
|
Hu XL, Zhou JP, Kuang DB, Qi H, Peng LM, Yang TL, Li X, Zhang W, Zhou HH, Chen XP. Considerable impacts of AGXT2 V140I polymorphism on chronic heart failure in the Chinese population. Atherosclerosis 2016; 251:255-262. [DOI: 10.1016/j.atherosclerosis.2016.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/25/2016] [Accepted: 07/06/2016] [Indexed: 01/02/2023]
|
14
|
Abstract
Vascular endothelial growth factor (VEGF) plays a fundamental role in angiogenesis and endothelial cell biology, and has been the subject of intense study as a result. VEGF acts via a diverse and complex range of signaling pathways, with new targets constantly being discovered. This review attempts to summarize the current state of knowledge regarding VEGF cell signaling in endothelial and cardiovascular biology, with a particular emphasis on its role in angiogenesis.
Collapse
Affiliation(s)
- Ian Evans
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, Rayne Building, 5 University Street, London, WC1E 6JF, UK,
| |
Collapse
|
15
|
Cao Y, Fang Y, Mu J, Liu X. High salt medium activates RhoA/ROCK and downregulates eNOS expression via the upregulation of ADMA. Mol Med Rep 2016; 14:606-12. [PMID: 27175806 DOI: 10.3892/mmr.2016.5241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 04/18/2016] [Indexed: 11/05/2022] Open
Abstract
Endothelial dysfunction has an important role in the development and progression of salt-sensitive hypertension. Asymmetric dimethylarginine (ADMA), which is an endogenous inhibitor of nitric oxide synthase (NOS), has been demonstrated to be involved in the pathophysiological processes of endothelial dysfunction and salt‑sensitive hypertension. However, it is currently unclear how high salt intake may induce these processes. The present study investigated the effects of high salt medium on ADMA, endothelial NOS (eNOS) and the Ras homolog gene family, member A (RhoA)/Rho-associated protein kinase (ROCK) pathway in the EA.hy926 umbilical vein cell line. The results demonstrated that high salt medium significantly increased the concentration of ADMA, the expression of protein arginine methyltransferase 1 (PRMT‑1) and RhoA, and the activity of ROCK, and downregulated the expression of eNOS. Knockdown of PRMT-1 with small interfering RNA (siRNA) significantly abrogated the aforementioned effects. These results indicated that ADMA has a key role in high salt‑mediated activation of the RhoA/ROCK pathway and inhibition of eNOS biosynthesis. siRNA‑PRMT‑1 may be considered a novel remedy for the treatment of endothelial dysfunction.
Collapse
Affiliation(s)
- Yu Cao
- Department of Pediatrics, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuan Fang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jianjun Mu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaohong Liu
- Department of Pediatrics, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
16
|
Shiozawa T, Iyama S, Toshima S, Sakata A, Usui S, Minami Y, Sato Y, Hizawa N, Noguchi M. Dimethylarginine dimethylaminohydrolase 2 promotes tumor angiogenesis in lung adenocarcinoma. Virchows Arch 2015; 468:179-90. [PMID: 26515557 PMCID: PMC4778151 DOI: 10.1007/s00428-015-1863-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/28/2015] [Accepted: 09/29/2015] [Indexed: 12/22/2022]
Abstract
Although embryonal proteins have been used as tumor marker, most are not useful for detection of early malignancy. In the present study, we developed mouse monoclonal antibodies against fetal lung of miniature swine, and screened them to find an embryonal protein that is produced at the early stage of malignancy, focusing on lung adenocarcinoma. We found an antibody clone that specifically stained stroma of lung adenocarcinoma. LC-MS/MS identified the protein recognized by this clone as dimethylarginine dimethylaminohydrolase 2 (DDAH2), an enzyme known for antiatherosclerotic activity. DDAH2 was found to be expressed in fibroblasts of stroma of malignancies, with higher expression in minimally invasive adenocarcinoma (MIA) and invasive adenocarcinoma than in adenocarcinoma in situ (AIS). Moreover, tumors with high stromal expression of DDAH2 had a poorer prognosis than those without. In vitro analysis showed that DDAH2 increases expression of endothelial nitric oxide synthase (eNOS), inducing proliferation and capillary-like tube formation of vascular endothelial cells. In resected human tissues, eNOS also showed higher expression in invasive adenocarcinoma than in AIS and normal lung, similarly to DDAH2. Our data indicate that expression of DDAH2 is associated with invasiveness of lung adenocarcinoma via tumor angiogenesis. DDAH2 expression might be a prognostic factor in lung adenocarcinoma.
Collapse
Affiliation(s)
- Toshihiro Shiozawa
- Department of Pathology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shinji Iyama
- Department of Pathology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Shotaro Toshima
- Department of Pathology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Akiko Sakata
- Department of Pathology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Shingo Usui
- Department of Thoracic Surgery, NHO Ibarakihigashi National Hospital, Tokai, Ibaraki, Japan
| | - Yuko Minami
- Department of Pathology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yukio Sato
- Department of Thoracic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nobuyuki Hizawa
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masayuki Noguchi
- Department of Pathology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
17
|
Chertow JH, Alkaitis MS, Nardone G, Ikeda AK, Cunnington AJ, Okebe J, Ebonyi AO, Njie M, Correa S, Jayasooriya S, Casals-Pascual C, Billker O, Conway DJ, Walther M, Ackerman H. Plasmodium Infection Is Associated with Impaired Hepatic Dimethylarginine Dimethylaminohydrolase Activity and Disruption of Nitric Oxide Synthase Inhibitor/Substrate Homeostasis. PLoS Pathog 2015; 11:e1005119. [PMID: 26407009 PMCID: PMC4583463 DOI: 10.1371/journal.ppat.1005119] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 07/29/2015] [Indexed: 12/04/2022] Open
Abstract
Inhibition of nitric oxide (NO) signaling may contribute to pathological activation of the vascular endothelium during severe malaria infection. Dimethylarginine dimethylaminohydrolase (DDAH) regulates endothelial NO synthesis by maintaining homeostasis between asymmetric dimethylarginine (ADMA), an endogenous NO synthase (NOS) inhibitor, and arginine, the NOS substrate. We carried out a community-based case-control study of Gambian children to determine whether ADMA and arginine homeostasis is disrupted during severe or uncomplicated malaria infections. Circulating plasma levels of ADMA and arginine were determined at initial presentation and 28 days later. Plasma ADMA/arginine ratios were elevated in children with acute severe malaria compared to 28-day follow-up values and compared to children with uncomplicated malaria or healthy children (p<0.0001 for each comparison). To test the hypothesis that DDAH1 is inactivated during Plasmodium infection, we examined DDAH1 in a mouse model of severe malaria. Plasmodium berghei ANKA infection inactivated hepatic DDAH1 via a post-transcriptional mechanism as evidenced by stable mRNA transcript number, decreased DDAH1 protein concentration, decreased enzyme activity, elevated tissue ADMA, elevated ADMA/arginine ratio in plasma, and decreased whole blood nitrite concentration. Loss of hepatic DDAH1 activity and disruption of ADMA/arginine homeostasis may contribute to severe malaria pathogenesis by inhibiting NO synthesis. During a malaria infection, the vascular endothelium becomes more adhesive, permeable, and prone to trigger blood clotting. These changes help the parasite adhere to blood vessels, but endanger the host by obstructing blood flow through small vessels. Endothelial nitric oxide (NO) would normally counteract these pathological changes, but NO signalling is diminished malaria. NO synthesis is inhibited by asymmetric dimethylarginine (ADMA), a methylated derivative of arginine that is released during normal protein turnover. We found the ratio of ADMA to arginine to be elevated in Gambian children with severe malaria, a metabolic disturbance known to inhibit NO synthesis. ADMA was associated with markers of endothelial activation and impaired tissue perfusion. In parallel experiments using mice, the enzyme responsible for metabolizing ADMA, dimethylarginine dimethylaminohydrolase (DDAH), was inactivated after infection with a rodent malaria. Based on these studies, we propose that decreased metabolism of ADMA by DDAH might contribute to the elevated ADMA/arginine ratio observed during an acute episode of malaria. Strategies to preserve or increase DDAH activity might improve NO synthesis and help to prevent the vascular manifestations of severe malaria.
Collapse
Affiliation(s)
- Jessica H. Chertow
- Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Matthew S. Alkaitis
- Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington Oxford, United Kingdom
| | - Glenn Nardone
- Research Technology Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Allison K. Ikeda
- Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | | | | | | | | | | | | | | | - Oliver Billker
- Wellcome Trust Sanger Institute, Hinxton Cambridge, United Kingdom
| | - David J. Conway
- MRC Unit, Fajara, The Gambia
- London School of Hygiene and Tropical Medicine, Bloomsbury, London, United Kingdom
| | | | - Hans Ackerman
- Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
18
|
Nijaguna MB, Patil V, Urbach S, Shwetha SD, Sravani K, Hegde AS, Chandramouli BA, Arivazhagan A, Marin P, Santosh V, Somasundaram K. Glioblastoma-derived Macrophage Colony-stimulating Factor (MCSF) Induces Microglial Release of Insulin-like Growth Factor-binding Protein 1 (IGFBP1) to Promote Angiogenesis. J Biol Chem 2015; 290:23401-15. [PMID: 26245897 DOI: 10.1074/jbc.m115.664037] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma (grade IV glioma/GBM) is the most common primary adult malignant brain tumor with poor prognosis. To characterize molecular determinants of tumor-stroma interaction in GBM, we profiled 48 serum cytokines and identified macrophage colony-stimulating factor (MCSF) as one of the elevated cytokines in sera from GBM patients. Both MCSF transcript and protein were up-regulated in GBM tissue samples through a spleen tyrosine kinase (SYK)-dependent activation of the PI3K-NFκB pathway. Ectopic overexpression and silencing experiments revealed that glioma-secreted MCSF has no role in autocrine functions and M2 polarization of macrophages. In contrast, silencing expression of MCSF in glioma cells prevented tube formation of human umbilical vein endothelial cells elicited by the supernatant from monocytes/microglial cells treated with conditioned medium from glioma cells. Quantitative proteomics based on stable isotope labeling by amino acids in cell culture showed that glioma-derived MCSF induces changes in microglial secretome and identified insulin-like growth factor-binding protein 1 (IGFBP1) as one of the MCSF-regulated proteins secreted by microglia. Silencing IGFBP1 expression in microglial cells or its neutralization by an antibody reduced the ability of supernatants derived from microglial cells treated with glioma cell-conditioned medium to induce angiogenesis. In conclusion, this study shows up-regulation of MCSF in GBM via a SYK-PI3K-NFκB-dependent mechanism and identifies IGFBP1 released by microglial cells as a novel mediator of MCSF-induced angiogenesis, of potential interest for developing targeted therapy to prevent GBM progression.
Collapse
Affiliation(s)
- Mamatha Bangalore Nijaguna
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Vikas Patil
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Serge Urbach
- the Institut de Génomique Fonctionnelle, CNRS UMR 5203, F-34094 Montpellier, France, INSERM U1191, F-34094 Montpellier, France, the Université de Montpellier, F-34094 Montpellier, France
| | | | | | - Alangar S Hegde
- the Sri Satya Sai Institute of Higher Medical Sciences, Bangalore 560066, India
| | | | | | - Philippe Marin
- the Institut de Génomique Fonctionnelle, CNRS UMR 5203, F-34094 Montpellier, France, INSERM U1191, F-34094 Montpellier, France, the Université de Montpellier, F-34094 Montpellier, France
| | | | - Kumaravel Somasundaram
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India,
| |
Collapse
|
19
|
Deracinois B, Pottiez G, Chafey P, Teerlink T, Camoin L, Davids M, Broussard C, Couraud PO, Dehouck MP, Cecchelli R, Karamanos Y, Flahaut C. Glial-cell-mediated re-induction of the blood-brain barrier phenotype in brain capillary endothelial cells: A differential gel electrophoresis study. Proteomics 2013; 13:1185-99. [DOI: 10.1002/pmic.201200166] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 11/30/2012] [Accepted: 01/11/2013] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | - Tom Teerlink
- Metabolic Unit, Department of Clinical Chemistry; VU University Medical Center; Amsterdam; The Netherlands
| | | | - Mariska Davids
- Metabolic Unit, Department of Clinical Chemistry; VU University Medical Center; Amsterdam; The Netherlands
| | | | | | | | | | | | | |
Collapse
|
20
|
Lööv C, Shevchenko G, Geeyarpuram Nadadhur A, Clausen F, Hillered L, Wetterhall M, Erlandsson A. Identification of injury specific proteins in a cell culture model of traumatic brain injury. PLoS One 2013; 8:e55983. [PMID: 23409102 PMCID: PMC3567017 DOI: 10.1371/journal.pone.0055983] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/03/2013] [Indexed: 11/22/2022] Open
Abstract
The complicated secondary molecular and cellular mechanisms following traumatic brain injury (TBI) are still not fully understood. In the present study, we have used mass spectrometry to identify injury specific proteins in an in vitro model of TBI. A standardized injury was induced by scalpel cuts through a mixed cell culture of astrocytes, oligodendrocytes and neurons. Twenty-four hours after the injury, cell culture medium and whole-cell fractions were collected for analysis. We found 53 medium proteins and 46 cell fraction proteins that were specifically expressed after injury and the known function of these proteins was elucidated by an extensive literature survey. By using time-lapse microscopy and immunostainings we could link a large proportion of the proteins to specific cellular processes that occur in response to trauma; including cell death, proliferation, lamellipodia formation, axonal regeneration, actin remodeling, migration and inflammation. A high percentage of the proteins uniquely expressed in the medium after injury were actin-related proteins, which normally are situated intracellularly. We show that two of these, ezrin and moesin, are expressed by astrocytes both in the cell culture model and in mouse brain subjected to experimental TBI. Interestingly, we found many inflammation-related proteins, despite the fact that cells were present in the culture. This study contributes with important knowledge about the cellular responses after trauma and identifies several potential cell-specific biomarkers.
Collapse
Affiliation(s)
- Camilla Lööv
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Ganna Shevchenko
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | | | - Fredrik Clausen
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Lars Hillered
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Magnus Wetterhall
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Anna Erlandsson
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
21
|
Abstract
Nitric oxide (NO) is just one member of a new class of gaseous signalling molecules with fundamental actions in biology. In higher vertebrates it has key roles in maintaining haemostasis and in smooth muscle (especially vascular smooth muscle), neurons and the gastrointestinal tract. It is intimately involved in regulating all aspects of our lives from waking, digestion, sexual function, perception of pain and pleasure, memory recall and sleeping. Finally, the way it continues to function in our bodies will influence how we degenerate with age. It will likely play a role in our deaths through cardiovascular disease, stroke, diabetes and cancer. Our ability to control NO signalling and to use NO effectively in therapy must therefore have a major bearing on the future quality and duration of human life.
Collapse
Affiliation(s)
- David G Hirst
- School of Pharmacy, Queen's University Belfast, BT9 7BL Belfast, UK.
| | | |
Collapse
|
22
|
Yakovlev VA, Mikkelsen RB. Protein tyrosine nitration in cellular signal transduction pathways. J Recept Signal Transduct Res 2010; 30:420-9. [PMID: 20843272 DOI: 10.3109/10799893.2010.513991] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
How specificity and reversibility in tyrosine nitration are defined biologically in cellular systems is poorly understood. As more investigations identify proteins involved in cell regulatory pathways in which only a small fraction of that protein pool is modified by nitration to affect cell function, the mechanisms of biological specificity and reversal should come into focus. In this review experimental evidence has been summarized to suggest that tyrosine nitration is a highly selective modification and under certain physiological conditions fulfills the criteria of a physiologically relevant signal. It can be specific, reversible, occurs on a physiological time scale, and, depending on a target, can result in either activation or inhibition.
Collapse
Affiliation(s)
- Vasily A Yakovlev
- Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
23
|
Affiliation(s)
- Ralf P. Brandes
- From the Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|