1
|
Finke L, Weitz E. A Phenomenological Approach to Interactive Knot Diagrams. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:5901-5907. [PMID: 38787659 DOI: 10.1109/tvcg.2024.3405369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Knot diagrams are among the most common visual tools in topology. Computer programs now make it possible to draw, manipulate and render them digitally, which proves to be useful in knot theory teaching and research. Still, an openly available tool to manipulate knot diagrams in a real-time, interactive way is yet to be developed. We introduce a method of operating on the geometry of the knot diagram itself without any underlying three-dimensional structure that can underpin such an application. This allows us to directly interact with vector graphics knot diagrams while at the same time computing knot invariants in ways proposed by previous work. An implementation of this method is provided.
Collapse
|
2
|
Rusková R, Račko D. Knot Formation on DNA Pushed Inside Chiral Nanochannels. Polymers (Basel) 2023; 15:4185. [PMID: 37896430 PMCID: PMC10611388 DOI: 10.3390/polym15204185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
We performed coarse-grained molecular dynamics simulations of DNA polymers pushed inside infinite open chiral and achiral channels. We investigated the behavior of the polymer metrics in terms of span, monomer distributions and changes of topological state of the polymer in the channels. We also compared the regime of pushing a polymer inside the infinite channel to the case of polymer compression in finite channels of knot factories investigated in earlier works. We observed that the compression in the open channels affects the polymer metrics to different extents in chiral and achiral channels. We also observed that the chiral channels give rise to the formation of equichiral knots with the same handedness as the handedness of the chiral channels.
Collapse
Affiliation(s)
- Renáta Rusková
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Dušan Račko
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| |
Collapse
|
3
|
Zhao X, Wang H, Li B, Zhang W, Li X, Zhao W, Janiak C, Heard AW, Yang X, Wu B. A Hydrogen‐Bonded Ravel Assembled by Anion Coordination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaotong Zhao
- College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Heng Wang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518055 China
| | - Boyang Li
- College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Wenyao Zhang
- College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518055 China
| | - Wei Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 102488 China
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Germany
| | - Andrew W. Heard
- Department of Chemistry University of Cambridge Cambridge UK
| | - Xiao‐Juan Yang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 102488 China
| | - Biao Wu
- College of Chemistry and Materials Science Northwest University Xi'an 710069 China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 102488 China
| |
Collapse
|
4
|
Zhao X, Wang H, Li B, Zhang W, Li X, Zhao W, Janiak C, Heard AW, Yang XJ, Wu B. A Hydrogen-Bonded Ravel Assembled by Anion Coordination. Angew Chem Int Ed Engl 2021; 61:e202115042. [PMID: 34850515 DOI: 10.1002/anie.202115042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 11/08/2022]
Abstract
Anion-coordination-driven assembly (ACDA) is showing increasing power in the construction of anionic supramolecular architectures. Herein, by expanding the anion centers from oxoanion (phosphate or sulfate) to organic tris-carboxylates, an Archimedean solid (truncated tetrahedron) and a highly entangled, double-walled tetrahedron featuring a ravel topology have been assembled with tris-bis(urea) ligands. The results demonstrate the promising ability of tris-carboxylates as new anion coordination centers in constructing novel topologies with increasing complexity and diversity compared to phosphate or sulfate ions on account of the modifiable size and easy functionalization character of these organic anions.
Collapse
Affiliation(s)
- Xiaotong Zhao
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Boyang Li
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Wenyao Zhang
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Wei Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204, Düsseldorf, Germany
| | - Andrew W Heard
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Xiao-Juan Yang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Biao Wu
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China.,Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| |
Collapse
|
5
|
Rusková R, Račko D. Channels with Helical Modulation Display Stereospecific Sensitivity for Chiral Superstructures. Polymers (Basel) 2021; 13:3726. [PMID: 34771282 PMCID: PMC8588256 DOI: 10.3390/polym13213726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 01/03/2023] Open
Abstract
By means of coarse-grained molecular dynamics simulations, we explore chiral sensitivity of confining spaces modelled as helical channels to chiral superstructures represented by polymer knots. The simulations show that helical channels exhibit stereosensitivity to chiral knots localized on linear chains by effect of external pulling force and also to knots embedded on circular chains. The magnitude of the stereoselective effect is stronger for torus knots, the effect is weaker in the case of twist knots, and amphichiral knots do exhibit no chiral effects. The magnitude of the effect can be tuned by the so-far investigated radius of the helix, the pitch of the helix and the strength of the pulling force. The model is aimed to simulate and address a range of practical situations that may occur in experimental settings such as designing of nanotechnological devices for the detection of topological state of molecules, preparation of new gels with tailor made stereoselective properties, or diffusion of knotted DNA in biological conditions.
Collapse
Affiliation(s)
- Renáta Rusková
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cesta 3, 84541 Bratislava, Slovakia;
- Department of Plastics, Rubber and Fibres (IPM FCFT), Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia
| | - Dušan Račko
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cesta 3, 84541 Bratislava, Slovakia;
| |
Collapse
|
6
|
Abstract
Proper identification of oriented knots and 2-component links requires a precise link nomenclature. Motivated by questions arising in DNA topology, this study aims to produce a nomenclature unambiguous with respect to link symmetries. For knots, this involves distinguishing a knot type from its mirror image. In the case of 2-component links, there are up to sixteen possible symmetry types for each link type. The study revisits the methods previously used to disambiguate chiral knots and extends them to oriented 2-component links with up to nine crossings. Monte Carlo simulations are used to report on writhe, a geometric indicator of chirality. There are ninety-two prime 2-component links with up to nine crossings. Guided by geometrical data, linking number, and the symmetry groups of 2-component links, canonical link diagrams for all but five link types (9 5 2, 9 34 2, 9 35 2, 9 39 2, and 9 41 2) are proposed. We include complete tables for prime knots with up to ten crossings and prime links with up to nine crossings. We also prove a result on the behavior of the writhe under local lattice moves.
Collapse
|
7
|
Mathematics at the eve of a historic transition in biology. COMPUTATIONAL AND MATHEMATICAL BIOPHYSICS 2017. [DOI: 10.1515/mlbmb-2017-0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
8
|
Pathways of DNA unlinking: A story of stepwise simplification. Sci Rep 2017; 7:12420. [PMID: 28963549 PMCID: PMC5622096 DOI: 10.1038/s41598-017-12172-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/01/2017] [Indexed: 11/23/2022] Open
Abstract
In Escherichia coli DNA replication yields interlinked chromosomes. Controlling topological changes associated with replication and returning the newly replicated chromosomes to an unlinked monomeric state is essential to cell survival. In the absence of the topoisomerase topoIV, the site-specific recombination complex XerCD- dif-FtsK can remove replication links by local reconnection. We previously showed mathematically that there is a unique minimal pathway of unlinking replication links by reconnection while stepwise reducing the topological complexity. However, the possibility that reconnection preserves or increases topological complexity is biologically plausible. In this case, are there other unlinking pathways? Which is the most probable? We consider these questions in an analytical and numerical study of minimal unlinking pathways. We use a Markov Chain Monte Carlo algorithm with Multiple Markov Chain sampling to model local reconnection on 491 different substrate topologies, 166 knots and 325 links, and distinguish between pathways connecting a total of 881 different topologies. We conclude that the minimal pathway of unlinking replication links that was found under more stringent assumptions is the most probable. We also present exact results on unlinking a 6-crossing replication link. These results point to a general process of topology simplification by local reconnection, with applications going beyond DNA.
Collapse
|
9
|
Arsuaga J, Jayasinghe RG, Scharein RG, Segal MR, Stolz RH, Vazquez M. Current theoretical models fail to predict the topological complexity of the human genome. Front Mol Biosci 2015; 2:48. [PMID: 26347874 PMCID: PMC4543886 DOI: 10.3389/fmolb.2015.00048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/06/2015] [Indexed: 11/13/2022] Open
Abstract
Understanding the folding of the human genome is a key challenge of modern structural biology. The emergence of chromatin conformation capture assays (e.g., Hi-C) has revolutionized chromosome biology and provided new insights into the three dimensional structure of the genome. The experimental data are highly complex and need to be analyzed with quantitative tools. It has been argued that the data obtained from Hi-C assays are consistent with a fractal organization of the genome. A key characteristic of the fractal globule is the lack of topological complexity (knotting or inter-linking). However, the absence of topological complexity contradicts results from polymer physics showing that the entanglement of long linear polymers in a confined volume increases rapidly with the length and with decreasing volume. In vivo and in vitro assays support this claim in some biological systems. We simulate knotted lattice polygons confined inside a sphere and demonstrate that their contact frequencies agree with the human Hi-C data. We conclude that the topological complexity of the human genome cannot be inferred from current Hi-C data.
Collapse
Affiliation(s)
- Javier Arsuaga
- Department of Mathematics, University of California, Davis Davis, CA, USA ; Department of Molecular and Cellular Biology, University of California, Davis Davis, CA, USA
| | - Reyka G Jayasinghe
- Division of Biology and Biomedical Sciences, Department of Medicine, Department of Genetics, The Genome Institute at Washington University in St. Louis St. Louis, MO, USA
| | | | - Mark R Segal
- Department of Epidemiology and Biostatistics, University of California, San Francisco San Francisco, CA, USA
| | - Robert H Stolz
- Department of Microbiology and Molecular Genetics, University of California, Davis Davis, CA, USA
| | - Mariel Vazquez
- Department of Mathematics, University of California, Davis Davis, CA, USA ; Department of Microbiology and Molecular Genetics, University of California, Davis Davis, CA, USA
| |
Collapse
|
10
|
Abstract
The Topological Aspects of DNA Function and Protein Folding international meeting provided an interdisciplinary forum for biological scientists, physicists and mathematicians to discuss recent developments in the application of topology to the study of DNA and protein structure. It had 111 invited participants, 48 talks and 21 posters. The present article discusses the importance of topology and introduces the articles from the meeting's speakers.
Collapse
|