1
|
Dabrowski‐Tumanski P, Goundaroulis D, Stasiak A, Rawdon EJ, Sulkowska JI. Theta-curves in proteins. Protein Sci 2024; 33:e5133. [PMID: 39167036 PMCID: PMC11337915 DOI: 10.1002/pro.5133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/22/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
We study and characterize the topology of connectivity circuits observed in natively folded protein structures whose coordinates are deposited in the Protein Data Bank (PDB). Polypeptide chains of some proteins naturally fold into unique knotted configurations. Another kind of nontrivial topology of polypeptide chains is observed when, in addition to covalent bonds connecting consecutive amino acids in polypeptide chains, one also considers disulfide and ionic bonds between non-consecutive amino acids. Bonds between non-consecutive amino acids introduce bifurcation points into connectivity circuits defined by bonds between consecutive and nonconsecutive amino acids in analyzed proteins. Circuits with bifurcation points can form θ-curves with various topologies. We catalog here the observed topologies of θ-curves passing through bridges between consecutive and non-consecutive amino acids in studied proteins.
Collapse
Affiliation(s)
| | - Dimos Goundaroulis
- Center for Genome Architecture, Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexasUSA
- Center for Theoretical Biological PhysicsRice UniversityHoustonTexasUSA
| | - Andrzej Stasiak
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Eric J. Rawdon
- Department of MathematicsUniversity of St. ThomasSt. PaulMinnesotaUSA
| | | |
Collapse
|
2
|
Niemyska W, Mukherjee S, Gren BA, Niewieczerzal S, Bujnicki JM, Sulkowska JI. Discovery of a trefoil knot in the RydC RNA: Challenging previous notions of RNA topology. J Mol Biol 2024; 436:168455. [PMID: 38272438 DOI: 10.1016/j.jmb.2024.168455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Knots are very common in polymers, including DNA and protein molecules. Yet, no genuine knot has been identified in natural RNA molecules to date. Upon re-examining experimentally determined RNA 3D structures, we discovered a trefoil knot 31, the most basic non-trivial knot, in the RydC RNA. This knotted RNA is a member of a small family of short bacterial RNAs, whose secondary structure is characterized by an H-type pseudoknot. Molecular dynamics simulations suggest a folding pathway of the RydC RNA that starts with a native twisted loop. Based on sequence analyses and computational RNA 3D structure predictions, we postulate that this trefoil knot is a conserved feature of all RydC-related RNAs. The first discovery of a knot in a natural RNA molecule introduces a novel perspective on RNA 3D structure formation and on fundamental research on the relationship between function and spatial structure of biopolymers.
Collapse
Affiliation(s)
- Wanda Niemyska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland.
| | - Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109 Warsaw, Poland
| | - Bartosz A Gren
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Szymon Niewieczerzal
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109 Warsaw, Poland.
| | - Joanna I Sulkowska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.
| |
Collapse
|
3
|
Zhao X, Wang H, Li B, Zhang W, Li X, Zhao W, Janiak C, Heard AW, Yang X, Wu B. A Hydrogen‐Bonded Ravel Assembled by Anion Coordination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaotong Zhao
- College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Heng Wang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518055 China
| | - Boyang Li
- College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Wenyao Zhang
- College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518055 China
| | - Wei Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 102488 China
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Germany
| | - Andrew W. Heard
- Department of Chemistry University of Cambridge Cambridge UK
| | - Xiao‐Juan Yang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 102488 China
| | - Biao Wu
- College of Chemistry and Materials Science Northwest University Xi'an 710069 China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 102488 China
| |
Collapse
|
4
|
Zhao X, Wang H, Li B, Zhang W, Li X, Zhao W, Janiak C, Heard AW, Yang XJ, Wu B. A Hydrogen-Bonded Ravel Assembled by Anion Coordination. Angew Chem Int Ed Engl 2021; 61:e202115042. [PMID: 34850515 DOI: 10.1002/anie.202115042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 11/08/2022]
Abstract
Anion-coordination-driven assembly (ACDA) is showing increasing power in the construction of anionic supramolecular architectures. Herein, by expanding the anion centers from oxoanion (phosphate or sulfate) to organic tris-carboxylates, an Archimedean solid (truncated tetrahedron) and a highly entangled, double-walled tetrahedron featuring a ravel topology have been assembled with tris-bis(urea) ligands. The results demonstrate the promising ability of tris-carboxylates as new anion coordination centers in constructing novel topologies with increasing complexity and diversity compared to phosphate or sulfate ions on account of the modifiable size and easy functionalization character of these organic anions.
Collapse
Affiliation(s)
- Xiaotong Zhao
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Boyang Li
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Wenyao Zhang
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Wei Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204, Düsseldorf, Germany
| | - Andrew W Heard
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Xiao-Juan Yang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Biao Wu
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China.,Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| |
Collapse
|
5
|
Slipknotted and unknotted monovalent cation-proton antiporters evolved from a common ancestor. PLoS Comput Biol 2021; 17:e1009502. [PMID: 34648493 PMCID: PMC8562792 DOI: 10.1371/journal.pcbi.1009502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/02/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022] Open
Abstract
While the slipknot topology in proteins has been known for over a decade, its evolutionary origin is still a mystery. We have identified a previously overlooked slipknot motif in a family of two-domain membrane transporters. Moreover, we found that these proteins are homologous to several families of unknotted membrane proteins. This allows us to directly investigate the evolution of the slipknot motif. Based on our comprehensive analysis of 17 distantly related protein families, we have found that slipknotted and unknotted proteins share a common structural motif. Furthermore, this motif is conserved on the sequential level as well. Our results suggest that, regardless of topology, the proteins we studied evolved from a common unknotted ancestor single domain protein. Our phylogenetic analysis suggests the presence of at least seven parallel evolutionary scenarios that led to the current diversity of proteins in question. The tools we have developed in the process can now be used to investigate the evolution of other repeated-domain proteins. In proteins with the slipknot topology, the polypeptide chain forms a slipknot—a structure that is not necessarily manifest to a naked eye, but it can be detected using mathematical methods. Slipknots are conserved motifs often found at catalytic sites and are directly involved in molecular transport. Although the first proteins with slipknots were found in 2007, many questions remain unanswered, e.g. how these proteins appeared, or whether the slipknotted proteins evolved from unknotted ones or vice versa. Here we provide the first analysis of homologous slipknotted and unknotted transmembrane proteins in order to elucidate their evolutionary relationship. We show that two-domain slipknotted and unknotted membrane transporters share the same one-domain unknotted protein as an ancestor. The ancestor gene duplicated and underwent various diversification and fusion events during the evolution, which have led to the appearance of a large superfamily of secondary active transporters. The slipknot motif seems to have been created by chance after a fusion of two single domain genes. Therefore, we show here that the slipknotted transporter evolved from an unknotted one-domain protein and that there are at least seven different evolutionary scenarios that gave rise to this large superfamily of transporters.
Collapse
|
6
|
Perlinska AP, Kalek M, Christian T, Hou YM, Sulkowska JI. Mg 2+-Dependent Methyl Transfer by a Knotted Protein: A Molecular Dynamics Simulation and Quantum Mechanics Study. ACS Catal 2020; 10:8058-8068. [PMID: 32904895 PMCID: PMC7462349 DOI: 10.1021/acscatal.0c00059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 06/18/2020] [Indexed: 11/27/2022]
Abstract
![]()
Mg2+ is required for the catalytic activity of TrmD,
a bacteria-specific methyltransferase that is made up of a protein
topological knot-fold, to synthesize methylated m1G37-tRNA
to support life. However, neither the location of Mg2+ in
the structure of TrmD nor its role in the catalytic mechanism is known.
Using molecular dynamics (MD) simulations, we identify a plausible
Mg2+ binding pocket within the active site of the enzyme,
wherein the ion is coordinated by two aspartates and a glutamate.
In this position, Mg2+ additionally interacts with the
carboxylate of a methyl donor cofactor S-adenosylmethionine (SAM).
The computational results are validated by experimental mutation studies,
which demonstrate the importance of the Mg2+-binding residues
for the catalytic activity. The presence of Mg2+ in the
binding pocket induces SAM to adopt a unique bent shape required for
the methyl transfer activity and causes a structural reorganization
of the active site. Quantum mechanical calculations show that the
methyl transfer is energetically feasible only when Mg2+ is bound in the position revealed by the MD simulations, demonstrating
that its function is to align the active site residues within the
topological knot-fold in a geometry optimal for catalysis. The obtained
insights provide the opportunity for developing a strategy of antibacterial
drug discovery based on targeting of Mg2+-binding to TrmD.
Collapse
Affiliation(s)
- Agata P. Perlinska
- Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw 02-097, Poland
| | - Marcin Kalek
- Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland
| | - Thomas Christian
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Joanna I. Sulkowska
- Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland
- Faculty of Chemistry, University of Warsaw, Warsaw 02-097, Poland
| |
Collapse
|
7
|
Piejko M, Niewieczerzal S, Sulkowska JI. The Folding of Knotted Proteins: Distinguishing the Distinct Behavior of Shallow and Deep Knots. Isr J Chem 2020. [DOI: 10.1002/ijch.202000036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maciej Piejko
- Faculty of ChemistryUniversity of Warsaw Pasteura 1 Warsaw 02-093 Poland
- Centre of New TechnologiesUniversity of Warsaw Banacha 2c Warsaw 02-097 Poland
| | | | - Joanna I. Sulkowska
- Faculty of ChemistryUniversity of Warsaw Pasteura 1 Warsaw 02-093 Poland
- Centre of New TechnologiesUniversity of Warsaw Banacha 2c Warsaw 02-097 Poland
| |
Collapse
|
8
|
Sulkowska JI. On folding of entangled proteins: knots, lassos, links and θ-curves. Curr Opin Struct Biol 2020; 60:131-141. [PMID: 32062143 DOI: 10.1016/j.sbi.2020.01.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/02/2020] [Accepted: 01/12/2020] [Indexed: 12/15/2022]
Abstract
Around 6% of protein structures deposited in the PDB are entangled, forming knots, slipknots, lassos, links, and θ-curves. In each of these cases, the protein backbone weaves through itself in a complex way, and at some point passes through a closed loop, formed by other regions of the protein structure. Such a passing can be interpreted as crossing a topological barrier. How proteins overcome such barriers, and therefore different degrees of frustration, challenged scientists and has shed new light on the field of protein folding. In this review, we summarize the current knowledge about the free energy landscape of proteins with non-trivial topology. We describe identified mechanisms which lead proteins to self-tying. We discuss the influence of excluded volume, such as crowding and chaperones, on tying, based on available data. We briefly discuss the diversity of topological complexity of proteins and their evolution. We also list available tools to investigate non-trivial topology. Finally, we formulate intriguing and challenging questions at the boundary of biophysics, bioinformatics, biology, and mathematics, which arise from the discovery of entangled proteins.
Collapse
Affiliation(s)
- Joanna Ida Sulkowska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland; Faculty of Chemistry, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
9
|
Perego C, Potestio R. Computational methods in the study of self-entangled proteins: a critical appraisal. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:443001. [PMID: 31269476 DOI: 10.1088/1361-648x/ab2f19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The existence of self-entangled proteins, the native structure of which features a complex topology, unveils puzzling, and thus fascinating, aspects of protein biology and evolution. The discovery that a polypeptide chain can encode the capability to self-entangle in an efficient and reproducible way during folding, has raised many questions, regarding the possible function of these knots, their conservation along evolution, and their role in the folding paradigm. Understanding the function and origin of these entanglements would lead to deep implications in protein science, and this has stimulated the scientific community to investigate self-entangled proteins for decades by now. In this endeavour, advanced experimental techniques are more and more supported by computational approaches, that can provide theoretical guidelines for the interpretation of experimental results, and for the effective design of new experiments. In this review we provide an introduction to the computational study of self-entangled proteins, focusing in particular on the methodological developments related to this research field. A comprehensive collection of techniques is gathered, ranging from knot theory algorithms, that allow detection and classification of protein topology, to Monte Carlo or molecular dynamics strategies, that constitute crucial instruments for investigating thermodynamics and kinetics of this class of proteins.
Collapse
Affiliation(s)
- Claudio Perego
- Max Panck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | | |
Collapse
|
10
|
Sivertsson EM, Jackson SE, Itzhaki LS. The AAA+ protease ClpXP can easily degrade a 3 1 and a 5 2-knotted protein. Sci Rep 2019; 9:2421. [PMID: 30787316 PMCID: PMC6382783 DOI: 10.1038/s41598-018-38173-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022] Open
Abstract
Knots in proteins are hypothesized to make them resistant to enzymatic degradation by ATP-dependent proteases and recent studies have shown that whereas ClpXP can easily degrade a protein with a shallow 31 knot, it cannot degrade 52-knotted proteins if degradation is initiated at the C-terminus. Here, we present detailed studies of the degradation of both 31- and 52-knotted proteins by ClpXP using numerous constructs where proteins are tagged for degradation at both N- and C-termini. Our results confirm and extend earlier work and show that ClpXP can easily degrade a deeply 31-knotted protein. In contrast to recently published work on the degradation of 52-knotted proteins, our results show that the ClpXP machinery can also easily degrade these proteins. However, the degradation depends critically on the location of the degradation tag and the local stability near the tag. Our results are consistent with mechanisms in which either the knot simply slips along the polypeptide chain and falls off the free terminus, or one in which the tightened knot enters the translocation pore of ClpXP. Results of experiments on knotted protein fusions with a highly stable domain show partial degradation and the formation of degradation intermediates.
Collapse
Affiliation(s)
- Elin M Sivertsson
- Department of Pharmacology, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Sophie E Jackson
- Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Laura S Itzhaki
- Department of Pharmacology, Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|
11
|
Dabrowski-Tumanski P, Rubach P, Goundaroulis D, Dorier J, Sułkowski P, Millett KC, Rawdon EJ, Stasiak A, Sulkowska JI. KnotProt 2.0: a database of proteins with knots and other entangled structures. Nucleic Acids Res 2019; 47:D367-D375. [PMID: 30508159 PMCID: PMC6323932 DOI: 10.1093/nar/gky1140] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/24/2018] [Accepted: 11/30/2018] [Indexed: 01/08/2023] Open
Abstract
The KnotProt 2.0 database (the updated version of the KnotProt database) collects information about proteins which form knots and other entangled structures. New features in KnotProt 2.0 include the characterization of both probabilistic and deterministic entanglements which can be formed by disulfide bonds and interactions via ions, a refined characterization of entanglement in terms of knotoids, the identification of the so-called cysteine knots, the possibility to analyze all or a non-redundant set of proteins, and various technical updates. The KnotProt 2.0 database classifies all entangled proteins, represents their complexity in the form of a knotting fingerprint, and presents many biological and geometrical statistics based on these results. Currently the database contains >2000 entangled structures, and it regularly self-updates based on proteins deposited in the Protein Data Bank (PDB).
Collapse
Affiliation(s)
- Pawel Dabrowski-Tumanski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw, Poland
| | - Pawel Rubach
- Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw, Poland
- Warsaw School of Economics, Al. Niepodlegosci 162, Warsaw, Poland
| | - Dimos Goundaroulis
- Center for Integrative Genomics, University of Lausanne, 1015-Lausanne, Switzerland, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Julien Dorier
- Vital-IT, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Piotr Sułkowski
- Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw, Poland
- Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kenneth C Millett
- Department of Mathematics, University of California, Santa Barbara, CA 93106, USA
| | - Eric J Rawdon
- Department of Mathematics, University of St. Thomas, Saint Paul, MN 55105, USA
| | - Andrzej Stasiak
- Center for Integrative Genomics, University of Lausanne, 1015-Lausanne, Switzerland, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Joanna I Sulkowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw, Poland
| |
Collapse
|
12
|
Jarmolinska AI, Perlinska AP, Runkel R, Trefz B, Ginn HM, Virnau P, Sulkowska JI. Proteins' Knotty Problems. J Mol Biol 2018; 431:244-257. [PMID: 30391297 DOI: 10.1016/j.jmb.2018.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/20/2022]
Abstract
Knots in proteins are increasingly being recognized as an important structural concept, and the folding of these peculiar structures still poses considerable challenges. From a functional point of view, most protein knots discovered so far are either enzymes or DNA-binding proteins. Our comprehensive topological analysis of the Protein Data Bank reveals several novel structures including knotted mitochondrial proteins and the most deeply embedded protein knot discovered so far. For the latter, we propose a novel folding pathway based on the idea that a loose knot forms at a terminus and slides to its native position. For the mitochondrial proteins, we discuss the folding problem from the perspective of transport and suggest that they fold inside the mitochondria. We also discuss the evolutionary origin of a novel class of knotted membrane proteins and argue that a novel knotted DNA-binding protein constitutes a new fold. Finally, we have also discovered a knot in an artificially designed protein structure.
Collapse
Affiliation(s)
- Aleksandra I Jarmolinska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, Banacha 2c, 02-097 Warsaw, Poland
| | - Agata P Perlinska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, Banacha 2c, 02-097 Warsaw, Poland
| | - Robert Runkel
- Department of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Benjamin Trefz
- Department of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany; Graduate School Material Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany
| | - Helen M Ginn
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Peter Virnau
- Department of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Joanna I Sulkowska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.
| |
Collapse
|
13
|
|
14
|
Dabrowski-Tumanski P, Sulkowska JI. To Tie or Not to Tie? That Is the Question. Polymers (Basel) 2017; 9:E454. [PMID: 30965758 PMCID: PMC6418553 DOI: 10.3390/polym9090454] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/18/2022] Open
Abstract
In this review, we provide an overview of entangled proteins. Around 6% of protein structures deposited in the PBD are entangled, forming knots, slipknots, lassos and links. We present theoretical methods and tools that enabled discovering and classifying such structures. We discuss the advantages and disadvantages of the non-trivial topology in proteins, based on available data about folding, stability, biological properties and evolutionary conservation. We also formulate intriguing and challenging questions on the border of biophysics, bioinformatics, biology and mathematics, which arise from the discovery of an entanglement in proteins. Finally, we discuss possible applications of entangled proteins in medicine and nanotechnology, such as the chance to design super stable proteins, whose stability could be controlled by chemical potential.
Collapse
Affiliation(s)
- Pawel Dabrowski-Tumanski
- Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland.
- Faculty of Chemistry, University of Warsaw, Warsaw 02-093, Poland.
| | - Joanna I Sulkowska
- Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland.
- Faculty of Chemistry, University of Warsaw, Warsaw 02-093, Poland.
| |
Collapse
|
15
|
Dabrowski-Tumanski P, Stasiak A, Sulkowska JI. In Search of Functional Advantages of Knots in Proteins. PLoS One 2016; 11:e0165986. [PMID: 27806097 PMCID: PMC5091781 DOI: 10.1371/journal.pone.0165986] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/20/2016] [Indexed: 11/30/2022] Open
Abstract
We analysed the structure of deeply knotted proteins representing three unrelated families of knotted proteins. We looked at the correlation between positions of knotted cores in these proteins and such local structural characteristics as the number of intra-chain contacts, structural stability and solvent accessibility. We observed that the knotted cores and especially their borders showed strong enrichment in the number of contacts. These regions showed also increased thermal stability, whereas their solvent accessibility was decreased. Interestingly, the active sites within these knotted proteins preferentially located in the regions with increased number of contacts that also have increased thermal stability and decreased solvent accessibility. Our results suggest that knotting of polypeptide chains provides a favourable environment for the active sites observed in knotted proteins. Some knotted proteins have homologues without a knot. Interestingly, these unknotted homologues form local entanglements that retain structural characteristics of the knotted cores.
Collapse
Affiliation(s)
- Pawel Dabrowski-Tumanski
- Centre of New Technologies, Banacha 2c, 02–097, Warsaw, Poland
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02–093, Warsaw, Poland
- Center for Integrative Genomics, University of Lausanne, 1015-Lausanne, Switzerland
| | - Andrzej Stasiak
- Center for Integrative Genomics, University of Lausanne, 1015-Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015-Lausanne, Switzerland
- * E-mail: (AS); (JIS)
| | - Joanna I. Sulkowska
- Centre of New Technologies, Banacha 2c, 02–097, Warsaw, Poland
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02–093, Warsaw, Poland
- * E-mail: (AS); (JIS)
| |
Collapse
|
16
|
Hyde DAB, Henrich J, Rawdon EJ, Millett KC. Knotting fingerprints resolve knot complexity and knotting pathways in ideal knots. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:354112. [PMID: 26291619 DOI: 10.1088/0953-8984/27/35/354112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We use disk matrices to define knotting fingerprints that provide fine-grained insights into the local knotting structure of ideal knots. These knots have been found to have spatial properties that highly correlate with those of interesting macromolecules. From this fine structure and an analysis of the associated planar graph, one can define a measure of knot complexity using the number of independent unknotting pathways from the global knot type as the knot is trimmed progressively to a short arc unknot. A specialization of the Cheeger constant provides a measure of constraint on these independent unknotting pathways. Furthermore, the structure of the knotting fingerprint supports a comparison of the tight knot pathways to the unconstrained unknotting pathways of comparable length.
Collapse
Affiliation(s)
- David A B Hyde
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
17
|
Lim NCH, Jackson SE. Molecular knots in biology and chemistry. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:354101. [PMID: 26291690 DOI: 10.1088/0953-8984/27/35/354101] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Knots and entanglements are ubiquitous. Beyond their aesthetic appeal, these fascinating topological entities can be either useful or cumbersome. In recent decades, the importance and prevalence of molecular knots have been increasingly recognised by scientists from different disciplines. In this review, we provide an overview on the various molecular knots found in naturally occurring biological systems (DNA, RNA and proteins), and those created by synthetic chemists. We discuss the current knowledge in these fields, including recent developments in experimental and, in some cases, computational studies which are beginning to shed light into the complex interplay between the structure, formation and properties of these topologically intricate molecules.
Collapse
Affiliation(s)
- Nicole C H Lim
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. Faculty of Sciences, Universiti Brunei Darussalam, Gadong BE 1410, Brunei Darussalam
| | | |
Collapse
|
18
|
Subknots in ideal knots, random knots, and knotted proteins. Sci Rep 2015; 5:8928. [PMID: 25753957 PMCID: PMC4354144 DOI: 10.1038/srep08928] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 02/10/2015] [Indexed: 11/17/2022] Open
Abstract
We introduce disk matrices which encode the knotting of all subchains in circular knot configurations. The disk matrices allow us to dissect circular knots into their subknots, i.e. knot types formed by subchains of the global knot. The identification of subknots is based on the study of linear chains in which a knot type is associated to the chain by means of a spatially robust closure protocol. We characterize the sets of observed subknot types in global knots taking energy-minimized shapes such as KnotPlot configurations and ideal geometric configurations. We compare the sets of observed subknots to knot types obtained by changing crossings in the classical prime knot diagrams. Building upon this analysis, we study the sets of subknots in random configurations of corresponding knot types. In many of the knot types we analyzed, the sets of subknots from the ideal geometric configurations are found in each of the hundreds of random configurations of the same global knot type. We also compare the sets of subknots observed in open protein knots with the subknots observed in the ideal configurations of the corresponding knot type. This comparison enables us to explain the specific dispositions of subknots in the analyzed protein knots.
Collapse
|
19
|
Jamroz M, Niemyska W, Rawdon EJ, Stasiak A, Millett KC, Sułkowski P, Sulkowska JI. KnotProt: a database of proteins with knots and slipknots. Nucleic Acids Res 2014; 43:D306-14. [PMID: 25361973 PMCID: PMC4383900 DOI: 10.1093/nar/gku1059] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The protein topology database KnotProt, http://knotprot.cent.uw.edu.pl/, collects information about protein structures with open polypeptide chains forming knots or slipknots. The knotting complexity of the cataloged proteins is presented in the form of a matrix diagram that shows users the knot type of the entire polypeptide chain and of each of its subchains. The pattern visible in the matrix gives the knotting fingerprint of a given protein and permits users to determine, for example, the minimal length of the knotted regions (knot's core size) or the depth of a knot, i.e. how many amino acids can be removed from either end of the cataloged protein structure before converting it from a knot to a different type of knot. In addition, the database presents extensive information about the biological functions, families and fold types of proteins with non-trivial knotting. As an additional feature, the KnotProt database enables users to submit protein or polymer chains and generate their knotting fingerprints.
Collapse
Affiliation(s)
- Michal Jamroz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Wanda Niemyska
- Institute of Mathematics, University of Silesia, Bankowa 14, 40-007 Katowice, Poland
| | - Eric J Rawdon
- Department of Mathematics, University of St. Thomas, Saint Paul, MN 55105, USA
| | - Andrzej Stasiak
- Center for Integrative Genomics, University of Lausanne, 1015-Lausanne, Switzerland
| | - Kenneth C Millett
- Department of Mathematics, University of California, Santa Barbara, CA 93106, USA
| | - Piotr Sułkowski
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland California Institute of Technology, Pasadena, CA 91125, USA
| | - Joanna I Sulkowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| |
Collapse
|
20
|
Abstract
Polypeptide chains form open knots in many proteins. How these knotted proteins fold and finding the evolutionary advantage provided by these knots are among some of the key questions currently being studied in the protein folding field. The detection and identification of protein knots are substantial challenges. Different methods and many variations of them have been employed, but they can give different results for the same protein. In the present article, we review the various knot identification algorithms and compare their relative strengths when applied to the study of knots in proteins. We show that the statistical approach based on the uniform closure method is advantageous in comparison with other methods used to characterize protein knots.
Collapse
|
21
|
Abstract
The Topological Aspects of DNA Function and Protein Folding international meeting provided an interdisciplinary forum for biological scientists, physicists and mathematicians to discuss recent developments in the application of topology to the study of DNA and protein structure. It had 111 invited participants, 48 talks and 21 posters. The present article discusses the importance of topology and introduces the articles from the meeting's speakers.
Collapse
|