1
|
Zhang Y, Jiao X, Liu J, Feng G, Luo X, Zhang M, Zhang B, Huang L, Long Q. A new direction in Chinese herbal medicine ameliorates for type 2 diabetes mellitus: Focus on the potential of mitochondrial respiratory chain complexes. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117484. [PMID: 38012971 DOI: 10.1016/j.jep.2023.117484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes is a common chronic disease. Chinese herbal medicine (CHM) has a history of several thousand years in the treatment of diabetes, and active components with hypoglycemic effects extracted from various CHM, such as polysaccharides, flavonoids, terpenes, and steroidal saponins, have been widely used in the treatment of diabetes. AIM OF THE STUDY Research exploring the potential of various CHM compounds to regulate the mitochondrial respiratory chain complex to improve type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS The literature data were primarily obtained from authoritative databases such as PubMed, CNKI, Wanfang, and others within the last decade. The main keywords used include "type 2 diabetes mellitus", "Chinese medicine", "Chinese herbal medicine", "mitochondrial respiratory chain complex", and "mitochondrial dysfunction". RESULTS Chinese herbal medicine primarily regulates the activity of mitochondrial respiratory chain complexes in various tissues such as liver, adipose tissue, skeletal muscle, pancreatic islets, and small intestine. It improves cellular energy metabolism through hypoglycemic, antioxidant, anti-inflammatory and lipid-modulating effects. Different components of CHM can regulate the same mitochondrial respiratory chain complexes, while the same components of a particular CHM can regulate different complex activities. The active components of CHM target different mitochondrial respiratory chain complexes, regulate their aberrant changes and effectively improve T2DM and its complications. CONCLUSION Chinese herbal medicine can modulate the function of mitochondrial respiratory chain complexes in various cell types and exert their hypoglycemic effects through various mechanisms. CHM has significant therapeutic potential in regulating mitochondrial respiratory chain complexes to improve T2DM, but further research is needed to explore the underlying mechanisms and conduct clinical trials to assess the safety and efficacy of these medications. This provides new perspectives and opportunities for personalized improvement and innovative developments in diabetes management.
Collapse
Affiliation(s)
- Yinghui Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xinyue Jiao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jianying Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Gang Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xia Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Mingyue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Binzhi Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lizhen Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qinqiang Long
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Proteomics as a Tool for the Study of Mitochondrial Proteome, Its Dysfunctionality and Pathological Consequences in Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24054692. [PMID: 36902123 PMCID: PMC10003354 DOI: 10.3390/ijms24054692] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
The focus of this review is on the proteomic approaches applied to the study of the qualitative/quantitative changes in mitochondrial proteins that are related to impaired mitochondrial function and consequently different types of pathologies. Proteomic techniques developed in recent years have created a powerful tool for the characterization of both static and dynamic proteomes. They can detect protein-protein interactions and a broad repertoire of post-translation modifications that play pivotal roles in mitochondrial regulation, maintenance and proper function. Based on accumulated proteomic data, conclusions can be derived on how to proceed in disease prevention and treatment. In addition, this article will present an overview of the recently published proteomic papers that deal with the regulatory roles of post-translational modifications of mitochondrial proteins and specifically with cardiovascular diseases connected to mitochondrial dysfunction.
Collapse
|
3
|
Mitra S, Rauf A, Sutradhar H, Sadaf S, Hossain MJ, Soma MA, Emran TB, Ahmad B, Aljohani ASM, Al Abdulmonem W, Thiruvengadam M. Potential candidates from marine and terrestrial resources targeting mitochondrial inhibition: Insights from the molecular approach. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109509. [PMID: 36368509 DOI: 10.1016/j.cbpc.2022.109509] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Mitochondria are the target sites for multiple disease manifestations, for which it is appealing to researchers' attention for advanced pharmacological interventions. Mitochondrial inhibitors from natural sources are of therapeutic interest due to their promising benefits on physiological complications. Mitochondrial complexes I, II, III, IV, and V are the most common sites for the induction of inhibition by drug candidates, henceforth alleviating the manifestations, prevalence, as well as severity of diseases. Though there are few therapeutic options currently available on the market. However, it is crucial to develop new candidates from natural resources, as mitochondria-targeting abnormalities are rising to a greater extent. Marine and terrestrial sources possess plenty of bioactive compounds that are appeared to be effective in this regard. Ample research investigations have been performed to appraise the potentiality of these compounds in terms of mitochondrial disorders. So, this review outlines the role of terrestrial and marine-derived compounds in mitochondrial inhibition as well as their clinical status too. Additionally, mitochondrial regulation and, therefore, the significance of mitochondrial inhibition by terrestrial and marine-derived compounds in drug discovery are also discussed.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Swabi 23430, Khyber Pakhtunkhwa (KP), Pakistan.
| | - Hriday Sutradhar
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Samia Sadaf
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road Dhanmondi, Dhaka 1205, Bangladesh
| | - Mahfuza Afroz Soma
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road Dhanmondi, Dhaka 1205, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Bashir Ahmad
- Institute of Biotechnology & Microbiology, Bacha Khan University, Charsadda, KP, Pakistan
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 05029, Republic of Korea; Saveetha Dental College and Hospital, Saveetha Institute of Medical Technical Sciences, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
4
|
Alkhaldi HA, Vik SB. Subunits E-F-G of E. coli Complex I can form an active complex when expressed alone, but in time-delayed assembly co-expression of B-CD-E-F-G is optimal. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148593. [PMID: 35850264 PMCID: PMC9783743 DOI: 10.1016/j.bbabio.2022.148593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/15/2022] [Accepted: 07/11/2022] [Indexed: 12/27/2022]
Abstract
Respiratory Complex I from E. coli is a proto-type of the mitochondrial enzyme, consisting of a 6-subunit peripheral arm (B-CD-E-F-G-I) and a 7-subunit membrane arm. When subunits E-F-G (N-module), were expressed alone they formed an active complex as determined by co-immunoprecipitation and native gel electrophoresis. When co-expressed with subunits B and CD, only a complex of E-F-G was found. When these five subunits were co-expressed with subunit I and two membrane subunits, A and H, a complex of B-CD-E-F-G-I was membrane-bound, constituting the N- and Q-modules. Assembly of Complex I was also followed by splitting the genes between two plasmids, in three different groupings, and expressing them simultaneously, or with time-delay of expression from one plasmid. When the B-CD-E-F-G genes were co-expressed after a time-delay, assembly was over 90 % of that when the whole operon was expressed together. In summary, E-F-G was the only soluble subcomplex detected in these studies, but assembly was not optimal when these subunits were expressed either first or last. Co-expression of subunits B and CD with E-F-G provided a higher level of assembly, indicating that integrated assembly of N- and Q-modules provides a more efficient pathway.
Collapse
Affiliation(s)
- Hind A Alkhaldi
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Steven B Vik
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA.
| |
Collapse
|
5
|
Molina-Granada D, González-Vioque E, Dibley MG, Cabrera-Pérez R, Vallbona-Garcia A, Torres-Torronteras J, Sazanov LA, Ryan MT, Cámara Y, Martí R. Most mitochondrial dGTP is tightly bound to respiratory complex I through the NDUFA10 subunit. Commun Biol 2022; 5:620. [PMID: 35739187 PMCID: PMC9226000 DOI: 10.1038/s42003-022-03568-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/08/2022] [Indexed: 12/30/2022] Open
Abstract
Imbalanced mitochondrial dNTP pools are known players in the pathogenesis of multiple human diseases. Here we show that, even under physiological conditions, dGTP is largely overrepresented among other dNTPs in mitochondria of mouse tissues and human cultured cells. In addition, a vast majority of mitochondrial dGTP is tightly bound to NDUFA10, an accessory subunit of complex I of the mitochondrial respiratory chain. NDUFA10 shares a deoxyribonucleoside kinase (dNK) domain with deoxyribonucleoside kinases in the nucleotide salvage pathway, though no specific function beyond stabilizing the complex I holoenzyme has been described for this subunit. We mutated the dNK domain of NDUFA10 in human HEK-293T cells while preserving complex I assembly and activity. The NDUFA10E160A/R161A shows reduced dGTP binding capacity in vitro and leads to a 50% reduction in mitochondrial dGTP content, proving that most dGTP is directly bound to the dNK domain of NDUFA10. This interaction may represent a hitherto unknown mechanism regulating mitochondrial dNTP availability and linking oxidative metabolism to DNA maintenance.
Collapse
Affiliation(s)
- David Molina-Granada
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Emiliano González-Vioque
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Biochemistry, Hospital Universitario Puerta del Hierro-Majadahonda, Madrid, Spain
| | - Marris G Dibley
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Raquel Cabrera-Pérez
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Vallbona-Garcia
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Yolanda Cámara
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain.
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain.
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Biochemical consequences of two clinically relevant ND-gene mutations in Escherichia coli respiratory complex I. Sci Rep 2021; 11:12641. [PMID: 34135385 PMCID: PMC8209014 DOI: 10.1038/s41598-021-91631-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/28/2021] [Indexed: 11/28/2022] Open
Abstract
NADH:ubiquinone oxidoreductase (respiratory complex I) plays a major role in energy metabolism by coupling electron transfer from NADH to quinone with proton translocation across the membrane. Complex I deficiencies were found to be the most common source of human mitochondrial dysfunction that manifest in a wide variety of neurodegenerative diseases. Seven subunits of human complex I are encoded by mitochondrial DNA (mtDNA) that carry an unexpectedly large number of mutations discovered in mitochondria from patients’ tissues. However, whether or how these genetic aberrations affect complex I at a molecular level is unknown. Here, we used Escherichia coli as a model system to biochemically characterize two mutations that were found in mtDNA of patients. The V253AMT-ND5 mutation completely disturbed the assembly of complex I, while the mutation D199GMT-ND1 led to the assembly of a stable complex capable to catalyze redox-driven proton translocation. However, the latter mutation perturbs quinone reduction leading to a diminished activity. D199MT-ND1 is part of a cluster of charged amino acid residues that are suggested to be important for efficient coupling of quinone reduction and proton translocation. A mechanism considering the role of D199MT-ND1 for energy conservation in complex I is discussed.
Collapse
|
7
|
Accessory Subunits of the Matrix Arm of Mitochondrial Complex I with a Focus on Subunit NDUFS4 and Its Role in Complex I Function and Assembly. Life (Basel) 2021; 11:life11050455. [PMID: 34069703 PMCID: PMC8161149 DOI: 10.3390/life11050455] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/19/2022] Open
Abstract
NADH:ubiquinone-oxidoreductase (complex I) is the largest membrane protein complex of the respiratory chain. Complex I couples electron transfer to vectorial proton translocation across the inner mitochondrial membrane. The L shaped structure of complex I is divided into a membrane arm and a matrix arm. Fourteen central subunits are conserved throughout species, while some 30 accessory subunits are typically found in eukaryotes. Complex I dysfunction is associated with mutations in the nuclear and mitochondrial genome, resulting in a broad spectrum of neuromuscular and neurodegenerative diseases. Accessory subunit NDUFS4 in the matrix arm is a hot spot for mutations causing Leigh or Leigh-like syndrome. In this review, we focus on accessory subunits of the matrix arm and discuss recent reports on the function of accessory subunit NDUFS4 and its interplay with NDUFS6, NDUFA12, and assembly factor NDUFAF2 in complex I assembly.
Collapse
|
8
|
Subrahmanian N, LaVoie MJ. Is there a special relationship between complex I activity and nigral neuronal loss in Parkinson's disease? A critical reappraisal. Brain Res 2021; 1767:147434. [PMID: 33745923 PMCID: PMC9520341 DOI: 10.1016/j.brainres.2021.147434] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/25/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022]
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disease manifesting both motor and non-motor symptoms. The motor features are generally ascribed to the selective loss of dopamine neurons within the substantia nigra pars compacta. While the precise etiology of PD remains elusive, multiple genetic and environmental elements have emerged as contributing factors. The discovery of MPTP-induced parkinsonism directed intense inquiry towards mitochondrial pathways, with a specific focus on mitochondrial complex I. Consisting of more than 40 subunits, complex I is the first enzyme of the electron transport chain that is required for mitochondrial ATP production. In this review, we present a critical analysis of studies assessing the prevalence and specificity of mitochondrial complex I deficiency in PD. In addition, we take the novel view of incorporating the features of genetically-defined bona fide complex I disorders and the prevalence of nigral involvement in such cases. Through this innovative bi-directional view, we consider both complex I changes in a disease of the substantia nigra and nigral changes in diseases of complex I. We assess the strength of association between nigral cell loss and complex I deficits, as well as the oft under-appreciated heterogeneity of complex I deficiency disorders and the variability of the PD data.
Collapse
Affiliation(s)
- Nitya Subrahmanian
- Department of Neurology, University of Florida, Gainesville, FL 32610, USA
| | - Matthew J LaVoie
- Department of Neurology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
9
|
Abstract
Complex I (NADH dehydrogenase) is the first enzyme in the respiratory chain. It catalyses the electron transfer from NADH to ubiquinone that is associated with proton pumping out of the matrix. In this study, we characterized NADH dehydrogenase activity in seven monoxenous trypanosomatid species: Blechomonas ayalai, Herpetomonas tarakana, Kentomonas sorsogonicus, Leptomonas seymouri, Novymonas esmeraldas, Sergeia podlipaevi and Wallacemonas raviniae. We also investigated the subunit composition of the complex I in dixenous Phytomonas serpens, in which its presence and activity have been previously documented. In addition to P. serpens, the complex I is functionally active in N. esmeraldas and S. podlipaevi. We also identified 24-32 subunits of the complex I in individual species by using mass spectrometry. Among them, for the first time, we recognized several proteins of the mitochondrial DNA origin.
Collapse
|
10
|
Zhang F, Vik SB. Analysis of the assembly pathway for membrane subunits of Complex I reveals that subunit L (ND5) can assemble last in E. coli. BBA ADVANCES 2021; 1. [DOI: 10.1016/j.bbadva.2021.100027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
11
|
Dang QCL, Phan DH, Johnson AN, Pasapuleti M, Alkhaldi HA, Zhang F, Vik SB. Analysis of Human Mutations in the Supernumerary Subunits of Complex I. Life (Basel) 2020; 10:life10110296. [PMID: 33233646 PMCID: PMC7699753 DOI: 10.3390/life10110296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 01/02/2023] Open
Abstract
Complex I is the largest member of the electron transport chain in human mitochondria. It comprises 45 subunits and requires at least 15 assembly factors. The subunits can be divided into 14 "core" subunits that carry out oxidation-reduction reactions and proton translocation, as well as 31 additional supernumerary (or accessory) subunits whose functions are less well known. Diminished levels of complex I activity are seen in many mitochondrial disease states. This review seeks to tabulate mutations in the supernumerary subunits of humans that appear to cause disease. Mutations in 20 of the supernumerary subunits have been identified. The mutations were analyzed in light of the tertiary and quaternary structure of human complex I (PDB id = 5xtd). Mutations were found that might disrupt the folding of that subunit or that would weaken binding to another subunit. In some cases, it appeared that no protein was made or, at least, could not be detected. A very common outcome is the lack of assembly of complex I when supernumerary subunits are mutated or missing. We suggest that poor assembly is the result of disrupting the large network of subunit interactions that the supernumerary subunits typically engage in.
Collapse
|
12
|
Grba DN, Hirst J. Mitochondrial complex I structure reveals ordered water molecules for catalysis and proton translocation. Nat Struct Mol Biol 2020; 27:892-900. [PMID: 32747785 PMCID: PMC7612091 DOI: 10.1038/s41594-020-0473-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/26/2020] [Indexed: 01/09/2023]
Abstract
Mitochondrial complex I powers ATP synthesis by oxidative phosphorylation, exploiting the energy from ubiquinone reduction by NADH to drive protons across the energy-transducing inner membrane. Recent cryo-EM analyses of mammalian and yeast complex I have revolutionized structural and mechanistic knowledge and defined structures in different functional states. Here, we describe a 2.7-Å-resolution structure of the 42-subunit complex I from the yeast Yarrowia lipolytica containing 275 structured water molecules. We identify a proton-relay pathway for ubiquinone reduction and water molecules that connect mechanistically crucial elements and constitute proton-translocation pathways through the membrane. By comparison with known structures, we deconvolute structural changes governing the mammalian 'deactive transition' (relevant to ischemia-reperfusion injury) and their effects on the ubiquinone-binding site and a connected cavity in ND1. Our structure thus provides important insights into catalysis by this enigmatic respiratory machine.
Collapse
Affiliation(s)
- Daniel N Grba
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
13
|
Murai M. Exploring the binding pocket of quinone/inhibitors in mitochondrial respiratory complex I by chemical biology approaches. Biosci Biotechnol Biochem 2020; 84:1322-1331. [PMID: 32264779 DOI: 10.1080/09168451.2020.1747974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
NADH-quinone oxidoreductase (respiratory complex I) is a key player in mitochondrial energy metabolism. The enzyme couples electron transfer from NADH to quinone with the translocation of protons across the membrane, providing a major proton-motive force that drives ATP synthesis. Recently, X-ray crystallography and cryo-electron microscopy provided further insights into the structure and functions of the enzyme. However, little is known about the mechanism of quinone reduction, which is a crucial step in the energy coupling process. A variety of complex I inhibitors targeting the quinone-binding site have been indispensable tools for mechanistic studies on the enzyme. Using biorationally designed inhibitor probes, the author has accumulated a large amount of experimental data characterizing the actions of complex I inhibitors. On the basis of comprehensive interpretations of the data, the author reviews the structural features of the binding pocket of quinone/inhibitors in bovine mitochondrial complex I. ABBREVIATIONS ATP: adenosine triphosphate; BODIPY: boron dipyrromethene; complex I: proton-translocating NADH-quinone oxidoreductase; DIBO: dibenzocyclooctyne; EM: electron microscopy; FeS: iron-sulfur; FMN: flavin adenine mononucleotide; LDT: ligand-directed tosylate; NADH: nicotinamide adenine dinucleotide; ROS: reactive oxygen species; SMP: submitochondrial particle; TAMRA: 6-carboxy-N,N,N',N'-tetramethylrhodamine; THF: tetrahydrofuran; TMH: transmembrane helix.
Collapse
Affiliation(s)
- Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University , Kyoto, Japan
| |
Collapse
|
14
|
Subrahmanian N, Castonguay AD, Fatnes TA, Hamel PP. Chlamydomonas reinhardtii as a plant model system to study mitochondrial complex I dysfunction. PLANT DIRECT 2020; 4:e00200. [PMID: 32025618 PMCID: PMC6996877 DOI: 10.1002/pld3.200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Mitochondrial complex I, a proton-pumping NADH: ubiquinone oxidoreductase, is required for oxidative phosphorylation. However, the contribution of several human mutations to complex I deficiency is poorly understood. The unicellular alga Chlamydomonas reinhardtii was utilized to study complex I as, unlike in mammals, mutants with complete loss of the holoenzyme are viable. From a forward genetic screen for complex I-deficient insertional mutants, six mutants exhibiting complex I deficiency with assembly defects were isolated. Chlamydomonas mutants isolated from our screens, lacking the subunits NDUFV2 and NDUFB10, were used to reconstruct and analyze the effect of two human mutations in these subunit-encoding genes. The K209R substitution in NDUFV2, reported in Parkinson's disease patients, did not significantly affect the enzyme activity or assembly. The C107S substitution in the NDUFB10 subunit, reported in a case of fatal infantile cardiomyopathy, is part of a conserved C-(X)11-C motif. The cysteine substitutions, at either one or both positions, still allowed low levels of holoenzyme formation, indicating that this motif is crucial for complex I function but not strictly essential for assembly. We show that the algal mutants provide a simple and useful platform to delineate the consequences of patient mutations on complex I function.
Collapse
Affiliation(s)
- Nitya Subrahmanian
- Department of Molecular GeneticsThe Ohio State UniversityColumbusOHUSA
- Plant Cellular and Molecular Biology Graduate ProgramThe Ohio State UniversityColumbusOHUSA
| | - Andrew David Castonguay
- Department of Molecular GeneticsThe Ohio State UniversityColumbusOHUSA
- Molecular Genetics Graduate ProgramThe Ohio State UniversityColumbusOHUSA
| | - Thea Aspelund Fatnes
- Department of Molecular GeneticsThe Ohio State UniversityColumbusOHUSA
- Present address:
Fürst Medical LaboratoryOsloNorway
| | - Patrice Paul Hamel
- Department of Molecular GeneticsThe Ohio State UniversityColumbusOHUSA
- Department of Biological Chemistry and PharmacologyThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
15
|
Respiratory complex I - Mechanistic insights and advances in structure determination. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148153. [PMID: 31935361 DOI: 10.1016/j.bbabio.2020.148153] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 12/17/2022]
Abstract
Complex I is the largest and most intricate redox-driven proton pump of the respiratory chain. The structure of bacterial and mitochondrial complex I has been determined by X-ray crystallography and cryo-EM at increasing resolution. The recent cryo-EM structures of the complex I-like NDH complex and membrane bound hydrogenase open a new and more comprehensive perspective on the complex I superfamily. Functional studies and molecular modeling approaches have greatly advanced our understanding of the catalytic cycle of complex I. However, the molecular mechanism by which energy is extracted from the redox reaction and utilized to drive proton translocation is unresolved and a matter of ongoing debate. Here, we review progress in structure determination and functional characterization of complex I and discuss current mechanistic models.
Collapse
|
16
|
Kaila VRI. Long-range proton-coupled electron transfer in biological energy conversion: towards mechanistic understanding of respiratory complex I. J R Soc Interface 2019; 15:rsif.2017.0916. [PMID: 29643224 PMCID: PMC5938582 DOI: 10.1098/rsif.2017.0916] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/13/2018] [Indexed: 12/20/2022] Open
Abstract
Biological energy conversion is driven by efficient enzymes that capture, store and transfer protons and electrons across large distances. Recent advances in structural biology have provided atomic-scale blueprints of these types of remarkable molecular machinery, which together with biochemical, biophysical and computational experiments allow us to derive detailed energy transduction mechanisms for the first time. Here, I present one of the most intricate and least understood types of biological energy conversion machinery, the respiratory complex I, and how its redox-driven proton-pump catalyses charge transfer across approximately 300 Å distances. After discussing the functional elements of complex I, a putative mechanistic model for its action-at-a-distance effect is presented, and functional parallels are drawn to other redox- and light-driven ion pumps.
Collapse
Affiliation(s)
- Ville R I Kaila
- Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, Garching, Germany
| |
Collapse
|
17
|
Ertl NG, O'Connor WA, Elizur A. Molecular effects of a variable environment on Sydney rock oysters, Saccostrea glomerata: Thermal and low salinity stress, and their synergistic effect. Mar Genomics 2019; 43:19-32. [DOI: 10.1016/j.margen.2018.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 10/07/2018] [Accepted: 10/18/2018] [Indexed: 12/26/2022]
|
18
|
Hu T, Tian Y, Zhu J, Wang Y, Jing R, Lei J, Sun Y, Yu Y, Li J, Chen X, Zhu X, Hao Y, Liu L, Wang Y, Wan J. OsNDUFA9 encoding a mitochondrial complex I subunit is essential for embryo development and starch synthesis in rice. PLANT CELL REPORTS 2018; 37:1667-1679. [PMID: 30151559 DOI: 10.1007/s00299-018-2338-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/22/2018] [Indexed: 05/23/2023]
Abstract
Loss of function of a mitochondrial complex I subunit (OsNDUFA9) causes abnormal embryo development and affects starch synthesis by altering the expression of starch synthesis-related genes and proteins. Proton-pumping NADH: ubiquinone oxidoreductase (also called complex I) is thought to be the largest and most complicated enzyme of the mitochondrial respiratory chain. Mutations of complex I subunits have been revealed to link with a number of growth inhibitions in plants. However, the function of complex I subunits in rice remains unclear. Here, we isolated a rice floury endosperm mutant (named flo13) that was embryonic lethal and failed to germinate. Semi-thin sectioning analysis showed that compound starch grain development in the mutant was greatly impaired, leading to significantly compromised starch biosynthesis and decreased 1000-grain weight relative to the wild type. Map-based cloning revealed that FLO13 encodes an accessory subunit of complex I protein (designated as OsNDUFA9). A single nucleotide substitution (G18A) occurred in the first exon of OsNDUFA9, introducing a premature stop codon in the flo13 mutant gene. OsNDUFA9 was ubiquitously expressed in various tissues and the OsNDUFA9 protein was localized to the mitochondria. Quantitative RT-PCR and protein blotting indicated loss of function of OsNDUFA9 altered gene expression and protein accumulation associated with respiratory electron chain complex in the mitochondria. Moreover, transmission electron microscopic analysis showed that the mutant lacked obvious mitochondrial cristae structure in the mitochondria of endosperm cell. Our results demonstrate that the OsNDUFA9 subunit of complex I is essential for embryo development and starch synthesis in rice endosperm.
Collapse
Affiliation(s)
- Tingting Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou, 221131, China
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianping Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunlong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruonan Jing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Lei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yinglun Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanfang Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingfang Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoli Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaopin Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanyuan Hao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Linglong Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yihua Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
19
|
Gladyshev GV, Grivennikova VG, Vinogradov AD. FMN site-independent energy-linked reverse electron transfer in mitochondrial respiratory complex I. FEBS Lett 2018; 592:2213-2219. [PMID: 29851085 DOI: 10.1002/1873-3468.13117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 11/06/2022]
Abstract
A simple assay procedure for measuring ATP-dependent reverse electron transfer from ubiquinol to hexaammineruthenium (III) (HAR) catalyzed by mitochondrial respiratory complex I is introduced. The specific activity of the enzyme in this reaction and its sensitivity to the standard inhibitors and uncoupling are the same as with other well-known electron acceptors, NAD+ and ferricyanide. In contrast to the reactions with these acceptors, the energy-dependent HAR reduction is not inhibited by NADH-OH, the specific inhibitor of NADH-binding site. These results suggest that a catalytically competent electron connection exists between HAR and a redox component of complex I that is different from flavin mononucleotide bound at the substrate-binding site.
Collapse
Affiliation(s)
- Grigory V Gladyshev
- Department of Biochemistry, School of Biology, Moscow State University, Russia
| | - Vera G Grivennikova
- Department of Biochemistry, School of Biology, Moscow State University, Russia
| | - Andrei D Vinogradov
- Department of Biochemistry, School of Biology, Moscow State University, Russia
| |
Collapse
|
20
|
Di Luca A, Mühlbauer ME, Saura P, Kaila VRI. How inter-subunit contacts in the membrane domain of complex I affect proton transfer energetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:734-741. [PMID: 29883589 DOI: 10.1016/j.bbabio.2018.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/08/2018] [Accepted: 06/02/2018] [Indexed: 10/14/2022]
Abstract
The respiratory complex I is a redox-driven proton pump that employs the free energy released from quinone reduction to pump protons across its complete ca. 200 Å wide membrane domain. Despite recently resolved structures and molecular simulations, the exact mechanism for the proton transport process remains unclear. Here we combine large-scale molecular simulations with quantum chemical density functional theory (DFT) models to study how contacts between neighboring antiporter-like subunits in the membrane domain of complex I affect the proton transfer energetics. Our combined results suggest that opening of conserved Lys/Glu ion pairs within each antiporter-like subunit modulates the barrier for the lateral proton transfer reactions. Our work provides a mechanistic suggestion for key coupling effects in the long-range force propagation process of complex I.
Collapse
Affiliation(s)
- Andrea Di Luca
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching, D-85747, Germany
| | - Max E Mühlbauer
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching, D-85747, Germany
| | - Patricia Saura
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching, D-85747, Germany
| | - Ville R I Kaila
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching, D-85747, Germany.
| |
Collapse
|
21
|
Global collective motions in the mammalian and bacterial respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:326-332. [DOI: 10.1016/j.bbabio.2018.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 01/12/2023]
|
22
|
Olson KR. H 2S and polysulfide metabolism: Conventional and unconventional pathways. Biochem Pharmacol 2017; 149:77-90. [PMID: 29248597 DOI: 10.1016/j.bcp.2017.12.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022]
Abstract
It is now well established that hydrogen sulfide (H2S) is an effector of a wide variety of physiological processes. It is also clear that many of the effects of H2S are mediated through reactions with cysteine sulfur on regulatory proteins and most of these are not mediated directly by H2S but require prior oxidation of H2S and the formation of per- and polysulfides (H2Sn, n = 2-8). Attendant with understanding the regulatory functions of H2S and H2Sn is an appreciation of the mechanisms that control, i.e., both increase and decrease, their production and catabolism. Although a number of standard "conventional" pathways have been described and well characterized, novel "unconventional" pathways are continuously being identified. This review summarizes our current knowledge of both the conventional and unconventional.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine - South Bend, South Bend, IN 46617, USA.
| |
Collapse
|
23
|
Kahlhöfer F, Kmita K, Wittig I, Zwicker K, Zickermann V. Accessory subunit NUYM (NDUFS4) is required for stability of the electron input module and activity of mitochondrial complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1858:175-181. [PMID: 27871794 DOI: 10.1016/j.bbabio.2016.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 11/18/2022]
Abstract
Mitochondrial complex I is an intricate 1MDa membrane protein complex with a central role in aerobic energy metabolism. The minimal form of complex I consists of fourteen central subunits that are conserved from bacteria to man. In addition, eukaryotic complex I comprises some 30 accessory subunits of largely unknown function. The gene for the accessory NDUFS4 subunit of human complex I is a hot spot for fatal pathogenic mutations in humans. We have deleted the gene for the orthologous NUYM subunit in the aerobic yeast Yarrowia lipolytica, an established model system to study eukaryotic complex I and complex I linked diseases. We observed assembly of complex I which lacked only subunit NUYM and retained weak interaction with assembly factor N7BML (human NDUFAF2). Absence of NUYM caused distortion of iron sulfur clusters of the electron input domain leading to decreased complex I activity and increased release of reactive oxygen species. We conclude that NUYM has an important stabilizing function for the electron input module of complex I and is essential for proper complex I function.
Collapse
Affiliation(s)
- Flora Kahlhöfer
- Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe-University Frankfurt am Main, Germany
| | - Katarzyna Kmita
- Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe-University Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute of Biochemistry I, Medical School, Goethe-University Frankfurt am Main, Germany; Cluster of Excellence Frankfurt "Macromolecular Complexes", Goethe-University Frankfurt am Main, Germany
| | - Klaus Zwicker
- Institute of Biochemistry I, Medical School, Goethe University Frankfurt am Main, Germany
| | - Volker Zickermann
- Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe-University Frankfurt am Main, Germany; Cluster of Excellence Frankfurt "Macromolecular Complexes", Goethe-University Frankfurt am Main, Germany.
| |
Collapse
|
24
|
Cryo-EM structure of respiratory complex I reveals a link to mitochondrial sulfur metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1935-1942. [PMID: 27693469 DOI: 10.1016/j.bbabio.2016.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/22/2016] [Accepted: 09/29/2016] [Indexed: 12/17/2022]
Abstract
Mitochondrial complex I is a 1MDa membrane protein complex with a central role in aerobic energy metabolism. The bioenergetic core functions are executed by 14 central subunits that are conserved from bacteria to man. Despite recent progress in structure determination, our understanding of the function of the ~30 accessory subunits associated with the mitochondrial complex is still limited. We have investigated the structure of complex I from the aerobic yeast Yarrowia lipolytica by cryo-electron microscopy. Our density map at 7.9Å resolution closely matches the 3.6-3.9Å X-ray structure of the Yarrowia lipolytica complex. However, the cryo-EM map indicated an additional subunit on the side of the matrix arm above the membrane surface, pointing away from the membrane arm. The density, which is not present in any previously described complex I structure and occurs in about 20 % of the particles, was identified as the accessory sulfur transferase subunit ST1. The Yarrowia lipolytica complex I preparation is active in generating H2S from the cysteine derivative 3-mercaptopyruvate, catalyzed by ST1. We thus provide evidence for a link between respiratory complex I and mitochondrial sulfur metabolism.
Collapse
|
25
|
Letts JA, Degliesposti G, Fiedorczuk K, Skehel M, Sazanov LA. Purification of Ovine Respiratory Complex I Results in a Highly Active and Stable Preparation. J Biol Chem 2016; 291:24657-24675. [PMID: 27672209 DOI: 10.1074/jbc.m116.735142] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/15/2016] [Indexed: 01/06/2023] Open
Abstract
NADH-ubiquinone oxidoreductase (complex I) is the largest (∼1 MDa) and the least characterized complex of the mitochondrial electron transport chain. Because of the ease of sample availability, previous work has focused almost exclusively on bovine complex I. However, only medium resolution structural analyses of this complex have been reported. Working with other mammalian complex I homologues is a potential approach for overcoming these limitations. Due to the inherent difficulty of expressing large membrane protein complexes, screening of complex I homologues is limited to large mammals reared for human consumption. The high sequence identity among these available sources may preclude the benefits of screening. Here, we report the characterization of complex I purified from Ovis aries (ovine) heart mitochondria. All 44 unique subunits of the intact complex were identified by mass spectrometry. We identified differences in the subunit composition of subcomplexes of ovine complex I as compared with bovine, suggesting differential stability of inter-subunit interactions within the complex. Furthermore, the 42-kDa subunit, which is easily lost from the bovine enzyme, remains tightly bound to ovine complex I. Additionally, we developed a novel purification protocol for highly active and stable mitochondrial complex I using the branched-chain detergent lauryl maltose neopentyl glycol. Our data demonstrate that, although closely related, significant differences exist between the biochemical properties of complex I prepared from ovine and bovine mitochondria and that ovine complex I represents a suitable alternative target for further structural studies.
Collapse
Affiliation(s)
- James A Letts
- From the Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Gianluca Degliesposti
- the Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom, and
| | - Karol Fiedorczuk
- From the Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria,; the Medical Research Council Mitochondrial Biology Unit, Cambridge CB2 0XY, United Kingdom
| | - Mark Skehel
- the Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom, and
| | - Leonid A Sazanov
- From the Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria,.
| |
Collapse
|
26
|
Wirth C, Brandt U, Hunte C, Zickermann V. Structure and function of mitochondrial complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:902-14. [PMID: 26921811 DOI: 10.1016/j.bbabio.2016.02.013] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 12/13/2022]
Abstract
Proton-pumping NADH:ubiquinone oxidoreductase (complex I) is the largest and most complicated enzyme of the respiratory chain. Fourteen central subunits represent the minimal form of complex I and can be assigned to functional modules for NADH oxidation, ubiquinone reduction, and proton pumping. In addition, the mitochondrial enzyme comprises some 30 accessory subunits surrounding the central subunits that are not directly associated with energy conservation. Complex I is known to release deleterious oxygen radicals (ROS) and its dysfunction has been linked to a number of hereditary and degenerative diseases. We here review recent progress in structure determination, and in understanding the role of accessory subunits and functional analysis of mitochondrial complex I. For the central subunits, structures provide insight into the arrangement of functional modules including the substrate binding sites, redox-centers and putative proton channels and pump sites. Only for two of the accessory subunits, detailed structures are available. Nevertheless, many of them could be localized in the overall structure of complex I, but most of these assignments have to be considered tentative. Strikingly, redox reactions and proton pumping machinery are spatially completely separated and the site of reduction for the hydrophobic substrate ubiquinone is found deeply buried in the hydrophilic domain of the complex. The X-ray structure of complex I from Yarrowia lipolytica provides clues supporting the previously proposed two-state stabilization change mechanism, in which ubiquinone redox chemistry induces conformational states and thereby drives proton pumping. The same structural rearrangements may explain the active/deactive transition of complex I implying an integrated mechanistic model for energy conversion and regulation. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
- Christophe Wirth
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Ulrich Brandt
- Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Center, Nijmegen, The Netherlands; Cluster of Excellence Frankfurt "Macromolecular Complexes, Goethe-University, Germany
| | - Carola Hunte
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany.
| | - Volker Zickermann
- Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe-University, Frankfurt am Main, Germany; Cluster of Excellence Frankfurt "Macromolecular Complexes, Goethe-University, Germany.
| |
Collapse
|
27
|
Subrahmanian N, Remacle C, Hamel PP. Plant mitochondrial Complex I composition and assembly: A review. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1001-14. [PMID: 26801215 DOI: 10.1016/j.bbabio.2016.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/18/2016] [Accepted: 01/18/2016] [Indexed: 12/31/2022]
Abstract
In the mitochondrial inner membrane, oxidative phosphorylation generates ATP via the operation of several multimeric enzymes. The proton-pumping Complex I (NADH:ubiquinone oxidoreductase) is the first and most complicated enzyme required in this process. Complex I is an L-shaped enzyme consisting of more than 40 subunits, one FMN molecule and eight Fe-S clusters. In recent years, genetic and proteomic analyses of Complex I mutants in various model systems, including plants, have provided valuable insights into the assembly of this multimeric enzyme. Assisted by a number of key players, referred to as "assembly factors", the assembly of Complex I takes place in a sequential and modular manner. Although a number of factors have been identified, their precise function in mediating Complex I assembly still remains to be elucidated. This review summarizes our current knowledge of plant Complex I composition and assembly derived from studies in plant model systems such as Arabidopsis thaliana and Chlamydomonas reinhardtii. Plant Complex I is highly conserved and comprises a significant number of subunits also present in mammalian and fungal Complexes I. Plant Complex I also contains additional subunits absent from the mammalian and fungal counterpart, whose function in enzyme activity and assembly is not clearly understood. While 14 assembly factors have been identified for human Complex I, only two proteins, namely GLDH and INDH, have been established as bona fide assembly factors for plant Complex I. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
- Nitya Subrahmanian
- The Ohio State University, Department of Molecular Genetics, 500 Aronoff Laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA
| | - Claire Remacle
- Institute of Botany, Department of Life Sciences, University of Liège, 4000 Liège, Belgium
| | - Patrice Paul Hamel
- The Ohio State University, Department of Molecular Genetics, 500 Aronoff Laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA; The Ohio State University, Department of Biological Chemistry and Pharmacology, 500 Aronoff Laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
28
|
Vinogradov AD, Grivennikova VG. Oxidation of NADH and ROS production by respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:863-71. [PMID: 26571336 DOI: 10.1016/j.bbabio.2015.11.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/02/2015] [Accepted: 11/07/2015] [Indexed: 12/14/2022]
Abstract
Kinetic characteristics of the proton-pumping NADH:quinone reductases (respiratory complexes I) are reviewed. Unsolved problems of the redox-linked proton translocation activities are outlined. The parameters of complex I-mediated superoxide/hydrogen peroxide generation are summarized, and the physiological significance of mitochondrial ROS production is discussed. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
- Andrei D Vinogradov
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119991.
| | - Vera G Grivennikova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119991
| |
Collapse
|
29
|
Letts JA, Sazanov LA. Gaining mass: the structure of respiratory complex I-from bacterial towards mitochondrial versions. Curr Opin Struct Biol 2015; 33:135-45. [PMID: 26387075 DOI: 10.1016/j.sbi.2015.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/13/2015] [Accepted: 08/25/2015] [Indexed: 02/04/2023]
Abstract
The 1MDa, 45-subunit proton-pumping NADH-ubiquinone oxidoreductase (complex I) is the largest complex of the mitochondrial electron transport chain. The molecular mechanism of complex I is central to the metabolism of cells, but has yet to be fully characterized. The last two years have seen steady progress towards this goal with the first atomic-resolution structure of the entire bacterial complex I, a 5Å cryo-electron microscopy map of bovine mitochondrial complex I and a ∼3.8Å resolution X-ray crystallographic study of mitochondrial complex I from yeast Yarrowia lipotytica. In this review we will discuss what we have learned from these studies and what remains to be elucidated.
Collapse
Affiliation(s)
- James A Letts
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Leonid A Sazanov
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
30
|
Functional diversity of complex I subunits in Candida albicans mitochondria. Curr Genet 2015; 62:87-95. [PMID: 26373419 DOI: 10.1007/s00294-015-0518-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 08/26/2015] [Accepted: 08/28/2015] [Indexed: 10/23/2022]
Abstract
Our interest in the mitochondria of Candida albicans has progressed to the identification of several proteins that are critical to complex I (CI) activity. We speculated that there should be major functional differences at the protein level between mammalian and fungal mitochondria CI. In our pursuit of this idea, we were helped by published data of CI subunit proteins from a broad diversity of species that included two subunit proteins that are not found in mammals. These subunit proteins have been designated as Nuo1p and Nuo2p (NADH-ubiquinone oxidoreductases). Since functional assignments of both C. albicans proteins were unknown, other than having a putative NADH-oxidoreductase activity, we constructed knock-out strains that could be compared to parental cells. The relevance of our research relates to the critical roles of both proteins in cell biology and pathogenesis and their absence in mammals. These features suggest they may be exploited in antifungal drug discovery. Initially, we characterized Goa1p that apparently regulates CI activity but is not a CI subunit protein. We have used the goa1∆ for comparisons to Nuo1p and Nuo2p. We have demonstrated the critical role of these proteins in maintaining CI activities, virulence, and prolonging life span. More recently, transcriptional profiling of the three mutants and an ndh51∆ (protein is a highly conserved CI subunit) has revealed that there are overlapping yet also different functional assignments that suggest subunit specificity. The differences and similarities of each are described below along with our hypotheses to explain these data. Our conclusion and perspective is that the C. albicans CI subunit proteins are highly conserved except for two that define non-mammalian functions.
Collapse
|
31
|
Structure of subcomplex Iβ of mammalian respiratory complex I leads to new supernumerary subunit assignments. Proc Natl Acad Sci U S A 2015; 112:12087-92. [PMID: 26371297 DOI: 10.1073/pnas.1510577112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial complex I (proton-pumping NADH:ubiquinone oxidoreductase) is an essential respiratory enzyme. Mammalian complex I contains 45 subunits: 14 conserved "core" subunits and 31 "supernumerary" subunits. The structure of Bos taurus complex I, determined to 5-Å resolution by electron cryomicroscopy, described the structure of the mammalian core enzyme and allowed the assignment of 14 supernumerary subunits. Here, we describe the 6.8-Å resolution X-ray crystallography structure of subcomplex Iβ, a large portion of the membrane domain of B. taurus complex I that contains two core subunits and a cohort of supernumerary subunits. By comparing the structures and composition of subcomplex Iβ and complex I, supported by comparisons with Yarrowia lipolytica complex I, we propose assignments for eight further supernumerary subunits in the structure. Our new assignments include two CHCH-domain containing subunits that contain disulfide bridges between CX9C motifs; they are processed by the Mia40 oxidative-folding pathway in the intermembrane space and probably stabilize the membrane domain. We also assign subunit B22, an LYR protein, to the matrix face of the membrane domain. We reveal that subunit B22 anchors an acyl carrier protein (ACP) to the complex, replicating the LYR protein-ACP structural module that was identified previously in the hydrophilic domain. Thus, we significantly extend knowledge of how the mammalian supernumerary subunits are arranged around the core enzyme, and provide insights into their roles in biogenesis and regulation.
Collapse
|
32
|
Abstract
Mitochondria are energy-producing organelles in eukaryotic cells considered to be of bacterial origin. The mitochondrial genome has evolved under selection for minimization of gene content, yet it is not known why not all mitochondrial genes have been transferred to the nuclear genome. Here, we predict that hydrophobic membrane proteins encoded by the mitochondrial genomes would be recognized by the signal recognition particle and targeted to the endoplasmic reticulum if they were nuclear-encoded and translated in the cytoplasm. Expression of the mitochondrially encoded proteins Cytochrome oxidase subunit 1, Apocytochrome b, and ATP synthase subunit 6 in the cytoplasm of HeLa cells confirms export to the endoplasmic reticulum. To examine the extent to which the mitochondrial proteome is driven by selective constraints within the eukaryotic cell, we investigated the occurrence of mitochondrial protein domains in bacteria and eukaryotes. The accessory protein domains of the oxidative phosphorylation system are unique to mitochondria, indicating the evolution of new protein folds. Most of the identified domains in the accessory proteins of the ribosome are also found in eukaryotic proteins of other functions and locations. Overall, one-third of the protein domains identified in mitochondrial proteins are only rarely found in bacteria. We conclude that the mitochondrial genome has been maintained to ensure the correct localization of highly hydrophobic membrane proteins. Taken together, the results suggest that selective constraints on the eukaryotic cell have played a major role in modulating the evolution of the mitochondrial genome and proteome.
Collapse
|
33
|
Murai M, Murakami S, Ito T, Miyoshi H. Amilorides bind to the quinone binding pocket of bovine mitochondrial complex I. Biochemistry 2015; 54:2739-46. [PMID: 25849763 DOI: 10.1021/acs.biochem.5b00187] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amilorides, well-known inhibitors of Na(+)/H(+) antiporters, were previously shown to inhibit bacterial and mitochondrial NADH-quinone oxidoreductase (complex I) but were markedly less active for complex I. Because membrane subunits ND2, ND4, and ND5 of bovine complex I are homologous to Na(+)/H(+) antiporters, amilorides have been thought to bind to any or all of the antiporter-like subunits; however, there is currently no direct experimental evidence that supports this notion. To identify the binding site of amilorides in bovine complex I, we synthesized two photoreactive amilorides (PRA1 and PRA2), which have a photoreactive azido (-N3) group and terminal alkyne (-C≡CH) group at the opposite ends of the molecules, respectively, and conducted photoaffinity labeling with bovine heart submitochondrial particles. The terminal alkyne group allows various molecular tags to covalently attach to it via Cu(+)-catalyzed click chemistry, thereby allowing purification and/or detection of the labeled peptides. Proteomic analyses revealed that PRA1 and PRA2 label none of the antiporter-like subunits; they specifically label the accessory subunit B14.5a and core subunit 49 kDa (N-terminal region of Thr25-Glu115), respectively. Suppressive effects of ordinary inhibitors (bullatacin, fenpyroximate, and quinazoline), which bind to the putative quinone binding pocket, on labeling were fairly different between the B14.5a and 49 kDa subunits probably because the binding positions of the three inhibitors differ within the pocket. The results of this study clearly demonstrate that amilorides inhibit complex I activity by occupying the quinone binding pocket rather than directly blocking translocation of protons through the antiporter-like subunits (ND2, ND4, and ND5). The accessory subunit B14.5a may be located adjacent to the N-terminal region of the 49 kDa subunits. The structural features of the quinone binding pocket in bovine complex I were discussed on the basis of these results.
Collapse
Affiliation(s)
- Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Sonomi Murakami
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takeshi Ito
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
34
|
Angerer H. Eukaryotic LYR Proteins Interact with Mitochondrial Protein Complexes. BIOLOGY 2015; 4:133-50. [PMID: 25686363 PMCID: PMC4381221 DOI: 10.3390/biology4010133] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/04/2015] [Indexed: 01/18/2023]
Abstract
In eukaryotic cells, mitochondria host ancient essential bioenergetic and biosynthetic pathways. LYR (leucine/tyrosine/arginine) motif proteins (LYRMs) of the Complex1_LYR-like superfamily interact with protein complexes of bacterial origin. Many LYR proteins function as extra subunits (LYRM3 and LYRM6) or novel assembly factors (LYRM7, LYRM8, ACN9 and FMC1) of the oxidative phosphorylation (OXPHOS) core complexes. Structural insights into complex I accessory subunits LYRM6 and LYRM3 have been provided by analyses of EM and X-ray structures of complex I from bovine and the yeast Yarrowia lipolytica, respectively. Combined structural and biochemical studies revealed that LYRM6 resides at the matrix arm close to the ubiquinone reduction site. For LYRM3, a position at the distal proton-pumping membrane arm facing the matrix space is suggested. Both LYRMs are supposed to anchor an acyl-carrier protein (ACPM) independently to complex I. The function of this duplicated protein interaction of ACPM with respiratory complex I is still unknown. Analysis of protein-protein interaction screens, genetic analyses and predicted multi-domain LYRMs offer further clues on an interaction network and adaptor-like function of LYR proteins in mitochondria.
Collapse
Affiliation(s)
- Heike Angerer
- Goethe University Frankfurt, Medical School, Institute of Biochemistry II, Structural Bioenergetics Group, Max-von-Laue Street 9, Frankfurt am Main 60438, Germany.
| |
Collapse
|
35
|
Murai M, Miyoshi H. Chemical modifications of respiratory complex I for structural and functional studies. J Bioenerg Biomembr 2014; 46:313-21. [DOI: 10.1007/s10863-014-9562-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/26/2014] [Indexed: 01/07/2023]
|
36
|
Rak M, Rustin P. Supernumerary subunits NDUFA3, NDUFA5 and NDUFA12 are required for the formation of the extramembrane arm of human mitochondrial complex I. FEBS Lett 2014; 588:1832-8. [PMID: 24717771 DOI: 10.1016/j.febslet.2014.03.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/12/2014] [Accepted: 03/23/2014] [Indexed: 12/13/2022]
Abstract
Mammalian complex I is composed of fourteen highly conserved core subunits and additional thirty subunits acquired in the course of evolution. At present, the function of the majority of these supernumerary subunits is poorly understood. In this work, we have studied NDUFA3, NDUFA5 and NDUFA12 supernumerary subunits to gain insight into their role in CI activity and biogenesis. Using human cell lines in which the expression of these subunits was knocked down with miRNAs, we showed that they are necessary for the formation of a functional holoenzyme. Analysis of the assembly intermediates in mitochondria depleted for these subunits further suggested that they are required for assembly and/or stability of the electron transferring Q module in the peripheral arm of the CI.
Collapse
Affiliation(s)
- Malgorzata Rak
- INSERM UMR 1141, Bâtiment Ecran, Hôpital Robert Debré, 48 Boulevard Serurier, 75019 Paris, France.
| | - Pierre Rustin
- INSERM UMR 1141, Bâtiment Ecran, Hôpital Robert Debré, 48 Boulevard Serurier, 75019 Paris, France
| |
Collapse
|
37
|
The LYR protein subunit NB4M/NDUFA6 of mitochondrial complex I anchors an acyl carrier protein and is essential for catalytic activity. Proc Natl Acad Sci U S A 2014; 111:5207-12. [PMID: 24706851 DOI: 10.1073/pnas.1322438111] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial complex I is the largest and most complicated enzyme of the oxidative phosphorylation system. It comprises a number of so-called accessory subunits of largely unknown structure and function. Here we studied subunit NB4M [NDUFA6, LYR motif containing protein 6 (LYRM6)], a member of the LYRM family of proteins. Chromosomal deletion of the corresponding gene in the yeast Yarrowia lipolytica caused concomitant loss of the mitochondrial acyl carrier protein subunit ACPM1 from the enzyme complex and paralyzed ubiquinone reductase activity. Exchanging the LYR motif and an associated conserved phenylalanine by alanines in subunit NB4M also abolished the activity and binding of subunit ACPM1. We show, by single-particle electron microscopy and structural modeling, that subunits NB4M and ACPM1 form a subdomain that protrudes from the peripheral arm in the vicinity of central subunit domains known to be involved in controlling the catalytic activity of complex I.
Collapse
|
38
|
Abstract
Molecular bioenergetics deals with the construction, function and regulation of the powerhouses of life. The present overview sketches scenes and actors, farsighted goals and daring hypotheses, meticulous tool-making, painstaking benchwork, lucky discovery, serious scepticism, emphatic believing and strong characters with weak and others with hard arguments, told from a personal, admittedly limited, perspective. Bioenergetics will blossom further with the search focused on both where there is bright light for ever-finer detail and the obvious dark spots for surprise and discovery.
Collapse
|