1
|
Zhao C, Guo H, Hou Y, Lei T, Wei D, Zhao Y. Multiple Roles of the Stress Sensor GCN2 in Immune Cells. Int J Mol Sci 2023; 24:ijms24054285. [PMID: 36901714 PMCID: PMC10002013 DOI: 10.3390/ijms24054285] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
The serine/threonine-protein kinase general control nonderepressible 2 (GCN2) is a well-known stress sensor that responds to amino acid starvation and other stresses, making it critical to the maintenance of cellular and organismal homeostasis. More than 20 years of research has revealed the molecular structure/complex, inducers/regulators, intracellular signaling pathways and bio-functions of GCN2 in various biological processes, across an organism's lifespan, and in many diseases. Accumulated studies have demonstrated that the GCN2 kinase is also closely involved in the immune system and in various immune-related diseases, such as GCN2 acts as an important regulatory molecule to control macrophage functional polarization and CD4+ T cell subset differentiation. Herein, we comprehensively summarize the biological functions of GCN2 and discuss its roles in the immune system, including innate and adaptive immune cells. We also discuss the antagonism of GCN2 and mTOR pathways in immune cells. A better understanding of GCN2's functions and signaling pathways in the immune system under physiological, stressful, and pathological situations will be beneficial to the development of potential therapies for many immune-relevant diseases.
Collapse
Affiliation(s)
- Chenxu Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangxiao Hou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Lei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Wei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Correspondence: ; Tel.: +86-10-64807302
| |
Collapse
|
2
|
Yeast as a Model to Understand Actin-Mediated Cellular Functions in Mammals-Illustrated with Four Actin Cytoskeleton Proteins. Cells 2020; 9:cells9030672. [PMID: 32164332 PMCID: PMC7140605 DOI: 10.3390/cells9030672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has an actin cytoskeleton that comprises a set of protein components analogous to those found in the actin cytoskeletons of higher eukaryotes. Furthermore, the actin cytoskeletons of S. cerevisiae and of higher eukaryotes have some similar physiological roles. The genetic tractability of budding yeast and the availability of a stable haploid cell type facilitates the application of molecular genetic approaches to assign functions to the various actin cytoskeleton components. This has provided information that is in general complementary to that provided by studies of the equivalent proteins of higher eukaryotes and hence has enabled a more complete view of the role of these proteins. Several human functional homologues of yeast actin effectors are implicated in diseases. A better understanding of the molecular mechanisms underpinning the functions of these proteins is critical to develop improved therapeutic strategies. In this article we chose as examples four evolutionarily conserved proteins that associate with the actin cytoskeleton: (1) yeast Hof1p/mammalian PSTPIP1, (2) yeast Rvs167p/mammalian BIN1, (3) yeast eEF1A/eEF1A1 and eEF1A2 and (4) yeast Yih1p/mammalian IMPACT. We compare the knowledge on the functions of these actin cytoskeleton-associated proteins that has arisen from studies of their homologues in yeast with information that has been obtained from in vivo studies using live animals or in vitro studies using cultured animal cell lines.
Collapse
|
3
|
Hao Y, Yang Y, Zhang S, Li Y, Zhai C, Long Y, Jia H, Zhang S. Expression, purification, and in vitro characterization of kinase domain of NtGCN2 from tobacco. Protein Expr Purif 2019; 163:105452. [PMID: 31301428 DOI: 10.1016/j.pep.2019.105452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/18/2019] [Accepted: 07/08/2019] [Indexed: 12/30/2022]
Abstract
General control nonderepressible 2 (GCN2) can phosphorylate the α subunit of eukaryotic initiation factor eIF2 (eukaryotic translation initiation factor 2) to down-regulateprotein synthesis in response to various biotic and abiotic stresses. However, the kinase activity of plant GCN2 has not been well-characterized in vitro. In this study, the kinase domain of Nicotiana tabacum GCN2 (NtGCN2) was inserted into the pET15b vector for prokaryotic expressionin Escherichia coli BL21-CodonPlus-(DE3)-RIPL after induction by 0.5 mmol L-1 IPTG for 13 h at 16 °C. The soluble protein was collected and purified by Ni2+-NTA agarose column, anion exchange, and molecular sieve, and the purified proteinwas used for kinase assays and the preparation of a polyclonal antibody. Enzyme-linked immunosorbent assay results showed that the titer of the antiserum was 1:520K. Western blot analysis showed that the prepared antibody reacted with GCN2 in tobacco. Additionally, the kinase activity of NtGCN2 was characterized by using recombinant NteIF2α protein as a substrate in vitro. The results showed that NtGCN2 phosphorylated NteIF2α in vitro, with the level of phosphorylation positively correlated with the NtGCN2 concentration and reaction time. Our study has prepared a specific antibody, and proves NtGCN2 can phosphorylate NteIF2α in vitro, which lays a foundation for further study of the function and interaction network of NtGCN2.
Collapse
Affiliation(s)
- Yingchen Hao
- Henan Agricultural University, College of Tobacco Science, Tobacco Cultivation Key Laboratory of China, Zhengzhou, 450002, China
| | - Yongxia Yang
- Henan Agricultural University, College of Tobacco Science, Tobacco Cultivation Key Laboratory of China, Zhengzhou, 450002, China
| | - Songjie Zhang
- Henan Agricultural University, College of Tobacco Science, Tobacco Cultivation Key Laboratory of China, Zhengzhou, 450002, China
| | - Yibo Li
- Henan Agricultural University, College of Tobacco Science, Tobacco Cultivation Key Laboratory of China, Zhengzhou, 450002, China
| | - Chunhe Zhai
- Henan Agricultural University, College of Tobacco Science, Tobacco Cultivation Key Laboratory of China, Zhengzhou, 450002, China
| | - Yue Long
- Henan Agricultural University, College of Tobacco Science, Tobacco Cultivation Key Laboratory of China, Zhengzhou, 450002, China
| | - Hongfang Jia
- Henan Agricultural University, College of Tobacco Science, Tobacco Cultivation Key Laboratory of China, Zhengzhou, 450002, China
| | - Songtao Zhang
- Henan Agricultural University, College of Tobacco Science, Tobacco Cultivation Key Laboratory of China, Zhengzhou, 450002, China.
| |
Collapse
|
4
|
Rose AJ. Role of Peptide Hormones in the Adaptation to Altered Dietary Protein Intake. Nutrients 2019; 11:E1990. [PMID: 31443582 PMCID: PMC6770041 DOI: 10.3390/nu11091990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022] Open
Abstract
Dietary protein profoundly influences organismal traits ultimately affecting healthspan. While intracellular signalling downstream of altered amino acid supply is undoubtedly important, peptide hormones have emerged as critical factors determining systemic responses to variations in protein intake. Here the regulation and role of certain peptides hormones in such responses to altered dietary protein intake is reviewed.
Collapse
Affiliation(s)
- Adam J Rose
- Nutrient Metabolism & Signalling Laboratory, Department of Biochemistry and Molecular Biology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton 3800, Australia.
| |
Collapse
|
5
|
Wang P, Xu Y, Zhang J, Shi L, Lei T, Hou Y, Lu Z, Zhao Y. The amino acid sensor general control nonderepressible 2 (GCN2) controls T H9 cells and allergic airway inflammation. J Allergy Clin Immunol 2019; 144:1091-1105. [PMID: 31121187 DOI: 10.1016/j.jaci.2019.04.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 04/11/2019] [Accepted: 04/17/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND TH9 cells have emerged as important mediators of allergic airway inflammation. There is evidence that general control nonderepressible 2 (GCN2) affects the immune response under some stress conditions. However, whether GCN2 regulates CD4+ T-cell differentiation during allergic inflammation remains unknown. OBJECTIVE We sought to clarify the regulatory roles of GCN2 in CD4+ T-cell subset differentiation and its significance in patients with allergic airway inflammation. METHODS The effects of GCN2 in differentiation of TH cell subsets were detected by using the in vitro induction system. GCN2 knockout mice, ovalbumin-induced allergic airway inflammation, and adoptive transfer mouse models were used to determine the significance of GCN2 in TH9 differentiation and allergic airway inflammation in vivo. RNA sequencing, real-time PCR, Western blotting, and other molecular approaches were used to identify the molecular mechanisms relevant to regulation of GCN2 in TH9 cell differentiation. RESULTS GCN2 deficiency significantly inhibited differentiation of TH9 cells but not TH1, TH2, and regulatory T cells. GCN2 knockout mice and recombination-activating gene 2 knockout (Rag2KO) mice that received adoptively transferred GCN2-deficient CD4+ T cells exhibited reduced TH9 differentiation and less severe allergic airway inflammation. Furthermore, the isolated GCN2-deficient TH9 cells also mediated less severe allergic airway inflammation on adoptive transfer. Mechanistically, GCN2 deficiency inhibits TH9 cell differentiation through a hypoxia-inducible factor 1α-dependent glycolytic pathway. CONCLUSION Our results reveal a novel role of GCN2 in TH9 cell differentiation. Our findings indicate that new strategies to inhibit GCN2 activity might provide novel approaches to attenuate allergic airway inflammation.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yana Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jiayu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lu Shi
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tong Lei
- University of Chinese Academy of Sciences, Beijing, China
| | - Yangxiao Hou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhongbing Lu
- University of Chinese Academy of Sciences, Beijing, China.
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Competition for nutrients and its role in controlling immune responses. Nat Commun 2019; 10:2123. [PMID: 31073180 PMCID: PMC6509329 DOI: 10.1038/s41467-019-10015-4] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/15/2019] [Indexed: 12/16/2022] Open
Abstract
Changes in cellular metabolism are associated with the activation of diverse immune subsets. These changes are fuelled by nutrients including glucose, amino acids and fatty acids, and are closely linked to immune cell fate and function. An emerging concept is that nutrients are not equally available to all immune cells, suggesting that the regulation of nutrient utility through competitive uptake and use is important for controlling immune responses. This review considers immune microenvironments where nutrients become limiting, the signalling alterations caused by insufficient nutrients, and the importance of nutrient availability in the regulation of immune responses. Immune cells adapt distinct metabolic strategies to accommodate specific functions associated with cell types or differentiation stages. Here in this review the authors discuss the nutrients, sensors, and mediators of such a metabolic adaption in nutrient-limiting immune microenvironments such as tumors or infections.
Collapse
|
7
|
Feng W, Lei T, Wang Y, Feng R, Yuan J, Shen X, Wu Y, Gao J, Ding W, Lu Z. GCN2 deficiency ameliorates cardiac dysfunction in diabetic mice by reducing lipotoxicity and oxidative stress. Free Radic Biol Med 2019; 130:128-139. [PMID: 30389499 DOI: 10.1016/j.freeradbiomed.2018.10.445] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 12/18/2022]
Abstract
Excessive myocardial lipid accumulation is a major feature of diabetic cardiomyopathy (DCM). Although general control nonderepressible 2 (GCN2) has been identified as a sensor of amino acid availability, it also functions as an important regulator of hepatic lipid metabolism. Our previous studies have reported that GCN2 promotes pressure overload or doxorubicin-induced cardiac dysfunction by increasing cardiomyocyte apoptosis and myocardial oxidative stress. However, the impact of GCN2 on the development of DCM remains unclear. In this study, we investigated the effect of GCN2 on DCM in type 1 and type 2 diabetes animal models. After streptozotocin (STZ) or high-fat diet (HFD) plus low-dose STZ treatments, GCN2-/- mice developed less cardiac dysfunction, hyperlipidemia, myocardial hypertrophy, fibrosis, lipid accumulation, oxidative stress, inflammation and apoptosis compared with wild-type (WT) mice. In diabetic hearts, GCN2 deficiency attenuated the upregulation of peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ), the phosphorylation of eIF2α and the induction of activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP), as well as the reduction of Bcl-2. Furthermore, we found that knockdown of GCN2 attenuated, whereas overexpression of GCN2 exacerbated, high glucose or palmitic acid-induced cell death, oxidative and endoplasmic reticulum stress and lipid accumulation in H9C2 cells. Collectively, our data provide evidence that GCN2 deficiency protects cardiac function by reducing lipid accumulation, oxidative stress and cell death. Our findings suggest that strategies to inhibit GCN2 activity in the heart may be novel approaches for DCM therapy.
Collapse
Affiliation(s)
- Wei Feng
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Lei
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Wang
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Run Feng
- Beijing Laboratory Animal Research Center, Beijing 100012, China
| | - Juntao Yuan
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiyue Shen
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongguang Wu
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junling Gao
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Ding
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhongbing Lu
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Pan T. Modifications and functional genomics of human transfer RNA. Cell Res 2018; 28:395-404. [PMID: 29463900 PMCID: PMC5939049 DOI: 10.1038/s41422-018-0013-y] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/27/2017] [Indexed: 11/18/2022] Open
Abstract
Transfer RNA (tRNA) is present at tens of millions of transcripts in a human cell and is the most abundant RNA in moles among all cellular RNAs. tRNA is also the most extensively modified RNA with, on an average, 13 modifications per molecule. The primary function of tRNA as the adaptor of amino acids and the genetic code in protein synthesis is well known. tRNA modifications play multi-faceted roles in decoding and other cellular processes. The abundance, modification, and aminoacylation (charging) levels of tRNAs contribute to mRNA decoding in ways that reflect the cell type and its environment; however, how these factors work together to maximize translation efficiency remains to be understood. tRNAs also interact with many proteins not involved in translation and this may coordinate translation activity and other processes in the cell. This review focuses on the modifications and the functional genomics of human tRNA and discusses future perspectives on the explorations of human tRNA biology.
Collapse
Affiliation(s)
- Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
9
|
Toogood PL. Small molecule immuno-oncology therapeutic agents. Bioorg Med Chem Lett 2017; 28:319-329. [PMID: 29326017 DOI: 10.1016/j.bmcl.2017.12.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022]
Abstract
Treatment of cancer by activation of an antitumor immune response is now a widely practiced and well-accepted approach to therapy. However, despite dramatic responses in some patients, the high proportion of unresponsive patients points to a considerable unmet medical need. Although antibody therapies have led the way, small molecule immuno-oncology agents are close behind. This perspective provides an overview of some of the many small molecule approaches being explored. It encompasses small molecule modulators of validated targets such as programed cell death 1 (PD-1) as well as novel approaches still to be proven clinically.
Collapse
Affiliation(s)
- Peter L Toogood
- Lycera Corp., 1350 Highland Drive, Ann Arbor, MI, United States.
| |
Collapse
|
10
|
A single Danio rerio hars gene encodes both cytoplasmic and mitochondrial histidyl-tRNA synthetases. PLoS One 2017; 12:e0185317. [PMID: 28934368 PMCID: PMC5608375 DOI: 10.1371/journal.pone.0185317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/11/2017] [Indexed: 12/16/2022] Open
Abstract
Histidyl tRNA Synthetase (HARS) is a member of the aminoacyl tRNA synthetase (ARS) family of enzymes. This family of 20 enzymes is responsible for attaching specific amino acids to their cognate tRNA molecules, a critical step in protein synthesis. However, recent work highlighting a growing number of associations between ARS genes and diverse human diseases raises the possibility of new and unexpected functions in this ancient enzyme family. For example, mutations in HARS have been linked to two different neurological disorders, Usher Syndrome Type IIIB and Charcot Marie Tooth peripheral neuropathy. These connections raise the possibility of previously undiscovered roles for HARS in metazoan development, with alterations in these functions leading to complex diseases. In an attempt to establish Danio rerio as a model for studying HARS functions in human disease, we characterized the Danio rerio hars gene and compared it to that of human HARS. Using a combination of bioinformatics, molecular biology, and cellular approaches, we found that while the human genome encodes separate genes for cytoplasmic and mitochondrial HARS protein, the Danio rerio genome encodes a single hars gene which undergoes alternative splicing to produce the respective cytoplasmic and mitochondrial versions of Hars. Nevertheless, while the HARS genes of humans and Danio differ significantly at the genomic level, we found that they are still highly conserved at the amino acid level, underscoring the potential utility of Danio rerio as a model organism for investigating HARS function and its link to human diseases in vivo.
Collapse
|
11
|
Anda S, Zach R, Grallert B. Activation of Gcn2 in response to different stresses. PLoS One 2017; 12:e0182143. [PMID: 28771613 PMCID: PMC5542535 DOI: 10.1371/journal.pone.0182143] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022] Open
Abstract
All organisms have evolved pathways to respond to different forms of cellular stress. The Gcn2 kinase is best known as a regulator of translation initiation in response to starvation for amino acids. Work in budding yeast has showed that the molecular mechanism of GCN2 activation involves the binding of uncharged tRNAs, which results in a conformational change and GCN2 activation. This pathway requires GCN1, which ensures delivery of the uncharged tRNA onto GCN2. However, Gcn2 is activated by a number of other stresses which do not obviously involve accumulation of uncharged tRNAs, raising the question how Gcn2 is activated under these conditions. Here we investigate the requirement for ongoing translation and tRNA binding for Gcn2 activation after different stresses in fission yeast. We find that mutating the tRNA-binding site on Gcn2 or deleting Gcn1 abolishes Gcn2 activation under all the investigated conditions. These results suggest that tRNA binding to Gcn2 is required for Gcn2 activation not only in response to starvation but also after UV irradiation and oxidative stress.
Collapse
Affiliation(s)
- Silje Anda
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Róbert Zach
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Beáta Grallert
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- * E-mail:
| |
Collapse
|
12
|
Walls J, Sinclair L, Finlay D. Nutrient sensing, signal transduction and immune responses. Semin Immunol 2016; 28:396-407. [DOI: 10.1016/j.smim.2016.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022]
|
13
|
Control of translation in the cold: implications for therapeutic hypothermia. Biochem Soc Trans 2016; 43:333-7. [PMID: 26009172 DOI: 10.1042/bst20150052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Controlled whole-body cooling has been used since the 1950s to protect the brain from injury where cerebral blood flow is reduced. Therapeutic hypothermia has been used successfully during heart surgery, following cardiac arrest and with varied success in other instances of reduced blood flow to the brain. However, why reduced temperature is beneficial is largely unknown. Here we review the use of therapeutic hypothermia with a view to understanding the underlying biology contributing to the phenomenon. Interestingly, the benefits of cooling have recently been extended to treatment of chronic neurodegenerative diseases in two mouse models. Concurrently studies have demonstrated the importance of the regulation of protein synthesis, translation, to the cooling response, which is also emerging as a targetable process in neurodegeneration. Through these studies the potential importance of the rewarming process following cooling is also beginning to emerge. Altogether, these lines of research present new opportunities to manipulate cooling pathways for therapeutic gain.
Collapse
|
14
|
Abbott JA, Francklyn CS, Robey-Bond SM. Transfer RNA and human disease. Front Genet 2014; 5:158. [PMID: 24917879 PMCID: PMC4042891 DOI: 10.3389/fgene.2014.00158] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/14/2014] [Indexed: 12/25/2022] Open
Abstract
Pathological mutations in tRNA genes and tRNA processing enzymes are numerous and result in very complicated clinical phenotypes. Mitochondrial tRNA (mt-tRNA) genes are “hotspots” for pathological mutations and over 200 mt-tRNA mutations have been linked to various disease states. Often these mutations prevent tRNA aminoacylation. Disrupting this primary function affects protein synthesis and the expression, folding, and function of oxidative phosphorylation enzymes. Mitochondrial tRNA mutations manifest in a wide panoply of diseases related to cellular energetics, including COX deficiency (cytochrome C oxidase), mitochondrial myopathy, MERRF (Myoclonic Epilepsy with Ragged Red Fibers), and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes). Diseases caused by mt-tRNA mutations can also affect very specific tissue types, as in the case of neurosensory non-syndromic hearing loss and pigmentary retinopathy, diabetes mellitus, and hypertrophic cardiomyopathy. Importantly, mitochondrial heteroplasmy plays a role in disease severity and age of onset as well. Not surprisingly, mutations in enzymes that modify cytoplasmic and mitochondrial tRNAs are also linked to a diverse range of clinical phenotypes. In addition to compromised aminoacylation of the tRNAs, mutated modifying enzymes can also impact tRNA expression and abundance, tRNA modifications, tRNA folding, and even tRNA maturation (e.g., splicing). Some of these pathological mutations in tRNAs and processing enzymes are likely to affect non-canonical tRNA functions, and contribute to the diseases without significantly impacting on translation. This chapter will review recent literature on the relation of mitochondrial and cytoplasmic tRNA, and enzymes that process tRNAs, to human disease. We explore the mechanisms involved in the clinical presentation of these various diseases with an emphasis on neurological disease.
Collapse
Affiliation(s)
- Jamie A Abbott
- Department of Biochemistry, College of Medicine, University of Vermont Burlington, VT, USA
| | | | - Susan M Robey-Bond
- Department of Biochemistry, College of Medicine, University of Vermont Burlington, VT, USA
| |
Collapse
|