1
|
Chen SF, Hsien HL, Wang TF, Lin MD. Drosophila Phosphatase of Regenerating Liver Is Critical for Photoreceptor Cell Polarity and Survival during Retinal Development. Int J Mol Sci 2023; 24:11501. [PMID: 37511262 PMCID: PMC10380645 DOI: 10.3390/ijms241411501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Establishing apicobasal polarity, involving intricate interactions among polarity regulators, is key for epithelial cell function. Though phosphatase of regenerating liver (PRL) proteins are implicated in diverse biological processes, including cancer, their developmental role remains unclear. In this study, we explore the role of Drosophila PRL (dPRL) in photoreceptor cell development. We reveal that dPRL, requiring a C-terminal prenylation motif, is highly enriched in the apical membrane of developing photoreceptor cells. Moreover, dPRL knockdown during retinal development results in adult Drosophila retinal degeneration, caused by hid-induced apoptosis. dPRL depletion also mislocalizes cell adhesion and polarity proteins like Armadillo, Crumbs, and DaPKC and relocates the basolateral protein, alpha subunit of Na+/K+-ATPase, to the presumed apical membrane. Importantly, this polarity disruption is not secondary to apoptosis, as suppressing hid expression does not rescue the polarity defect in dPRL-depleted photoreceptor cells. These findings underscore dPRL's crucial role in photoreceptor cell polarity and emphasize PRL's importance in establishing epithelial polarity and maintaining cell survival during retinal development, offering new insights into PRL's role in normal epithelium.
Collapse
Affiliation(s)
- Shu-Fen Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
| | - Hsin-Lun Hsien
- Department of Molecular Biology and Human Genetics, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
- Department of Life Sciences, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
| | - Ting-Fang Wang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
- Department of Life Sciences, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
| | - Ming-Der Lin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
- Institute of Medical Sciences, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
| |
Collapse
|
2
|
Smith CN, Kihn K, Williamson ZA, Chow KM, Hersh LB, Korotkov KV, Deredge D, Blackburn JS. Development and characterization of nanobodies that specifically target the oncogenic Phosphatase of Regenerating Liver-3 (PRL-3) and impact its interaction with a known binding partner, CNNM3. PLoS One 2023; 18:e0285964. [PMID: 37220097 PMCID: PMC10204944 DOI: 10.1371/journal.pone.0285964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
Phosphatase of Regenerating Liver-3 (PRL-3) is associated with cancer progression and metastasis. The mechanisms that drive PRL-3's oncogenic functions are not well understood, partly due to a lack of research tools available to study this protein. We have begun to address these issues by developing alpaca-derived single domain antibodies, or nanobodies, targeting PRL-3 with a KD of 30-300 nM and no activity towards highly homologous family members PRL-1 and PRL-2. We found that longer and charged N-terminal tags on PRL-3, such as GFP and FLAG, changed PRL-3 localization compared to untagged protein, indicating that the nanobodies may provide new insights into PRL-3 trafficking and function. The nanobodies perform equally, if not better, than commercially available antibodies in immunofluorescence and immunoprecipitation. Finally, hydrogen-deuterium exchange mass spectrometry (HDX-MS) showed that the nanobodies bind partially within the PRL-3 active site and can interfere with PRL-3 phosphatase activity. Co-immunoprecipitation with a known PRL-3 active site binding partner, the CBS domain of metal transporter CNNM3, showed that the nanobodies reduced the amount of PRL-3:CBS inter-action. The potential of blocking this interaction is highly relevant in cancer, as multiple research groups have shown that PRL-3 binding to CNNM proteins is sufficient to promote metastatic growth in mouse models. The anti-PRL-3 nanobodies represent an important expansion of the research tools available to study PRL-3 function and can be used to define the role of PRL-3 in cancer progression.
Collapse
Affiliation(s)
- Caroline N. Smith
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
- University of Kentucky Markey Cancer Center, Lexington, Kentucky, United States of America
| | - Kyle Kihn
- University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| | - Zachary A. Williamson
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - K. Martin Chow
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Louis B. Hersh
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Konstantin V. Korotkov
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Daniel Deredge
- University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| | - Jessica S. Blackburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
- University of Kentucky Markey Cancer Center, Lexington, Kentucky, United States of America
| |
Collapse
|
3
|
Li Q, Yue T, Du X, Tang Z, Cui J, Wang W, Xia W, Ren B, Kan S, Li C, Wu C, Niu X, Li B, Lin K, Luo J, Chen G, Wang Z. HSC70 mediated autophagic degradation of oxidized PRL2 is responsible for osteoclastogenesis and inflammatory bone destruction. Cell Death Differ 2023; 30:647-659. [PMID: 36182990 PMCID: PMC9984420 DOI: 10.1038/s41418-022-01068-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 02/25/2023] Open
Abstract
Inflammation leads to systemic osteoporosis or local bone destruction, however, the underlying molecular mechanisms are still poorly understood. In this study, we report that PRL2 is a negative regulator of osteoclastogenesis and bone absorption. Mice with PRL2 deficiency exhibit a decrease in bone volume and an increase in osteoclast numbers. PRL2 negatively regulates RANKL-induced reactive oxygen species production through the activation of RAC1, thus PRL2 deficient osteoclast precursors have both increased osteoclast differentiation ability and bone resorptive capacity. During inflammation, oxidized PRL2 is a selected substrate of HSC70 and conditions of oxidative stress trigger rapid degradation of PRL2 by HSC70 mediated endosomal microautophagy and chaperone-mediated autophagy. Ablation of PRL2 in mouse models of inflammatory bone disease leads to an increase in the number of osteoclasts and exacerbation of bone damage. Moreover, reduced PRL2 protein levels in peripheral myeloid cells are highly correlated with bone destruction in a mouse arthritis model and in human rheumatoid arthritis, while the autophagy inhibitor hydroxychloroquine blocked inflammation-induced PRL2 degradation and bone destruction in vivo. Therefore, our findings identify PRL2 as a new regulator in osteoimmunity, providing a link between inflammation and osteoporosis. As such, PRL2 is a potential therapeutic target for inflammatory bone disease and inhibition of HSC70 mediated autophagic degradation of PRL2 may offer new therapeutic tools for the treatment of inflammatory bone disease.
Collapse
Affiliation(s)
- Qi Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tao Yue
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, China
| | - Xinyue Du
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zaiming Tang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinjie Cui
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Weifeng Wang
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, China
| | - Wenjie Xia
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, China
| | - Baiyang Ren
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuo Kan
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chang Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chenyun Wu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoyin Niu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bin Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jian Luo
- Yangzhi Rehabilitation Hospital (Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China
| | - Guangjie Chen
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zhaojun Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
4
|
Wang Y, Guo Y, Lu Y, Sun Y, Xu D. The effects of endosulfan on cell migration and invasion in prostate cancer cells via the KCNQ1OT1/miR-137-3p/PTP4A3 axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157252. [PMID: 35817112 DOI: 10.1016/j.scitotenv.2022.157252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Endosulfan belongs to persistent organic pollutants (POPs), closely related to an increased risk of prostate cancer (PCa). The existing evidence shows that lncRNAs compete with miRNAs for binding sites and contribute to the onset and progression of human malignancies. In this study we investigate how endosulfan promotes cell migration and invasion in DU145 and PC3 prostate cancer cells through epigenetic mechanism of lncRNA-miRNA regulation. Based on our past research we focused on PTP4A3 and constructed wild-type (WT) and mutant PTP4A3 plasmids for further analysis. Our results revealed that transfection of PTP4A3-WT can lead to changes in the expression of epithelial-mesenchymal transition (EMT) biomarkers and critical proteins in the TGF-β signaling pathway, and promote cell migration and invasion in PCa cells. Bioinformatics analysis shows that there were complementary sequences in PTP4A3 3'-UTR and KCNQ1OT1 3'-UTR to the seed sequence of hsa-miR-137-3p, and dual luciferase reporter assay indicates the potential binding capacity of miR-137-3p to 3'-UTR of PTP4A3 and KCNQ1OT1. We found that miR-137-3p mimic inhibited cell migration and invasion, as well as repressed alterations of EMT biomarkers and critical proteins in the TGF-β signaling pathway. Rescue experiment results revealed that co-transfection of miR-137-3p mimic and PTP4A3-WT plasmid reversed these changes following transfection with miR-137-3p mimic alone. We found that KCNQ1OT1 was predominantly distributed in the cytoplasm from a subcellular fractionation assay. Functionally, silencing of KCNQ1OT1 repressed cell migration and invasion, and caused alterations of EMT biomarkers and critical proteins in the TGF-β signaling pathway, which were all restored by co-transfection with anti-miR-137-3p or PTP4A3-WT plasmid. Furthermore, overexpression of miR-137-3p or silencing of KCNQ1OT1 dramatically rescued the effects of endosulfan on promoting cell migration and invasion. These findings suggest that endosulfan can indeed promote cell migration and invasion via the KCNQ1OT1/miR-137-3p/PTP4A3 axis in PCa cells.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Yubing Guo
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Yanyuan Lu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Dan Xu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China.
| |
Collapse
|
5
|
Ghoreshi ZAS, Akbari H, Sharif-Zak M, Arefinia N, Abbasi-Jorjandi M, Asadikaram G. Recent findings on hyperprolactinemia and its pathological implications: a literature review. J Investig Med 2022; 70:1443-1451. [PMID: 35768141 DOI: 10.1136/jim-2022-002351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2022] [Indexed: 11/03/2022]
Abstract
The prolactin hormone (PRL) is often secreted by lactotrophic cells of the anterior pituitary and has been shown to play a role in various biological processes, including breast feeding and reproduction. The predominant form of this hormone is the 23 kDa form and acts through its receptor (PRLR) on the cell membrane. This receptor is a member of the superfamily of hematopoietic/cytokine receptors. PRL also has a 16 kDa subunit with anti-angiogenic, proapoptotic, and anti-inflammatory effects which is produced by the proteolytic breakdown of this hormone under oxidative stress. Although the common side effects of hyperprolactinemia are exerted on the reproductive system, new studies have shown that hyperprolactinemia has a wide variety of effects, including playing a role in the development of autoimmune diseases and increasing the risk of cardiovascular disease, peripartum cardiomyopathy, and diabetes among others. The range of PRL functions is increasing with the discovery of multiple sites of PRL secretion as well as PRLR expression in various tissues. This review summarizes current knowledge of the biology of PRL and its receptor, as well as the role of PRL in human pathophysiology.
Collapse
Affiliation(s)
- Zohreh Al-Sadat Ghoreshi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Institute of Basic and Clinical Physiology Sciences, Kerman, The Islamic Republic of Iran
| | - Hamed Akbari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Institute of Basic and Clinical Physiology Sciences, Kerman, The Islamic Republic of Iran.,Department of Clinical Biochemistry, Afzalipur Faculty of Medicine, Kerman University of Medical Sciences, Kerman, The Islamic Republic of Iran
| | - Mohsen Sharif-Zak
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Institute of Basic and Clinical Physiology Sciences, Kerman, The Islamic Republic of Iran.,Neuroscience Research Center, Institute of Neuropharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, The Islamic Republic of Iran
| | - Nasir Arefinia
- Neuroscience Research Center, Institute of Neuropharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, The Islamic Republic of Iran
| | - Mojtaba Abbasi-Jorjandi
- Department of Clinical Biochemistry, Afzalipur Faculty of Medicine, Kerman University of Medical Sciences, Kerman, The Islamic Republic of Iran
| | - Gholamreza Asadikaram
- Department of Clinical Biochemistry, Afzalipur Faculty of Medicine, Kerman University of Medical Sciences, Kerman, The Islamic Republic of Iran .,Neuroscience Research Center, Institute of Neuropharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, The Islamic Republic of Iran
| |
Collapse
|
6
|
The Tyrosine Phosphatase PRL Regulates Attachment of Toxoplasma gondii to Host Cells and Is Essential for Virulence. mSphere 2022; 7:e0005222. [PMID: 35603560 PMCID: PMC9241511 DOI: 10.1128/msphere.00052-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with
Toxoplasma gondii
can lead to severe and even life-threatening diseases in people with compromised or suppressed immune systems. Unfortunately, drugs to combat the parasite are limited, highly toxic, and ineffective against the chronic stage of the parasite.
Collapse
|
7
|
Gehring K, Kozlov G, Yang M, Fakih R. The double lives of phosphatases of regenerating liver: A structural view of their catalytic and noncatalytic activities. J Biol Chem 2021; 298:101471. [PMID: 34890645 PMCID: PMC8728433 DOI: 10.1016/j.jbc.2021.101471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
Phosphatases of regenerating liver (PRLs) are protein phosphatases involved in the control of cell growth and migration. They are known to promote cancer metastasis but, despite over 20 years of study, there is still no consensus about their mechanism of action. Recent work has revealed that PRLs lead double lives, acting both as catalytically active enzymes and as pseudophosphatases. The three known PRLs belong to the large family of cysteine phosphatases that form a phosphocysteine intermediate during catalysis. Uniquely to PRLs, this intermediate is stable, with a lifetime measured in hours. As a consequence, PRLs have very little phosphatase activity. Independently, PRLs also act as pseudophosphatases by binding CNNM membrane proteins to regulate magnesium homeostasis. In this function, an aspartic acid from CNNM inserts into the phosphatase catalytic site of PRLs, mimicking a substrate–enzyme interaction. The delineation of PRL pseudophosphatase and phosphatase activities in vivo was impossible until the recent identification of PRL mutants defective in one activity or the other. These mutants showed that CNNM binding was sufficient for PRL oncogenicity in one model of metastasis, but left unresolved its role in other contexts. As the presence of phosphocysteine prevents CNNM binding and CNNM-binding blocks catalytic activity, these two activities are inherently linked. Additional studies are needed to untangle the intertwined catalytic and noncatalytic functions of PRLs. Here, we review the current understanding of the structure and biophysical properties of PRL phosphatases.
Collapse
Affiliation(s)
- Kalle Gehring
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada.
| | - Guennadi Kozlov
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Meng Yang
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Rayan Fakih
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
The phosphatase PRL-3 affects intestinal homeostasis by altering the crypt cell composition. J Mol Med (Berl) 2021; 99:1413-1426. [PMID: 34129057 PMCID: PMC8455404 DOI: 10.1007/s00109-021-02097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 11/04/2022]
Abstract
Expression of the phosphatase of regenerating liver-3 (PRL-3) is known to promote tumor growth in gastrointestinal adenocarcinomas, and the incidence of tumor formation upon inflammatory events correlates with PRL-3 levels in mouse models. These carcinomas and their onset are associated with the impairment of intestinal cell homeostasis, which is regulated by a balanced number of Paneth cells and Lgr5 expressing intestinal stem cells (Lgr5+ ISCs). Nevertheless, the consequences of PRL-3 overexpression on cellular homeostasis and ISC fitness in vivo are unexplored. Here, we employ a doxycycline-inducible PRL-3 mouse strain to show that aberrant PRL-3 expression within a non-cancerous background leads to the death of Lgr5+ ISCs and to Paneth cell expansion. A higher dose of PRL-3, resulting from homozygous expression, led to mice dying early. A primary 3D intestinal culture model obtained from these mice confirmed the loss of Lgr5+ ISCs upon PRL-3 expression. The impaired intestinal organoid formation was rescued by a PRL inhibitor, providing a functional link to the observed phenotypes. These results demonstrate that elevated PRL-3 phosphatase activity in healthy intestinal epithelium impairs intestinal cell homeostasis, which correlates this cellular mechanism of tumor onset with PRL-3-mediated higher susceptibility to tumor formation upon inflammatory or mutational events. Key messages • Transgenic mice homozygous for PRL-3 overexpression die early. • PRL-3 heterozygous mice display disrupted intestinal self-renewal capacity. • PRL-3 overexpression alone does not induce tumorigenesis in the mouse intestine. • PRL-3 activity leads to the death of Lgr5+ ISCs and Paneth cell expansion. • Impairment of cell homeostasis correlates PRL-3 action with tumor onset mechanisms.
Collapse
|
9
|
Castro-Sánchez P, Hernández-Pérez S, Aguilar-Sopeña O, Ramírez-Muñoz R, Rodríguez-Perales S, Torres-Ruiz R, Roda-Navarro P. Fast Diffusion Sustains Plasma Membrane Accumulation of Phosphatase of Regenerating Liver-1. Front Cell Dev Biol 2021; 8:585842. [PMID: 33425892 PMCID: PMC7793866 DOI: 10.3389/fcell.2020.585842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
It has been proposed that the accumulation of farnesylated phosphatase of regenerating liver-1 (PRL-1) at the plasma membrane is mediated by static electrostatic interactions of a polybasic region with acidic membrane lipids and assisted by oligomerization. Nonetheless, localization at early and recycling endosomes suggests that the recycling compartment might also contribute to its plasma membrane accumulation. Here, we investigated in live cells the dynamics of PRL-1 fused to the green fluorescent protein (GFP-PRL-1). Blocking the secretory pathway and photobleaching techniques suggested that plasma membrane accumulation of PRL-1 was not sustained by recycling endosomes but by a dynamic exchange of diffusible protein pools. Consistent with this idea, fluorescence correlation spectroscopy in cells overexpressing wild type or monomeric mutants of GFP-PRL-1 measured cytosolic and membrane-diffusing pools of protein that were not dependent on oligomerization. Endogenous expression of GFP-PRL-1 by CRISPR/Cas9 genome edition confirmed the existence of fast diffusing cytosolic and membrane pools of protein. We propose that plasma membrane PRL-1 replenishment is independent of the recycling compartment and the oligomerization state and mainly driven by fast diffusion of the cytosolic pool.
Collapse
Affiliation(s)
- Patricia Castro-Sánchez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Sara Hernández-Pérez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Oscar Aguilar-Sopeña
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Rocia Ramírez-Muñoz
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Pedro Roda-Navarro
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| |
Collapse
|
10
|
Kozlov G, Funato Y, Chen YS, Zhang Z, Illes K, Miki H, Gehring K. PRL3 pseudophosphatase activity is necessary and sufficient to promote metastatic growth. J Biol Chem 2020; 295:11682-11692. [PMID: 32571875 PMCID: PMC7450121 DOI: 10.1074/jbc.ra120.014464] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Indexed: 01/07/2023] Open
Abstract
Phosphatases of regenerating liver (PRLs) are markers of cancer and promote tumor growth. They have been implicated in a variety of biochemical pathways but the physiologically relevant target of phosphatase activity has eluded 20 years of investigation. Here, we show that PRL3 catalytic activity is not required in a mouse model of metastasis. PRL3 binds and inhibits CNNM4, a membrane protein associated with magnesium transport. Analysis of PRL3 mutants specifically defective in either CNNM-binding or phosphatase activity demonstrate that CNNM binding is necessary and sufficient to promote tumor metastasis. As PRLs do have phosphatase activity, they are in fact pseudo-pseudophosphatases. Phosphatase activity leads to formation of phosphocysteine, which blocks CNNM binding and may play a regulatory role. We show levels of PRL cysteine phosphorylation vary in response to culture conditions and in different tissues. Examination of related protein phosphatases shows the stability of phosphocysteine is a unique and evolutionarily conserved property of PRLs. The demonstration that PRL3 functions as a pseudophosphatase has important ramifications for the design of PRL inhibitors for cancer.
Collapse
Affiliation(s)
- Guennadi Kozlov
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Yosuke Funato
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yu Seby Chen
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Zhidian Zhang
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Katalin Illes
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Hiroaki Miki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kalle Gehring
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada, For correspondence: Kalle Gehring,
| |
Collapse
|
11
|
Li H, Liu S, Hu Y, Zhao B, Sun Y, Xu D. Endosulfan promotes cell migration via PTP4A3-mediated signaling pathways in HUVECs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110267. [PMID: 32044604 DOI: 10.1016/j.ecoenv.2020.110267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/13/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Endosulfan is a persistent organic pollutant and can cause endothelial dysfunction, closely related to cardiovascular diseases. Endothelial cell migration plays a critical role in atherosclerosis and angiogenesis. This study was aimed to investigate the effect of environmentally relevant doses of endosulfan and underlying molecular mechanism on endothelial cell migration. Human umbilical vein endothelial cells (HUVECs) were treated with DMSO (control) or endosulfan (0.1, 1, 10 and 20 μM) in the presence or absence of inhibitors. Wound healing and Transwell assay were employed to explore the effect of endosulfan on endothelial cell migration. The expression of genes or proteins was assayed by real-time PCR or immunoblotting. The results showed that endosulfan at relative low concentration (0.1, 1, 10 and 20 μM) increased cell migration ability horizontally and vertically at 12 h after exposure. In line with this cellular effect, Protein-tyrosine Phosphatase 4A3 (PTP4A3) expression was significantly increased in endosulfan-exposed endothelial cells. Specific inhibitor of PTP4A3 significantly inhibited 20 μM endosulfan-induced cell migration, the expression and phosphorylation of Src and phosphorylation of focal adhesion kinase (FAK). Exposure to endosulfan resulted in activation of various signaling pathways including phosphoinositide 3-kinase (PI3K)/AKT, mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB), which were suppressed by PTP4A3 inhibitor or specific inhibitor for each signaling pathway. Exposure to endosulfan significantly reduced nitric oxide production and caused oxidative stress in HUVECs. These findings suggest that endosulfan promoted cell migration through PTP4A3-mediated various signaling pathways in endothelial cells.
Collapse
Affiliation(s)
- Heng Li
- Institute of Environmental Systems Biology, Dalian Maritime University, Linghai Road 1, Dalian, 116026, China.
| | - Shiqi Liu
- Institute of Environmental Systems Biology, Dalian Maritime University, Linghai Road 1, Dalian, 116026, China.
| | - Yumeng Hu
- Institute of Environmental Systems Biology, Dalian Maritime University, Linghai Road 1, Dalian, 116026, China.
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Beijing, 100085, China.
| | - Yeqing Sun
- Institute of Environmental Systems Biology, Dalian Maritime University, Linghai Road 1, Dalian, 116026, China.
| | - Dan Xu
- Institute of Environmental Systems Biology, Dalian Maritime University, Linghai Road 1, Dalian, 116026, China.
| |
Collapse
|
12
|
Buchowiecka AK. Modified cysteine S-phosphopeptide standards for mass spectrometry-based proteomics. Amino Acids 2019; 51:1365-1375. [DOI: 10.1007/s00726-019-02773-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 08/18/2019] [Indexed: 02/06/2023]
|
13
|
Zhang C, Qu L, Lian S, Meng L, Min L, Liu J, Song Q, Shen L, Shou C. PRL-3 Promotes Ubiquitination and Degradation of AURKA and Colorectal Cancer Progression via Dephosphorylation of FZR1. Cancer Res 2018; 79:928-940. [PMID: 30498084 DOI: 10.1158/0008-5472.can-18-0520] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/08/2018] [Accepted: 11/21/2018] [Indexed: 11/16/2022]
Abstract
The oncogenic phosphatase PRL-3 is highly expressed in metastatic colorectal cancer but not in nonmetastatic colorectal cancer or noncolorectal cancer metastatic cancers. Although the proinvasive capacity of PRL-3 has been validated in multiple types of cancer, its impact on colorectal cancer progression and the underlying mechanisms remain poorly understood. Here, we report that overexpressed PRL-3 stimulates G2-M arrest, chromosomal instability (CIN), self-renewal, and growth of colorectal cancer cells in xenograft models, while colorectal cancer cell proliferation is decreased. PRL-3-induced G2-M arrest was associated with decreased expression of Aurora kinase A (AURKA). PRL-3-promoted slow proliferation, CIN, self-renewal, and growth in xenografts were counteracted by ectopic expression of AURKA. Conversely, knockdown of PRL-3 resulted in low proliferation, S-phase arrest, impaired self-renewal, increased apoptosis, and diminished xenograft growth independently of AURKA. Analysis of colorectal cancer specimens showed that expression of PRL-3 was associated with high status of CIN and poor prognosis, which were antagonized by expression of AURKA. PRL-3 enhanced AURKA ubiquitination and degradation in a phosphatase-dependent fashion. PRL-3 interacted with AURKA and FZR1, a regulatory component of the APC/CFZR1 complex. Destabilization of AURKA by PRL-3 required PRL-3-mediated dephosphorylation of FZR1 and assembly of the APC/CFZR1 complex. Our study suggests that PRL-3-regulated colorectal cancer progression is collectively determined by distinct malignant phenotypes and further reveals PRL-3 as an essential regulator of APC/CFZR1 in controlling the stability of AURKA. SIGNIFICANCE: Dephosphorylation of FZR1 by PRL-3 facilitates the activity of APC/CFZR1 by destabilizing AURKA, thus influencing aggressive characteristics and overall progression of colorectal cancer.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China.,Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Like Qu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China.
| | - Shenyi Lian
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China.,Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Lin Meng
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Li Min
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China.,Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Jiafei Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Qian Song
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China.
| | - Chengchao Shou
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
14
|
Abstract
The phosphatase of regenerating liver (PRL) family, also known as protein tyrosine phosphatase 4A (PTP4A), are dual-specificity phosphatases with largely unknown cellular functions. However, accumulating evidence indicates that PRLs are oncogenic across a broad variety of human cancers. PRLs are highly expressed in advanced tumors and metastases compared to early stage cancers or matched healthy tissue, and high expression of PRLs often correlates with poor patient prognosis. Consequentially, PRLs have been considered potential therapeutic targets in cancer. Persistent efforts have been made to define their role and mechanism in cancer progression and to create specific PRL inhibitors for basic research and drug development. However, targeting PRLs with small molecules remains challenging due to the highly conserved active site of protein tyrosine phosphatases and a high degree of sequence similarity between the PRL protein families. Here, we review the current PRL inhibitors, including the strategies used for their identification, their biological efficacy, potency, and selectivity, with a special focus on how PRL structure can inform future efforts to develop specific PRL inhibitors.
Collapse
Affiliation(s)
- Min Wei
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Konstantin V Korotkov
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Jessica S Blackburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
15
|
Hardy S, Kostantin E, Hatzihristidis T, Zolotarov Y, Uetani N, Tremblay ML. Physiological and oncogenic roles of thePRLphosphatases. FEBS J 2018; 285:3886-3908. [DOI: 10.1111/febs.14503] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/30/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Serge Hardy
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
| | - Elie Kostantin
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
| | - Teri Hatzihristidis
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Medicine Division of Experimental Medicine McGill University Montreal Canada
| | - Yevgen Zolotarov
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
| | - Noriko Uetani
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
| | - Michel L. Tremblay
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
- Department of Medicine Division of Experimental Medicine McGill University Montreal Canada
| |
Collapse
|
16
|
Ruddraraju KV, Zhang ZY. Covalent inhibition of protein tyrosine phosphatases. MOLECULAR BIOSYSTEMS 2018; 13:1257-1279. [PMID: 28534914 DOI: 10.1039/c7mb00151g] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein tyrosine phosphatases (PTPs) are a large family of 107 signaling enzymes that catalyze the hydrolytic removal of phosphate groups from tyrosine residues in a target protein. The phosphorylation status of tyrosine residues on proteins serve as a ubiquitous mechanism for cellular signal transduction. Aberrant function of PTPs can lead to many human diseases, such as diabetes, obesity, cancer, and autoimmune diseases. As the number of disease relevant PTPs increases, there is urgency in developing highly potent inhibitors that are selective towards specific PTPs. Most current efforts have been devoted to the development of active site-directed and reversible inhibitors for PTPs. This review summarizes recent progress made in the field of covalent inhibitors to target PTPs. Here, we discuss the in vivo and in vitro inactivation of various PTPs by small molecule-containing electrophiles, such as Michael acceptors, α-halo ketones, epoxides, and isothiocyanates, etc. as well as oxidizing agents. We also suggest potential strategies to transform these electrophiles into isozyme selective covalent PTP inhibitors.
Collapse
Affiliation(s)
- Kasi Viswanatharaju Ruddraraju
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
17
|
Huang Y, Zhang Y, Ge L, Lin Y, Kwok HF. The Roles of Protein Tyrosine Phosphatases in Hepatocellular Carcinoma. Cancers (Basel) 2018; 10:cancers10030082. [PMID: 29558404 PMCID: PMC5876657 DOI: 10.3390/cancers10030082] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 02/08/2023] Open
Abstract
The protein tyrosine phosphatase (PTP) family is involved in multiple cellular functions and plays an important role in various pathological and physiological processes. In many chronic diseases, for example cancer, PTP is a potential therapeutic target for cancer treatment. In the last two decades, dozens of PTP inhibitors which specifically target individual PTP molecules were developed as therapeutic agents. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is the second most lethal cancer worldwide due to a lack of effective therapies. Recent studies have unveiled both oncogenic and tumor suppressive functions of PTP in HCC. Here, we review the current knowledge on the involvement of PTP in HCC and further discuss the possibility of targeting PTP in HCC.
Collapse
Affiliation(s)
- Yide Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| | - Yafei Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Lilin Ge
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yao Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| |
Collapse
|
18
|
Zhou J, Toh SHM, Chan ZL, Quah JY, Chooi JY, Tan TZ, Chong PSY, Zeng Q, Chng WJ. A loss-of-function genetic screening reveals synergistic targeting of AKT/mTOR and WTN/β-catenin pathways for treatment of AML with high PRL-3 phosphatase. J Hematol Oncol 2018. [PMID: 29514683 PMCID: PMC5842526 DOI: 10.1186/s13045-018-0581-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Protein tyrosine phosphatase of regenerating liver 3 (PRL-3) is overexpressed in a subset of AML patients with inferior prognosis, representing an attractive therapeutic target. However, due to relatively shallow pocket of the catalytic site of PRL-3, it is difficult to develop selective small molecule inhibitor. Methods In this study, we performed whole-genome lentiviral shRNA library screening to discover synthetic lethal target to PRL-3 in AML. We used specific small molecule inhibitors to validate the synthetic lethality in human PRL-3 high vs PRL-3 low human AML cell lines and primary bone marrow cells from AML patients. AML mouse xenograft model was used to examine the in vivo synergism. Results The list of genes depleted in TF1-hPRL3 cells was particularly enriched for members involved in WNT/β-catenin pathway and AKT/mTOR signaling. These findings prompted us to explore the impact of AKT/mTOR signaling inhibition in PRL-3 high AML cells in combination with WNT/β-catenin inhibitor. VS-5584, a novel, highly selective dual PI3K/mTOR inhibitor, and ICG-001, a WNT inhibitor, were used as a combination therapy. A synthetic lethal interaction between mTOR/AKT pathway inhibition and WNT/β-catenin was validated by a variety of cellular assays. Notably, we found that treatment with these two drugs significantly reduced leukemic burden and prolonged survival of mice transplanted with human PRL-3 high AML cells, but not with PRL-3 low AML cells. Conclusions In summary, our results support the existence of cooperative signaling networks between AKT/mTOR and WNT/β-catenin pathways in PRL-3 high AML cells. Simultaneous inhibition of these two pathways could achieve robust clinical efficacy for this subtype of AML patient with high PRL-3 expression and warrant further clinical investigation. Electronic supplementary material The online version of this article (10.1186/s13045-018-0581-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Zit-Liang Chan
- Cancer Science Institute of Singapore, Singapore, Singapore
| | | | - Jing-Yuan Chooi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, Singapore, Singapore.,Translational Centre for Development and Research, National University Health System, Singapore, Singapore
| | | | - Qi Zeng
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, Singapore, Singapore. .,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Singapore.
| |
Collapse
|
19
|
McQueeney KE, Salamoun JM, Burnett JC, Barabutis N, Pekic P, Lewandowski SL, Llaneza DC, Cornelison R, Bai Y, Zhang ZY, Catravas JD, Landen CN, Wipf P, Lazo JS, Sharlow ER. Targeting ovarian cancer and endothelium with an allosteric PTP4A3 phosphatase inhibitor. Oncotarget 2018; 9:8223-8240. [PMID: 29492190 PMCID: PMC5823565 DOI: 10.18632/oncotarget.23787] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/25/2017] [Indexed: 12/16/2022] Open
Abstract
Overexpression of protein tyrosine phosphatase PTP4A oncoproteins is common in many human cancers and is associated with poor patient prognosis and survival. We observed elevated levels of PTP4A3 phosphatase in 79% of human ovarian tumor samples, with significant overexpression in tumor endothelium and pericytes. Furthermore, PTP4A phosphatases appear to regulate several key malignant processes, such as invasion, migration, and angiogenesis, suggesting a pivotal regulatory role in cancer and endothelial signaling pathways. While phosphatases are attractive therapeutic targets, they have been poorly investigated because of a lack of potent and selective chemical probes. In this study, we disclose that a potent, selective, reversible, and noncompetitive PTP4A inhibitor, JMS-053, markedly enhanced microvascular barrier function after exposure of endothelial cells to vascular endothelial growth factor or lipopolysaccharide. JMS-053 also blocked the concomitant increase in RhoA activation and loss of Rac1. In human ovarian cancer cells, JMS-053 impeded migration, disrupted spheroid growth, and decreased RhoA activity. Importantly, JMS-053 displayed anticancer activity in a murine xenograft model of drug resistant human ovarian cancer. These data demonstrate that PTP4A phosphatases can be targeted in both endothelial and ovarian cancer cells, and confirm that RhoA signaling cascades are regulated by the PTP4A family.
Collapse
Affiliation(s)
- Kelley E. McQueeney
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | | | - James C. Burnett
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nektarios Barabutis
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Paula Pekic
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | | | - Danielle C. Llaneza
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, VA, USA
| | - Robert Cornelison
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, VA, USA
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - John D. Catravas
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Charles N. Landen
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, VA, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - John S. Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
20
|
Andersen S, Richardsen E, Rakaee M, Bertilsson H, Bremnes R, Børset M, Busund LT, Slørdahl T. Expression of phosphatase of regenerating liver (PRL)-3, is independently associated with biochemical failure, clinical failure and death in prostate cancer. PLoS One 2017; 12:e0189000. [PMID: 29190795 PMCID: PMC5708709 DOI: 10.1371/journal.pone.0189000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 11/16/2017] [Indexed: 11/19/2022] Open
Abstract
Background Prostate cancer (PC) stratification needs new prognostic tools to reduce overtreatment. Phosphatase of regenerating liver (PRL-3) is a phosphatase found at high levels in several cancer types, where its expression is associated with survival. A recent PC cell line study has shown it to be involved in PC growth and migration. Methods We used a monoclonal antibody to evaluate the expression of PRL-3 in PC tissue of patients in an unselected cohort of 535 prostatectomy patients. We analyzed associations between PRL-3 expression and biochemical failure-free survival (BFFS), clinical failure-free survival (CFFS) and PC death-free survival (PCDFS). Results Cytoplasmic PRL-3 staining in tumor cells was significantly correlated to expression of molecules in the VEGFR-axis, but not to the clinicopathological variables. High PRL-3 was not significantly associated with survival in the univariate analysis for BFFS (p = 0.131), but significantly associated with CFFS (p = 0.044) and PCDFS (p = 0.041). In multivariate analysis for the various end points, PRL-3 came out as an independent and significant indicator of poor survival for BFFS (HR = 1.53, CI95% 1.10–2.13, p = 0.012), CFFS (HR = 2.41, CI95% 1.17–4.98, p = 0.017) and PCDFS (HR = 3.99, CI95% 1.21–13.1, p = 0.023). Conclusions PRL-3 is independently associated with all PC endpoints in this study. Since high PRL-3 expression also correlates with poor prognosis in other cancers and functional studies in PC support these findings, PRL-3 emerges as a potential treatment target in PC.
Collapse
Affiliation(s)
- Sigve Andersen
- Translational Cancer Research Group, Department Clinical Medicine, UiT, The Arctic University of Norway, Tromso, Norway
- Department Oncology, University Hospital of North Norway, Tromso, Norway
- * E-mail:
| | - Elin Richardsen
- Translational Cancer Research Group, Department of Medical Biology, UiT, The Arctic University of Norway, Tromso, Norway
- Department Pathology, University Hospital of North Norway, Tromso, Norway
| | - Mehrdad Rakaee
- Translational Cancer Research Group, Department of Medical Biology, UiT, The Arctic University of Norway, Tromso, Norway
| | - Helena Bertilsson
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Urology, St. Olavs Hospital - Trondheim University Hospital, Trondheim, Norway
| | - Roy Bremnes
- Translational Cancer Research Group, Department Clinical Medicine, UiT, The Arctic University of Norway, Tromso, Norway
- Department Oncology, University Hospital of North Norway, Tromso, Norway
| | - Magne Børset
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Immunology and Transfusion Medicine, St. Olavs Hospital - Trondheim University Hospital, Trondheim, Norway
| | - Lill-Tove Busund
- Translational Cancer Research Group, Department of Medical Biology, UiT, The Arctic University of Norway, Tromso, Norway
- Department Pathology, University Hospital of North Norway, Tromso, Norway
| | - Tobias Slørdahl
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Hematology, St. Olavs Hospital - Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
21
|
Mora MI, Molina M, Odriozola L, Elortza F, Mato JM, Sitek B, Zhang P, He F, Latasa MU, Ávila MA, Corrales FJ. Prioritizing Popular Proteins in Liver Cancer: Remodelling One-Carbon Metabolism. J Proteome Res 2017; 16:4506-4514. [PMID: 28944671 DOI: 10.1021/acs.jproteome.7b00390] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Primary liver cancer (HCC) is recognized as the fifth most common neoplasm and the second leading cause of cancer death worldwide. Most risk factors are known, and the molecular pathogenesis has been widely studied in the past decade; however, the underlying molecular mechanisms remain to be unveiled, as they will facilitate the definition of novel biomarkers and clinical targets for more effective patient management. We utilize the B/D-HPP popular protein strategy. We report a list of popular proteins that have been highly cocited with the expression "liver cancer". Several enzymes highlight the known metabolic remodeling of liver cancer cells, four of which participate in one-carbon metabolism. This pathway is central to the maintenance of differentiated hepatocytes, as it is considered the connection between intermediate metabolism and epigenetic regulation. We designed a targeted selective reaction monitoring (SRM) method to follow up one-carbon metabolism adaptation in mouse HCC and in regenerating liver following exposure to CCl4. This method allows systematic monitoring of one-carbon metabolism and could prove useful in the follow-up of HCC and of chronically liver-diseased patients (cirrhosis) at risk of HCC. The SRM data are available via ProteomeXchange in PASSEL (PASS01060).
Collapse
Affiliation(s)
- María Isabel Mora
- Proteomics Laboratory, CIMA, University of Navarra , ProteoRed-ISCIII, 31008 Pamplona, Spain
| | - Manuela Molina
- Proteomics Laboratory, CIMA, University of Navarra , ProteoRed-ISCIII, 31008 Pamplona, Spain
| | - Leticia Odriozola
- Proteomics Laboratory, CIMA, University of Navarra , ProteoRed-ISCIII, 31008 Pamplona, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE , CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - José María Mato
- Proteomics Platform, CIC bioGUNE , CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Barbara Sitek
- Medizinisches Proteom-Center, Ruhr-Universität Bochum , 44801 Bochum, Germany
| | - Pumin Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing 100039, China.,National Center for Protein Sciences (The PHOENIX Center, Beijing) , Beijing 102206, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing 100039, China.,National Center for Protein Sciences (The PHOENIX Center, Beijing) , Beijing 102206, China
| | - María Uxue Latasa
- Hepatology Laboratory, CIMA, University of Navarra , CIBERehd, 31008 Pamplona, Spain
| | - Matías Antonio Ávila
- Hepatology Laboratory, CIMA, University of Navarra , CIBERehd, 31008 Pamplona, Spain
| | - Fernando José Corrales
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología-CSIC , Proteored-ISCIII, CIBERehd. 28049 Madrid, Spain
| |
Collapse
|