1
|
Limbu KR, Chhetri RB, Kim S, Shrestha J, Oh YS, Baek DJ, Park EY. Targeting sphingosine 1-phosphate and sphingosine kinases in pancreatic cancer: mechanisms and therapeutic potential. Cancer Cell Int 2024; 24:353. [PMID: 39462385 PMCID: PMC11514880 DOI: 10.1186/s12935-024-03535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
Pancreatic cancer is known to be the most lethal cancer. Fewer new treatments are being developed for pancreatic cancer as compared to other cancers. The bioactive lipid S1P, which is mainly regulated by sphingosine kinase 1 (SK1) and sphingosine kinase 2 (SK2) enzymes, plays significant roles in pancreatic cancer initiation and exacerbation. S1P controls many signaling pathways to modulate the progression of pancreatic cancer through the G-coupled receptor S1PR1-5. Several papers reporting amelioration of pancreatic cancer via modulation of S1P levels or downstream signaling pathways have previously been published. In this paper, for the first time, we have reviewed the results of previous studies to understand how S1P and its receptors contribute to the development of pancreatic cancer, and whether S1P can be a therapeutic target. In addition, we have also reviewed papers dealing with the effects of SK1 and SK2, which are kinases that regulate the level of S1P, on the pathogenesis of pancreatic cancer. We have also listed available drugs that particularly focus on S1P, S1PRs, SK1, and SK2 for the treatment of pancreatic cancer. Through this review, we would like to suggest that the SK/S1P/S1PR signaling system can be an important target for treating pancreatic cancer, where a new treatment target is desperately warranted.
Collapse
Affiliation(s)
- Khem Raj Limbu
- College of Pharmacy, Mokpo National University, Joennam, 58554, South Korea
| | | | - Subin Kim
- College of Pharmacy, Mokpo National University, Joennam, 58554, South Korea
| | - Jitendra Shrestha
- Massachusetts General Hospital Cancer Center, Boston, MA, 02114, USA
| | - Yoon Sin Oh
- Department of Food and Nutrition, Eulji University, Seongnam, 13135, South Korea
| | - Dong Jae Baek
- College of Pharmacy, Mokpo National University, Joennam, 58554, South Korea.
| | - Eun-Young Park
- College of Pharmacy, Mokpo National University, Joennam, 58554, South Korea.
| |
Collapse
|
2
|
Lara MK, Brabec JL, Hernan AE, Scott RC, Tyler AL, Mahoney JM. Network-based analysis predicts interacting genetic modifiers from a meta-mapping study of spike-wave discharge in mice. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12879. [PMID: 38444174 PMCID: PMC10915378 DOI: 10.1111/gbb.12879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 03/07/2024]
Abstract
Absence seizures are characterized by brief lapses in awareness accompanied by a hallmark spike-and-wave discharge (SWD) electroencephalographic pattern and are common to genetic generalized epilepsies (GGEs). While numerous genes have been associated with increased risk, including some Mendelian forms with a single causal allele, most cases of GGE are idiopathic and there are many unknown genetic modifiers of GGE influencing risk and severity. In a previous meta-mapping study, crosses between transgenic C57BL/6 and C3HeB/FeJ strains, each carrying one of three SWD-causing mutations (Gabrg2tm1Spet(R43Q) , Scn8a8j or Gria4spkw1 ), demonstrated an antagonistic epistatic interaction between loci on mouse chromosomes 2 and 7 influencing SWD. These results implicate universal modifiers in the B6 background that mitigate SWD severity through a common pathway, independent of the causal mutation. In this study, we prioritized candidate modifiers in these interacting loci. Our approach integrated human genome-wide association results with gene interaction networks and mouse brain gene expression to prioritize candidate genes and pathways driving variation in SWD outcomes. We considered candidate genes that are functionally associated with human GGE risk genes and genes with evidence for coding or non-coding allele effects between the B6 and C3H backgrounds. Our analyses output a summary ranking of gene pairs, one gene from each locus, as candidates for explaining the epistatic interaction. Our top-ranking gene pairs implicate microtubule function, cytoskeletal stability and cell cycle regulation as novel hypotheses about the source of SWD variation across strain backgrounds, which could clarify underlying mechanisms driving differences in GGE severity in humans.
Collapse
Affiliation(s)
- Montana Kay Lara
- Department of Neurological SciencesUniversity of VermontBurlingtonVermontUSA
| | - Jeffrey L. Brabec
- Department of Neurological SciencesUniversity of VermontBurlingtonVermontUSA
| | - Amanda E. Hernan
- Department of Neurological SciencesUniversity of VermontBurlingtonVermontUSA
- Division of NeuroscienceNemours Children's HealthWilmingtonDelawareUSA
- Department of Psychological and Brain SciencesUniversity of DelawareNewarkDelawareUSA
| | - Rod C. Scott
- Division of NeuroscienceNemours Children's HealthWilmingtonDelawareUSA
- Department of Psychological and Brain SciencesUniversity of DelawareNewarkDelawareUSA
| | | | - J. Matthew Mahoney
- Department of Neurological SciencesUniversity of VermontBurlingtonVermontUSA
- The Jackson LaboratoryBar HarborMaineUSA
| |
Collapse
|
3
|
Guffens L, Derua R, Janssens V. PME-1-regulated neural cell death: new therapeutic opportunities? Aging (Albany NY) 2023; 15:11694-11696. [PMID: 37950723 PMCID: PMC10683631 DOI: 10.18632/aging.205303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/26/2023] [Indexed: 11/13/2023]
Affiliation(s)
- Liesbeth Guffens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven, KU Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven, KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven, KU Leuven, Belgium
| |
Collapse
|
4
|
Denisova OV, Merisaari J, Huhtaniemi R, Qiao X, Yetukuri L, Jumppanen M, Kaur A, Pääkkönen M, von Schantz‐Fant С, Ohlmeyer M, Wennerberg K, Kauko O, Koch R, Aittokallio T, Taipale M, Westermarck J. PP2A-based triple-strike therapy overcomes mitochondrial apoptosis resistance in brain cancer cells. Mol Oncol 2023; 17:1803-1820. [PMID: 37458534 PMCID: PMC10483611 DOI: 10.1002/1878-0261.13488] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/08/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023] Open
Abstract
Mitochondrial glycolysis and hyperactivity of the phosphatidylinositol 3-kinase-protein kinase B (AKT) pathway are hallmarks of malignant brain tumors. However, kinase inhibitors targeting AKT (AKTi) or the glycolysis master regulator pyruvate dehydrogenase kinase (PDKi) have failed to provide clinical benefits for brain tumor patients. Here, we demonstrate that heterogeneous glioblastoma (GB) and medulloblastoma (MB) cell lines display only cytostatic responses to combined AKT and PDK targeting. Biochemically, the combined AKT and PDK inhibition resulted in the shutdown of both target pathways and priming to mitochondrial apoptosis but failed to induce apoptosis. In contrast, all tested brain tumor cell models were sensitive to a triplet therapy, in which AKT and PDK inhibition was combined with the pharmacological reactivation of protein phosphatase 2A (PP2A) by NZ-8-061 (also known as DT-061), DBK-1154, and DBK-1160. We also provide proof-of-principle evidence for in vivo efficacy in the intracranial GB and MB models by the brain-penetrant triplet therapy (AKTi + PDKi + PP2A reactivator). Mechanistically, PP2A reactivation converted the cytostatic AKTi + PDKi response to cytotoxic apoptosis, through PP2A-elicited shutdown of compensatory mitochondrial oxidative phosphorylation and by increased proton leakage. These results encourage the development of triple-strike strategies targeting mitochondrial metabolism to overcome therapy tolerance in brain tumors.
Collapse
Affiliation(s)
- Oxana V. Denisova
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityFinland
| | - Joni Merisaari
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityFinland
- Institute of BiomedicineUniversity of TurkuFinland
| | - Riikka Huhtaniemi
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityFinland
| | - Xi Qiao
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityFinland
| | - Laxman Yetukuri
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityFinland
- Institute for Molecular Medicine Finland (FIMM), HiLIFEUniversity of HelsinkiFinland
- Centre for Biostatistics and Epidemiology (OCBE)University of OsloNorway
| | - Mikael Jumppanen
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityFinland
| | - Amanpreet Kaur
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityFinland
| | - Mirva Pääkkönen
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityFinland
| | | | - Michael Ohlmeyer
- Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Atux Iskay LLCPlainsboroNJUSA
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), HiLIFEUniversity of HelsinkiFinland
- Biotech Research & Innovation CentreUniversity of CopenhagenDenmark
| | - Otto Kauko
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityFinland
| | | | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFEUniversity of HelsinkiFinland
- Centre for Biostatistics and Epidemiology (OCBE)University of OsloNorway
- Institute for Cancer ResearchOslo University HospitalNorway
| | - Mikko Taipale
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoCanada
| | - Jukka Westermarck
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityFinland
- Institute of BiomedicineUniversity of TurkuFinland
| |
Collapse
|
5
|
Guffens L, Derua R, Janssens V. PME-1 sensitizes glioblastoma cells to oxidative stress-induced cell death by attenuating PP2A-B55α-mediated inactivation of MAPKAPK2-RIPK1 signaling. Cell Death Discov 2023; 9:265. [PMID: 37500619 PMCID: PMC10374899 DOI: 10.1038/s41420-023-01572-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults. Current standard therapy is surgery followed by radiotherapy, with concurrent and adjuvant temozolomide chemotherapy. GBM is characterized by almost uniformly fatal outcomes, highlighting the unmet clinical need for more efficient, biomarker-guided treatments. Protein phosphatase methylesterase-1 (PME-1), a regulator of the tumor suppressive phosphatase PP2A, promotes PP2A demethylation and inactivation, and is overexpressed in 44% of GBM, associated with increased tumor grade and cellular proliferation. Here, we aimed to investigate how reactive oxygen species (ROS), a frequent by-product of radiotherapy and temozolomide chemotherapy, regulate PP2A function via its methylesterase PME-1, and how PME-1 overexpression impacts the response of GBM cells to oxidative stress. We found that in two glioblastoma cell lines, U87MG and U251MG, expression of PME-1 is positively correlated with the sensitivity of the cells to H2O2 or t-BHP-induced oxidative stress. Experiments using the irreversible pharmacologic PME-1 inhibitor, AMZ30, and different PME-1 mutants, revealed that the methylesterase function, the PP2A binding capacity, and the nuclear localization of PME-1 are all important for the sensitizing effect of PME-1 expression. Furthermore, we identified increased nuclear localization of the PP2A-B55α subunit, increased binding of PP2A-B55α to PME-1, and increased B55α-bound PP2A-C demethylation upon oxidative stress. Lastly, we uncovered increased stress-induced phosphorylation and activity of MAPKAPK2 and RIPK1 in PME-1 overexpressing U87MG cells, which caused the observed sensitization to t-BHP treatment. Our data reveal a novel role for PME-1 in oxidative stress-induced GBM cell death, regulating nuclear PP2A-B55α activity and MAPKAPK2-RIPK1 signaling. Patients with GBM tumors overexpressing PME-1, although having a worse prognosis due to increased cellular proliferation of the tumor, could actually be more responsive to oxidative stress-inducing therapies.
Collapse
Affiliation(s)
- Liesbeth Guffens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. Cellular & Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
- KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation & Proteomics, Dept. Cellular & Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
- SyBioMa, KU Leuven, B-3000, Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. Cellular & Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium.
- KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium.
| |
Collapse
|
6
|
Jiang TY, Cui XW, Zeng TM, Pan YF, Lin YK, Feng XF, Tan YX, Yuan ZG, Dong LW, Wang HY. PTEN deficiency facilitates gemcitabine efficacy in cancer by modulating the phosphorylation of PP2Ac and DCK. Sci Transl Med 2023; 15:eadd7464. [PMID: 37437018 DOI: 10.1126/scitranslmed.add7464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
Gemcitabine is a nucleoside analog that has been successfully used in the treatment of multiple cancers. However, intrinsic or acquired resistance reduces the chemotherapeutic potential of gemcitabine. Here, we revealed a previously unappreciated mechanism by which phosphatase and tensin homolog (PTEN), one of the most frequently mutated genes in human cancers, dominates the decision-making process that is central to the regulation of gemcitabine efficacy in cholangiocarcinoma (CCA). By investigating a gemcitabine-treated CCA cohort, we found that PTEN deficiency was correlated with the improved efficacy of gemcitabine-based chemotherapy. Using cell-based drug sensitivity assays, cell line-derived xenograft, and patient-derived xenograft models, we further confirmed that PTEN deficiency or genetic-engineering down-regulation of PTEN facilitated gemcitabine efficacy both in vitro and in vivo. Mechanistically, PTEN directly binds to and dephosphorylates the C terminus of the catalytic subunit of protein phosphatase 2A (PP2Ac) to increase its enzymatic activity, which further dephosphorylates deoxycytidine kinase (DCK) at Ser74 to diminish gemcitabine efficacy. Therefore, PTEN deficiency and high phosphorylation of DCK predict a better response to gemcitabine-based chemotherapy in CCA. We speculate that the combination of PP2A inhibitor and gemcitabine in PTEN-positive tumors could avoid the resistance of gemcitabine, which would benefit a large population of patients with cancer receiving gemcitabine or other nucleoside analogs.
Collapse
Affiliation(s)
- Tian-Yi Jiang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Naval Medical University, Shanghai 200438, China
- National Center for Liver Cancer, the Naval Medical University, Shanghai 201805, China
| | - Xiao-Wen Cui
- National Center for Liver Cancer, the Naval Medical University, Shanghai 201805, China
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, the Naval Medical University, Shanghai 201805, China
| | - Tian-Mei Zeng
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, the Naval Medical University, Shanghai 201805, China
| | - Yu-Fei Pan
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Naval Medical University, Shanghai 200438, China
- National Center for Liver Cancer, the Naval Medical University, Shanghai 201805, China
| | - Yun-Kai Lin
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Naval Medical University, Shanghai 200438, China
- National Center for Liver Cancer, the Naval Medical University, Shanghai 201805, China
| | - Xiao-Fan Feng
- National Center for Liver Cancer, the Naval Medical University, Shanghai 201805, China
| | - Ye-Xiong Tan
- National Center for Liver Cancer, the Naval Medical University, Shanghai 201805, China
| | - Zhen-Gang Yuan
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, the Naval Medical University, Shanghai 201805, China
| | - Li-Wei Dong
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Naval Medical University, Shanghai 200438, China
- National Center for Liver Cancer, the Naval Medical University, Shanghai 201805, China
| | - Hong-Yang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Naval Medical University, Shanghai 200438, China
- National Center for Liver Cancer, the Naval Medical University, Shanghai 201805, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Shanghai, 200438, China
- Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, the Naval Medical University and Ministry of Education, Shanghai 200438, China
| |
Collapse
|
7
|
Fevga C, Tesson C, Carreras Mascaro A, Courtin T, van Coller R, Sakka S, Ferraro F, Farhat N, Bardien S, Damak M, Carr J, Ferrien M, Boumeester V, Hundscheid J, Grillenzoni N, Kessissoglou IA, Kuipers DJS, Quadri M, Corvol JC, Mhiri C, Hassan BA, Breedveld GJ, Lesage S, Mandemakers W, Brice A, Bonifati V. PTPA variants and impaired PP2A activity in early-onset parkinsonism with intellectual disability. Brain 2023; 146:1496-1510. [PMID: 36073231 PMCID: PMC10115167 DOI: 10.1093/brain/awac326] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/24/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The protein phosphatase 2A complex (PP2A), the major Ser/Thr phosphatase in the brain, is involved in a number of signalling pathways and functions, including the regulation of crucial proteins for neurodegeneration, such as alpha-synuclein, tau and LRRK2. Here, we report the identification of variants in the PTPA/PPP2R4 gene, encoding a major PP2A activator, in two families with early-onset parkinsonism and intellectual disability. We carried out clinical studies and genetic analyses, including genome-wide linkage analysis, whole-exome sequencing, and Sanger sequencing of candidate variants. We next performed functional studies on the disease-associated variants in cultured cells and knock-down of ptpa in Drosophila melanogaster. We first identified a homozygous PTPA variant, c.893T>G (p.Met298Arg), in patients from a South African family with early-onset parkinsonism and intellectual disability. Screening of a large series of additional families yielded a second homozygous variant, c.512C>A (p.Ala171Asp), in a Libyan family with a similar phenotype. Both variants co-segregate with disease in the respective families. The affected subjects display juvenile-onset parkinsonism and intellectual disability. The motor symptoms were responsive to treatment with levodopa and deep brain stimulation of the subthalamic nucleus. In overexpression studies, both the PTPA p.Ala171Asp and p.Met298Arg variants were associated with decreased PTPA RNA stability and decreased PTPA protein levels; the p.Ala171Asp variant additionally displayed decreased PTPA protein stability. Crucially, expression of both variants was associated with decreased PP2A complex levels and impaired PP2A phosphatase activation. PTPA orthologue knock-down in Drosophila neurons induced a significant impairment of locomotion in the climbing test. This defect was age-dependent and fully reversed by L-DOPA treatment. We conclude that bi-allelic missense PTPA variants associated with impaired activation of the PP2A phosphatase cause autosomal recessive early-onset parkinsonism with intellectual disability. Our findings might also provide new insights for understanding the role of the PP2A complex in the pathogenesis of more common forms of neurodegeneration.
Collapse
Affiliation(s)
- Christina Fevga
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Christelle Tesson
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Ana Carreras Mascaro
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Thomas Courtin
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Génétique, DMU BioGeM, Paris, France
| | - Riaan van Coller
- Department of Neurology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Salma Sakka
- Research Unit in Neurogenetics, Clinical Investigation Center (CIC) at the CHU Habib Bourguiba, Sfax, Tunisia
| | - Federico Ferraro
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Nouha Farhat
- Research Unit in Neurogenetics, Clinical Investigation Center (CIC) at the CHU Habib Bourguiba, Sfax, Tunisia
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Mariem Damak
- Research Unit in Neurogenetics, Clinical Investigation Center (CIC) at the CHU Habib Bourguiba, Sfax, Tunisia
| | - Jonathan Carr
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mélanie Ferrien
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Valerie Boumeester
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Jasmijn Hundscheid
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Nicola Grillenzoni
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Irini A Kessissoglou
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Demy J S Kuipers
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Marialuisa Quadri
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Jean-Christophe Corvol
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Neurologie, Centre d'Investigation Clinique Neurosciences, DMU Neuroscience, Paris, France
| | - Chokri Mhiri
- Research Unit in Neurogenetics, Clinical Investigation Center (CIC) at the CHU Habib Bourguiba, Sfax, Tunisia
| | - Bassem A Hassan
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Guido J Breedveld
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Suzanne Lesage
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Wim Mandemakers
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Alexis Brice
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Génétique, DMU BioGeM, Paris, France
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
8
|
Hu B, Hao S, Miao Y, Deng Y, Wang J, Wan H, Zhang S, Ji N, Feng J. Inhibiting PP2A Upregulates B7-H3 Expression and Potentially Increases the Sensitivity of Malignant Meningiomas to Immunotherapy by Proteomics. Pathol Oncol Res 2022; 28:1610572. [PMID: 36203966 PMCID: PMC9530036 DOI: 10.3389/pore.2022.1610572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022]
Abstract
Malignant meningiomas have a high mortality rate and short survival time and currently have no effective treatment. In our study, proteomics analysis was performed to identify highly expressed proteins as therapeutic targets in malignant meningiomas. Cell Counting Kit-8 (CCK-8) assays were performed to verify the effect of LB-100 on the growth of malignant meningiomas. In addition, immunoblotting was used to verify the expression of B7-H3 and phosphorylation of STAT1 (Tyr701) in tissues and cells. Our results show that STAT1 and CD276 (B7-H3) regulated by PP2A were enriched in GO_IMMUNE_EFFECTOR_PROCESS and GO_REGULATION_OF_IMMUNE_SYSTEM_PROCESS. The immunotherapy target protein B7-H3 was confirmed to be upregulated in malignant meningiomas compared with meningothelial (p = 0.0001) and fibroblastic (p = 0.0046) meningiomas. In vitro, the PP2A inhibitor LB-100 suppressed the growth and invasion of malignant meningioma cells. Notably, the PP2A inhibitor LB-100 increased the phosphorylation of STAT1, thereby increasing the expression of the immune checkpoint protein B7-H3 in malignant meningioma cells in vitro. In conclusion, B7-H3 was found to be upregulated in malignant meningiomas. The PP2A inhibitor LB-100 increased the phosphorylation of STAT1 and B7-H3 expression, which could increase the sensitivity of malignant meningiomas to B7-H3 targeted immunotherapy.
Collapse
Affiliation(s)
- Boyi Hu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shuyu Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yazhou Miao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuxuan Deng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Hong Wan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shaodong Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jie Feng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Saviuk N, Chong Y, Wang P, Bermudez S, Zhao Z, Bhaskaran AA, Bowie D, Sonenberg N, Cooper E, Haghighi AP. Loss of 4E-BP converts cerebellar long-term depression to long-term potentiation. Cell Rep 2022; 39:110911. [PMID: 35675781 DOI: 10.1016/j.celrep.2022.110911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 10/31/2021] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Genetic perturbances in translational regulation result in defects in cerebellar motor learning; however, little is known about the role of translational mechanisms in the regulation of cerebellar plasticity. We show that genetic removal of 4E-BP, a translational suppressor and target of mammalian target of rapamycin complex 1, results in a striking change in cerebellar synaptic plasticity. We find that cerebellar long-term depression (LTD) at parallel fiber-Purkinje cell synapses is converted to long-term potentiation in 4E-BP knockout mice. Biochemical and pharmacological experiments suggest that increased phosphatase activity largely accounts for the defects in LTD. Our results point to a model in which translational regulation through the action of 4E-BP plays a critical role in establishing the appropriate kinase/phosphatase balance required for normal synaptic plasticity in the cerebellum.
Collapse
Affiliation(s)
- Natasha Saviuk
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada; Department of Physiology, McGill University, Montréal, QC, Canada
| | - Yumaine Chong
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada; Department of Physiology, McGill University, Montréal, QC, Canada
| | - Peng Wang
- Biochemistry, McGill University, Montréal, QC, Canada
| | - Sara Bermudez
- Biochemistry, McGill University, Montréal, QC, Canada
| | - Zhe Zhao
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
| | - Arjun A Bhaskaran
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada; Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Derek Bowie
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada; Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | | | - Ellis Cooper
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada; Department of Physiology, McGill University, Montréal, QC, Canada.
| | - A Pejmun Haghighi
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada; Department of Physiology, McGill University, Montréal, QC, Canada; Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
10
|
Pan J, Zhou L, Zhang C, Xu Q, Sun Y. Targeting protein phosphatases for the treatment of inflammation-related diseases: From signaling to therapy. Signal Transduct Target Ther 2022; 7:177. [PMID: 35665742 PMCID: PMC9166240 DOI: 10.1038/s41392-022-01038-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammation is the common pathological basis of autoimmune diseases, metabolic diseases, malignant tumors, and other major chronic diseases. Inflammation plays an important role in tissue homeostasis. On one hand, inflammation can sense changes in the tissue environment, induce imbalance of tissue homeostasis, and cause tissue damage. On the other hand, inflammation can also initiate tissue damage repair and maintain normal tissue function by resolving injury and restoring homeostasis. These opposing functions emphasize the significance of accurate regulation of inflammatory homeostasis to ameliorate inflammation-related diseases. Potential mechanisms involve protein phosphorylation modifications by kinases and phosphatases, which have a crucial role in inflammatory homeostasis. The mechanisms by which many kinases resolve inflammation have been well reviewed, whereas a systematic summary of the functions of protein phosphatases in regulating inflammatory homeostasis is lacking. The molecular knowledge of protein phosphatases, and especially the unique biochemical traits of each family member, will be of critical importance for developing drugs that target phosphatases. Here, we provide a comprehensive summary of the structure, the "double-edged sword" function, and the extensive signaling pathways of all protein phosphatases in inflammation-related diseases, as well as their potential inhibitors or activators that can be used in therapeutic interventions in preclinical or clinical trials. We provide an integrated perspective on the current understanding of all the protein phosphatases associated with inflammation-related diseases, with the aim of facilitating the development of drugs that target protein phosphatases for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Jie Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Lisha Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Chenyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
11
|
Ji L, Wang Z, Ji Y, Wang H, Guo M, Zhang L, Wang P, Xiao H. Proteomics and phosphoproteomics analysis of tissues for the reoccurrence prediction of colorectal cancer. Expert Rev Proteomics 2022; 19:263-277. [PMID: 36308708 DOI: 10.1080/14789450.2022.2142566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Many stage II/III colorectal cancer (CRC) patients may relapse after routine treatments. Aberrant phosphorylation can regulate pathophysiological processes of tumors, and finding characteristic protein phosphorylation is an efficient approach for the prediction of CRC relapse. RESEARCH DESIGN AND METHODS We compared the tissue proteome and phosphoproteome of stage II/III CRC patients between the relapsed group (n = 5) and the non-relapsed group (n = 5). Phosphopeptides were enriched with Ti4+-IMAC material. We utilized label-free quantification-based proteomics to screen differentially expressed proteins and phosphopeptides between the two groups. Gene Ontology (GO) analysis and Ingenuity Pathway Analysis (IPA) were used for bioinformatics analysis. RESULTS The immune response of the relapsed group (Z-score -2.229) was relatively poorer than that of the non-relapsed group (Z-score 1.982), while viability of tumor was more activated (Z-score 2.895) in the relapsed group, which might cause increased relapse risk. The phosphorylation degrees of three phosphosites (phosphosite 1362 of TP53BP1, phosphosite 809 of VCL and phosphosite 438 of STK10) might be reliable prognostic biomarkers. CONCLUSIONS Some promising proteins and phosphopeptides were discovered to predict the relapse risk in postoperative follow-ups.
Collapse
Affiliation(s)
- Liyun Ji
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 200240, Shanghai, China
| | - Zeyuan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 200240, Shanghai, China
| | - Yin Ji
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co Ltd 210042, Nanjing, China
| | - Huiyu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 200240, Shanghai, China
| | - Miao Guo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 200240, Shanghai, China
| | - Lu Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 200240, Shanghai, China
| | - Peng Wang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co Ltd 210042, Nanjing, China
| | - Hua Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 200240, Shanghai, China
| |
Collapse
|
12
|
Khan MM, Kalim UU, Khan MH, Lahesmaa R. PP2A and Its Inhibitors in Helper T-Cell Differentiation and Autoimmunity. Front Immunol 2022; 12:786857. [PMID: 35069561 PMCID: PMC8766794 DOI: 10.3389/fimmu.2021.786857] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a highly complex heterotrimeric Ser/Thr phosphatase that regulates many cellular processes. The role of PP2A as a tumor suppressor has been extensively studied and reviewed. However, emerging evidence suggests PP2A constrains inflammatory responses and is important in autoimmune and neuroinflammatory diseases. Here, we reviewed the existing literature on the role of PP2A in T-cell differentiation and autoimmunity. We have also discussed the modulation of PP2A activity by endogenous inhibitors and its small-molecule activators as potential therapeutic approaches against autoimmunity.
Collapse
Affiliation(s)
- Mohd Moin Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Turku Doctoral Programme of Molecular Medicine (TuDMM), University of Turku, Turku, Finland
| | - Ubaid Ullah Kalim
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Meraj H. Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| |
Collapse
|
13
|
Vainonen JP, Momeny M, Westermarck J. Druggable cancer phosphatases. Sci Transl Med 2021; 13:13/588/eabe2967. [PMID: 33827975 DOI: 10.1126/scitranslmed.abe2967] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Abstract
The phosphorylation status of oncoproteins is regulated by both kinases and phosphatases. Kinase inhibitors are rarely sufficient for successful cancer treatment, and phosphatases have been considered undruggable targets for cancer drug development. However, innovative pharmacological approaches for targeting phosphatases have recently emerged. Here, we review progress in the therapeutic targeting of oncogenic Src homology region 2 domain-containing phosphatase-2 (SHP2) and tumor suppressor protein phosphatase 2A (PP2A) and select other druggable oncogenic and tumor suppressor phosphatases. We describe the modes of action for currently available small molecules that target phosphatases, their use in drug combinations, and advances in clinical development toward future cancer therapies.
Collapse
Affiliation(s)
- Julia P Vainonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Majid Momeny
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland. .,Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| |
Collapse
|
14
|
Nasa I, Kettenbach AN. Effects of carboxyl-terminal methylation on holoenzyme function of the PP2A subfamily. Biochem Soc Trans 2020; 48:2015-2027. [PMID: 33125487 PMCID: PMC8380034 DOI: 10.1042/bst20200177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 01/07/2023]
Abstract
Phosphoprotein Phosphatases (PPPs) are enzymes highly conserved from yeast and human and catalyze the majority of the serine and threonine dephosphorylation in cells. To achieve substrate specificity and selectivity, PPPs form multimeric holoenzymes consisting of catalytic, structural/scaffolding, and regulatory subunits. For the Protein Phosphatase 2A (PP2A)-subfamily of PPPs, holoenzyme assembly is at least in part regulated by an unusual carboxyl-terminal methyl-esterification, commonly referred to as 'methylation'. Carboxyl-terminal methylation is catalyzed by Leucine carboxyl methyltransferase-1 (LCMT1) that utilizes S-adenosyl-methionine (SAM) as the methyl donor and removed by protein phosphatase methylesterase 1 (PME1). For PP2A, methylation dictates regulatory subunit selection and thereby downstream phosphorylation signaling. Intriguingly, there are four families of PP2A regulatory subunits, each exhibiting different levels of methylation sensitivity. Thus, changes in PP2A methylation stoichiometry alters the complement of PP2A holoenzymes in cells and creates distinct modes of kinase opposition. Importantly, selective inactivation of PP2A signaling through the deregulation of methylation is observed in several diseases, most prominently Alzheimer's disease (AD). In this review, we focus on how carboxyl-terminal methylation of the PP2A subfamily (PP2A, PP4, and PP6) regulates holoenzyme function and thereby phosphorylation signaling, with an emphasis on AD.
Collapse
Affiliation(s)
- Isha Nasa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, U.S.A
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center at Dartmouth, Lebanon, NH, U.S.A
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, U.S.A
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center at Dartmouth, Lebanon, NH, U.S.A
| |
Collapse
|
15
|
Amirani E, Hallajzadeh J, Asemi Z, Mansournia MA, Yousefi B. Effects of chitosan and oligochitosans on the phosphatidylinositol 3-kinase-AKT pathway in cancer therapy. Int J Biol Macromol 2020; 164:456-467. [PMID: 32693135 DOI: 10.1016/j.ijbiomac.2020.07.137] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022]
Abstract
Phosphatidylinositol 3-kinase (PI3K)-AKT pathway is one of the most important kinase signaling networks in the context of cancer development and treatment. Aberrant activation of AKT, the central mediator of this pathway, has been implicated in numerous malignancies including endometrial, hepatocellular, breast, colorectal, prostate, and, cervical cancer. Thus regulation and blockage of this kinase and its key target nodes is an attractive approach in cancer therapy and diverse efforts have been done to achieve this aim. Chitosan is a carbohydrate with multiple interesting applications in cancer diagnosis and treatment strategies. This bioactive polymer and its derivative oligomers commonly used in drug/DNA delivery methods due to their functional properties which improve efficiency of delivery systems. Further, these compounds exert anti-tumor roles through the stimulation of apoptosis, immune enhancing potency, anti-oxidative features and anti-angiogenic roles. Due to the importance of PI3K-AKT signaling in cancer targeting and treatment resistance, this review discusses the involvement of chitosan, oligochitosaccharides and carriers based on these chemicals in the regulation of this pathway in different tumors.
Collapse
Affiliation(s)
- Elaheh Amirani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Polyomavirus Small T Antigen Induces Apoptosis in Mammalian Cells through the UNC5B Pathway in a PP2A-Dependent Manner. J Virol 2020; 94:JVI.02187-19. [PMID: 32404521 DOI: 10.1128/jvi.02187-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/02/2020] [Indexed: 11/20/2022] Open
Abstract
UNC5B is a dependence receptor that promotes survival in the presence of its ligand, netrin-1, while inducing cell death in its absence. The receptor has an important role in the development of the nervous and vascular systems. It is also involved in the normal turnover of intestinal epithelium. Netrin-1 and UNC5B are deregulated in multiple cancers, including colorectal, neuroblastoma, and breast tumors. However, the detailed mechanism of UNC5B function is not fully understood. We have utilized the murine polyomavirus small T antigen (PyST) as a tool to study UNC5B-mediated apoptosis. PyST is known to induce mitotic arrest followed by extensive cell death in mammalian cells. Our results show that the expression of PyST increases mRNA levels of UNC5B by approximately 3-fold in osteosarcoma cells (U2OS) and also stabilizes UNC5B at the posttranslational level. Furthermore, UNC5B is upregulated predominantly in those cells that undergo mitotic arrest upon PyST expression. Interestingly, although its expression was previously reported to be regulated by p53, our data show that the increase in UNC5B levels by PyST is p53 independent. The posttranslational stabilization of UNC5B by PyST is regulated by the interaction of PyST with PP2A. We also show that netrin-1 expression, which is known to inhibit UNC5B apoptotic activity, promotes survival of PyST-expressing cells. Our results thus suggest an important role of UNC5B in small-T antigen-induced mitotic catastrophe that also requires PP2A.IMPORTANCE UNC5B, PP2A, and netrin-1 are deregulated in a variety of cancers. UNC5B and PP2A are regarded as tumor suppressors, as they promote apoptosis and are deleted or mutated in many cancers. In contrast, netrin-1 promotes survival by inhibiting dependence receptors, including UNC5B, and is upregulated in many cancers. Here, we show that UNC5B-mediated apoptosis can occur independently of p53 but in a PP2A-dependent manner. A substantial percentage of cancers arise due to p53 mutations and are insensitive to chemotherapeutic treatments that activate p53. Unexpectedly, treatment of cancers having functional p53 with many conventional drugs leads to the upregulation of netrin-1 through activated p53, which is counterintuitive. Therefore, understanding the p53-independent mechanisms of the netrin-UNC5B axis, such as those involving PP2A, assumes greater clinical significance. Anticancer strategies utilizing anti-netrin-1 antibody treatment are already in clinical trials.
Collapse
|
17
|
Labuzan SA, Lynch SA, Cooper LM, Waddell DS. Inhibition of protein phosphatase methylesterase 1 dysregulates MAP kinase signaling and attenuates muscle cell differentiation. Gene 2020; 739:144515. [DOI: 10.1016/j.gene.2020.144515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
|
18
|
Morita K, He S, Nowak RP, Wang J, Zimmerman MW, Fu C, Durbin AD, Martel MW, Prutsch N, Gray NS, Fischer ES, Look AT. Retracted: Allosteric Activators of Protein Phosphatase 2A Display Broad Antitumor Activity Mediated by Dephosphorylation of MYBL2. Cell 2020; 181:702-715.e20. [PMID: 32315619 PMCID: PMC7397863 DOI: 10.1016/j.cell.2020.03.051] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/02/2020] [Accepted: 03/20/2020] [Indexed: 11/21/2022]
Abstract
Protein phosphatase 2A (PP2A) enzymes can suppress tumors, but they are often inactivated in human cancers overexpressing inhibitory proteins. Here, we identify a class of small-molecule iHAPs (improved heterocyclic activators of PP2A) that kill leukemia cells by allosterically assembling a specific heterotrimeric PP2A holoenzyme consisting of PPP2R1A (scaffold), PPP2R5E (B56ε, regulatory), and PPP2CA (catalytic) subunits. One compound, iHAP1, activates this complex but does not inhibit dopamine receptor D2, a mediator of neurologic toxicity induced by perphenazine and related neuroleptics. The PP2A complex activated by iHAP1 dephosphorylates the MYBL2 transcription factor on Ser241, causing irreversible arrest of leukemia and other cancer cells in prometaphase. In contrast, SMAPs, a separate class of compounds, activate PP2A holoenzymes containing a different regulatory subunit, do not dephosphorylate MYBL2, and arrest tumor cells in G1 phase. Our findings demonstrate that small molecules can serve as allosteric switches to activate distinct PP2A complexes with unique substrates.
Collapse
Affiliation(s)
- Ken Morita
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Shuning He
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Radosław P Nowak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Mark W Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Cong Fu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Adam D Durbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Megan W Martel
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Nicole Prutsch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
19
|
Du B, Liao H, Zhang S. Expression Pattern and Prognostic Utility of PME-1 in Patients with Hepatocellular Carcinoma. Cancer Manag Res 2020; 12:2937-2945. [PMID: 32431540 PMCID: PMC7197939 DOI: 10.2147/cmar.s252873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) remains one of the most common malignancies. While there is lack of markers capable of predicting which patients are at risk of aggressive course of the disease. Although a few protein phosphatase methyl-esterase-1 (PME-1) tumor-promoting mechanisms have been reported, the role of PME-1 in cancer including HCC occurrence and progression remains to be elucidated. The aim of this study was to explore the expression pattern and relationship between PME-1 with the pathological parameters in patients with HCC. Methods PME-1 expression was assessed from HCC tissue chips via immunohistochemistry. Chi-square test was used to identify the association between PME-1 staining and clinicopathological variables of HCC patients. Kaplan–Meier analysis and Cox regression analysis were performed to draw survival curves and verify the independent prognostic factors of HCC patients, respectively. Results We found that PME-1 expression was significantly higher in HCC tumor tissues compared with non-tumor tissues (P < 0.001). Furthermore, high expression level of PME-1 was significantly associated with differentiation (P = 0.047), tumor number (P = 0.001), intrahepatic or extrahepatic metastasis (P = 0.018), and recurrence (P = 0.001). Kaplan–Meier analysis revealed that high expression level of PME-1 was associated with shorter survival (P < 0.001). Univariate analysis with Log-rank test revealed that PME-1 expression status was significantly correlated with overall survival (P < 0.001). Furthermore, multivariate models with Cox proportional hazards analysis showed that high expression of PME-1 was a statistically independent predictive factor of poor prognosis in HCC patients (hazard ratio, 3.429; 95% confidence interval, 1.369–8.589; P = 0.009). Conclusion In conclusion, these findings indicated that PME-1 expression was associated with aggressive pathological features and worse oncological outcomes, suggesting its potential therapeutic value for patients with HCC.
Collapse
Affiliation(s)
- Baoying Du
- Department of Hepatopancreatobiliary Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hongfeng Liao
- Department of Pathology, Zhongshan Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Sheng Zhang
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
20
|
Reduced Expression of the PP2A Methylesterase, PME-1, or the PP2A Methyltransferase, LCMT-1, Alters Sensitivity to Beta-Amyloid-Induced Cognitive and Electrophysiological Impairments in Mice. J Neurosci 2020; 40:4596-4608. [PMID: 32341098 DOI: 10.1523/jneurosci.2983-19.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/27/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
Beta-amyloid (Aβ) is thought to play a critical role in Alzheimer's disease (AD), and application of soluble oligomeric forms of Aβ produces AD-like impairments in cognition and synaptic plasticity in experimental systems. We found previously that transgenic overexpression of the PP2A methylesterase, PME-1, or the PP2A methyltransferase, LCMT-1, altered the sensitivity of mice to Aβ-induced impairments, suggesting that PME-1 inhibition may be an effective approach for preventing or treating these impairments. To explore this possibility, we examined the behavioral and electrophysiological effects of acutely applied synthetic Aβ oligomers in male and female mice heterozygous for either a PME-1 KO or an LCMT-1 gene-trap mutation. We found that heterozygous PME-1 KO mice were resistant to Aβ-induced impairments in cognition and synaptic plasticity, whereas LCMT-1 gene-trap mice showed increased sensitivity to Aβ-induced impairments. The heterozygous PME-1 KO mice produced normal levels of endogenous Aβ and exhibited normal electrophysiological responses to picomolar concentrations of Aβ, suggesting that reduced PME-1 expression in these animals protects against Aβ-induced impairments without impacting normal physiological Aβ functions. Together, these data provide additional support for roles for PME-1 and LCMT-1 in regulating sensitivity to Aβ-induced impairments, and suggest that inhibition of PME-1 may constitute a viable therapeutic approach for selectively protecting against the pathologic actions of Aβ in AD.SIGNIFICANCE STATEMENT Elevated levels of β-amyloid (Aβ) in the brain are thought to contribute to the cognitive impairments observed in Alzheimer's disease patients. Here we show that genetically reducing endogenous levels of the PP2A methylesterase, PME-1, prevents the cognitive and electrophysiological impairments caused by acute exposure to pathologic concentrations of Aβ without impairing normal physiological Aβ function or endogenous Aβ production. Conversely, reducing endogenous levels of the PP2A methyltransferase, LCMT-1, increases sensitivity to Aβ-induced impairments. These data offer additional insights into the molecular factors that control sensitivity to Aβ-induced impairments, and suggest that inhibiting PME-1 may constitute a viable therapeutic avenue for preventing Aβ-related impairments in Alzheimer's disease.
Collapse
|
21
|
Kauko O, Imanishi SY, Kulesskiy E, Yetukuri L, Laajala TD, Sharma M, Pavic K, Aakula A, Rupp C, Jumppanen M, Haapaniemi P, Ruan L, Yadav B, Suni V, Varila T, Corthals GL, Reimand J, Wennerberg K, Aittokallio T, Westermarck J. Phosphoproteome and drug-response effects mediated by the three protein phosphatase 2A inhibitor proteins CIP2A, SET, and PME-1. J Biol Chem 2020; 295:4194-4211. [PMID: 32071079 PMCID: PMC7105317 DOI: 10.1074/jbc.ra119.011265] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/03/2020] [Indexed: 12/15/2022] Open
Abstract
Protein phosphatase 2A (PP2A) critically regulates cell signaling and is a human tumor suppressor. PP2A complexes are modulated by proteins such as cancerous inhibitor of protein phosphatase 2A (CIP2A), protein phosphatase methylesterase 1 (PME-1), and SET nuclear proto-oncogene (SET) that often are deregulated in cancers. However, how they impact cellular phosphorylation and how redundant they are in cellular regulation is poorly understood. Here, we conducted a systematic phosphoproteomics screen for phosphotargets modulated by siRNA-mediated depletion of CIP2A, PME-1, and SET (to reactivate PP2A) or the scaffolding A-subunit of PP2A (PPP2R1A) (to inhibit PP2A) in HeLa cells. We identified PP2A-modulated targets in diverse cellular pathways, including kinase signaling, cytoskeleton, RNA splicing, DNA repair, and nuclear lamina. The results indicate nonredundancy among CIP2A, PME-1, and SET in phosphotarget regulation. Notably, PP2A inhibition or reactivation affected largely distinct phosphopeptides, introducing a concept of nonoverlapping phosphatase inhibition- and activation-responsive sites (PIRS and PARS, respectively). This phenomenon is explained by the PPP2R1A inhibition impacting primarily dephosphorylated threonines, whereas PP2A reactivation results in dephosphorylation of clustered and acidophilic sites. Using comprehensive drug-sensitivity screening in PP2A-modulated cells to evaluate the functional impact of PP2A across diverse cellular pathways targeted by these drugs, we found that consistent with global phosphoproteome effects, PP2A modulations broadly affect responses to more than 200 drugs inhibiting a broad spectrum of cancer-relevant targets. These findings advance our understanding of the phosphoproteins, pharmacological responses, and cellular processes regulated by PP2A modulation and may enable the development of combination therapies.
Collapse
Affiliation(s)
- Otto Kauko
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20500 Turku, Finland; Institute of Biomedicine, University of Turku, 20500 Turku, Finland; TuBS and TuDMM Doctoral Programmes, University of Turku, 20500 Turku, Finland
| | - Susumu Y Imanishi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20500 Turku, Finland
| | - Evgeny Kulesskiy
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Tukholmankatu 8, Helsinki, Finland
| | - Laxman Yetukuri
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20500 Turku, Finland
| | - Teemu Daniel Laajala
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Tukholmankatu 8, Helsinki, Finland; Department of Mathematics and Statistics, University of Turku, 20500 Turku, Finland
| | - Mukund Sharma
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20500 Turku, Finland; Institute of Biomedicine, University of Turku, 20500 Turku, Finland; TuBS and TuDMM Doctoral Programmes, University of Turku, 20500 Turku, Finland
| | - Karolina Pavic
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20500 Turku, Finland
| | - Anna Aakula
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20500 Turku, Finland
| | - Christian Rupp
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20500 Turku, Finland
| | - Mikael Jumppanen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20500 Turku, Finland
| | - Pekka Haapaniemi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20500 Turku, Finland
| | - Luyao Ruan
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Bhagwan Yadav
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Tukholmankatu 8, Helsinki, Finland
| | - Veronika Suni
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20500 Turku, Finland
| | - Taru Varila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20500 Turku, Finland
| | - Garry L Corthals
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20500 Turku, Finland
| | - Jüri Reimand
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Tukholmankatu 8, Helsinki, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Tukholmankatu 8, Helsinki, Finland; Department of Mathematics and Statistics, University of Turku, 20500 Turku, Finland
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20500 Turku, Finland; Institute of Biomedicine, University of Turku, 20500 Turku, Finland.
| |
Collapse
|
22
|
Svarcbahs R, Jäntti M, Kilpeläinen T, Julku UH, Urvas L, Kivioja S, Norrbacka S, Myöhänen TT. Prolyl oligopeptidase inhibition activates autophagy via protein phosphatase 2A. Pharmacol Res 2019; 151:104558. [PMID: 31759088 DOI: 10.1016/j.phrs.2019.104558] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/02/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
Prolyl oligopeptidase (PREP) is a serine protease that has been studied particularly in the context of neurodegenerative diseases for decades but its physiological function has remained unclear. We have previously found that PREP negatively regulates beclin1-mediated macroautophagy (autophagy), and that PREP inhibition by a small-molecule inhibitor induces clearance of protein aggregates in Parkinson's disease models. Since autophagy induction has been suggested as a potential therapy for several diseases, we wanted to further characterize how PREP regulates autophagy. We measured the levels of various kinases and proteins regulating beclin1-autophagy in HEK-293 and SH-SY5Y cell cultures after PREP inhibition, PREP deletion, and PREP overexpression and restoration, and verified the results in vivo by using PREP knock-out and wild-type mouse tissue where PREP was restored or overexpressed, respectively. We found that PREP regulates autophagy by interacting with protein phosphatase 2A (PP2A) and its endogenous inhibitor, protein phosphatase methylesterase 1 (PME1), and activator (protein phosphatase 2 phosphatase activator, PTPA), thus adjusting its activity and the levels of PP2A in the intracellular pool. PREP inhibition and deletion increased PP2A activity, leading to activation of death-associated protein kinase 1 (DAPK1), beclin1 phosphorylation and induced autophagy while PREP overexpression reduced this. Lowered activity of PP2A is connected to several neurodegenerative disorders and cancers, and PP2A activators would have enormous potential as drug therapy but development of such compounds has been a challenge. The concept of PREP inhibition has been proved safe, and therefore, our study supports the further development of PREP inhibitors as PP2A activators.
Collapse
Affiliation(s)
- Reinis Svarcbahs
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Maria Jäntti
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Tommi Kilpeläinen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Ulrika H Julku
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Lauri Urvas
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Saara Kivioja
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Susanna Norrbacka
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Timo T Myöhänen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland.
| |
Collapse
|
23
|
Kauko O, O'Connor CM, Kulesskiy E, Sangodkar J, Aakula A, Izadmehr S, Yetukuri L, Yadav B, Padzik A, Laajala TD, Haapaniemi P, Momeny M, Varila T, Ohlmeyer M, Aittokallio T, Wennerberg K, Narla G, Westermarck J. PP2A inhibition is a druggable MEK inhibitor resistance mechanism in KRAS-mutant lung cancer cells. Sci Transl Med 2019; 10:10/450/eaaq1093. [PMID: 30021885 DOI: 10.1126/scitranslmed.aaq1093] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 04/21/2018] [Accepted: 06/08/2018] [Indexed: 12/15/2022]
Abstract
Kinase inhibitor resistance constitutes a major unresolved clinical challenge in cancer. Furthermore, the role of serine/threonine phosphatase deregulation as a potential cause for resistance to kinase inhibitors has not been thoroughly addressed. We characterize protein phosphatase 2A (PP2A) activity as a global determinant of KRAS-mutant lung cancer cell resistance across a library of >200 kinase inhibitors. The results show that PP2A activity modulation alters cancer cell sensitivities to a large number of kinase inhibitors. Specifically, PP2A inhibition ablated mitogen-activated protein kinase kinase (MEK) inhibitor response through the collateral activation of AKT/mammalian target of rapamycin (mTOR) signaling. Combination of mTOR and MEK inhibitors induced cytotoxicity in PP2A-inhibited cells, but even this drug combination could not abrogate MYC up-regulation in PP2A-inhibited cells. Treatment with an orally bioavailable small-molecule activator of PP2A DT-061, in combination with the MEK inhibitor AZD6244, resulted in suppression of both p-AKT and MYC, as well as tumor regression in two KRAS-driven lung cancer mouse models. DT-061 therapy also abrogated MYC-driven tumorigenesis. These data demonstrate that PP2A deregulation drives MEK inhibitor resistance in KRAS-mutant cells. These results emphasize the need for better understanding of phosphatases as key modulators of cancer therapy responses.
Collapse
Affiliation(s)
- Otto Kauko
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland.,Institute of Biomedicine, University of Turku, 20520 Turku, Finland.,TuBS and TuDMM Doctoral Programmes, University of Turku, 20520 Turku, Finland
| | - Caitlin M O'Connor
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106-7285, USA
| | - Evgeny Kulesskiy
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland
| | - Jaya Sangodkar
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna Aakula
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Sudeh Izadmehr
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Laxman Yetukuri
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Bhagwan Yadav
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland
| | - Artur Padzik
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Teemu Daniel Laajala
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland.,Department of Mathematics and Statistics, University of Turku, 20520 Turku, Finland
| | - Pekka Haapaniemi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Majid Momeny
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Taru Varila
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Michael Ohlmeyer
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland.,Department of Mathematics and Statistics, University of Turku, 20520 Turku, Finland
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland
| | - Goutham Narla
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106-7285, USA
| | - Jukka Westermarck
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland. .,Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| |
Collapse
|
24
|
Clark AR, Ohlmeyer M. Protein phosphatase 2A as a therapeutic target in inflammation and neurodegeneration. Pharmacol Ther 2019; 201:181-201. [PMID: 31158394 PMCID: PMC6700395 DOI: 10.1016/j.pharmthera.2019.05.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
Protein phosphatase 2A (PP2A) is a highly complex heterotrimeric enzyme that catalyzes the selective removal of phosphate groups from protein serine and threonine residues. Emerging evidence suggests that it functions as a tumor suppressor by constraining phosphorylation-dependent signalling pathways that regulate cellular transformation and metastasis. Therefore, PP2A-activating drugs (PADs) are being actively sought and investigated as potential novel anti-cancer treatments. Here we explore the concept that PP2A also constrains inflammatory responses through its inhibitory effects on various signalling pathways, suggesting that PADs may be effective in the treatment of inflammation-mediated pathologies.
Collapse
Affiliation(s)
- Andrew R Clark
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| | | |
Collapse
|
25
|
Pascale RM, Peitta G, Simile MM, Feo F. Alterations of Methionine Metabolism as Potential Targets for the Prevention and Therapy of Hepatocellular Carcinoma. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E296. [PMID: 31234428 PMCID: PMC6631235 DOI: 10.3390/medicina55060296] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
Several researchers have analyzed the alterations of the methionine cycle associated with liver disease to clarify the pathogenesis of human hepatocellular carcinoma (HCC) and improve the preventive and the therapeutic approaches to this tumor. Different alterations of the methionine cycle leading to a decrease of S-adenosylmethionine (SAM) occur in hepatitis, liver steatosis, liver cirrhosis, and HCC. The reproduction of these changes in MAT1A-KO mice, prone to develop hepatitis and HCC, demonstrates the pathogenetic role of MAT1A gene under-regulation associated with up-regulation of the MAT2A gene (MAT1A:MAT2A switch), encoding the SAM synthesizing enzymes, methyladenosyltransferase I/III (MATI/III) and methyladenosyltransferase II (MATII), respectively. This leads to a rise of MATII, inhibited by the reaction product, with a consequent decrease of SAM synthesis. Attempts to increase the SAM pool by injecting exogenous SAM have beneficial effects in experimental alcoholic and non-alcoholic steatohepatitis and hepatocarcinogenesis. Mechanisms involved in hepatocarcinogenesis inhibition by SAM include: (1) antioxidative effects due to inhibition of nitric oxide (NO•) production, a rise in reduced glutathione (GSH) synthesis, stabilization of the DNA repair protein Apurinic/Apyrimidinic Endonuclease 1 (APEX1); (2) inhibition of c-myc, H-ras, and K-ras expression, prevention of NF-kB activation, and induction of overexpression of the oncosuppressor PP2A gene; (3) an increase in expression of the ERK inhibitor DUSP1; (4) inhibition of PI3K/AKT expression and down-regulation of C/EBPα and UCA1 gene transcripts; (5) blocking LKB1/AMPK activation; (6) DNA and protein methylation. Different clinical trials have documented curative effects of SAM in alcoholic liver disease. Furthermore, SAM enhances the IFN-α antiviral activity and protects against hepatic ischemia-reperfusion injury during hepatectomy in HCC patients with chronic hepatitis B virus (HBV) infection. However, although SAM prevents experimental tumors, it is not curative against already established experimental and human HCCs. The recent observation that the inhibition of MAT2A and MAT2B expression by miRNAs leads to a rise of endogenous SAM and strong inhibition of cancer cell growth could open new perspectives to the treatment of HCC.
Collapse
Affiliation(s)
- Rosa M Pascale
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Graziella Peitta
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Maria M Simile
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Francesco Feo
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| |
Collapse
|
26
|
Interferon-inducible cytoplasmic lncLrrc55-AS promotes antiviral innate responses by strengthening IRF3 phosphorylation. Cell Res 2019; 29:641-654. [PMID: 31213650 DOI: 10.1038/s41422-019-0193-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/30/2019] [Indexed: 01/12/2023] Open
Abstract
Type I interferon (IFN-I) production is efficiently induced to ensure a potent innate immune response to viral infection. How this response can be enhanced, however, remains to be explored. Here, we identify a new cytoplasmic long non-coding RNA (lncRNA), lncLrrc55-AS, that drives a positive feedback loop to promote interferon regulatory factor 3 (IRF3) signaling and IFN-I production. We show that lncLrrc55-AS is virus-induced in multiple cell types via the IFN-JAK-STAT pathway. LncLrrc55-AS-deficient mice display a weakened antiviral immune response and are more susceptible to viral challenge. Mechanistically, lncLrrc55-AS binds phosphatase methylesterase 1 (PME-1), and promotes the interaction between PME-1 and the phosphatase PP2A, an inhibitor of IRF3 signaling. LncLrrc55-AS supports PME-1-mediated demethylation and inactivation of PP2A, thereby enhancing IRF3 phosphorylation and signaling. Loss of PME-1 phenocopies lncLrrc55-AS deficiency, leading to diminished IRF3 phosphorylation and IFN-I production. We have identified an IFN-induced lncRNA as a positive regulator of IFN-I production, adding mechanistic insight into lncRNA-mediated regulation of signaling in innate immunity and inflammation.
Collapse
|
27
|
Remmerie M, Janssens V. PP2A: A Promising Biomarker and Therapeutic Target in Endometrial Cancer. Front Oncol 2019; 9:462. [PMID: 31214504 PMCID: PMC6558005 DOI: 10.3389/fonc.2019.00462] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, the use of targeted therapies has immensely increased in the treatment of cancer. However, treatment for endometrial carcinomas (ECs) has lagged behind, although potential molecular markers have been identified. This is particularly problematic for the type II ECs, since these aggressive tumors are usually not responsive toward the current standard therapies. Therefore, type II ECs are responsible for most EC-related deaths, indicating the need for new treatment options. Interestingly, molecular analyses of type II ECs have uncovered frequent genetic alterations (up to 40%) in PPP2R1A, encoding the Aα subunit of the tumor suppressive heterotrimeric protein phosphatase type 2A (PP2A). PPP2R1A mutations were also reported in type I ECs and other common gynecologic cancers, albeit at much lower frequencies (0-7%). Nevertheless, PP2A inactivation in the latter cancer types is common via other mechanisms, in particular by increased expression of Cancerous Inhibitor of PP2A (CIP2A) and PP2A Methylesterase-1 (PME-1) proteins. In this review, we discuss the therapeutic potential of direct and indirect PP2A targeting compounds, possibly in combination with other anti-cancer drugs, in EC. Furthermore, we investigate the potential of the PP2A status as a predictive and/or prognostic marker for type I and II ECs.
Collapse
Affiliation(s)
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Nowak DG, Katsenelson KC, Watrud KE, Chen M, Mathew G, D'Andrea VD, Lee MF, Swamynathan MM, Casanova-Salas I, Jibilian MC, Buckholtz CL, Ambrico AJ, Pan CH, Wilkinson JE, Newton AC, Trotman LC. The PHLPP2 phosphatase is a druggable driver of prostate cancer progression. J Cell Biol 2019; 218:1943-1957. [PMID: 31092557 PMCID: PMC6548123 DOI: 10.1083/jcb.201902048] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/21/2019] [Accepted: 03/29/2019] [Indexed: 12/16/2022] Open
Abstract
Nowak et al. show that loss of the AKT-inactivating phosphatase PHLPP2 paradoxically blocks prostate tumor growth and metastasis. PHLPP2, they find, is critical for MYC stability, suggesting that PHLPP2 inhibitors may present a therapeutic opportunity to target MYC. Metastatic prostate cancer commonly presents with targeted, bi-allelic mutations of the PTEN and TP53 tumor suppressor genes. In contrast, however, most candidate tumor suppressors are part of large recurrent hemizygous deletions, such as the common chromosome 16q deletion, which involves the AKT-suppressing phosphatase PHLPP2. Using RapidCaP, a genetically engineered mouse model of Pten/Trp53 mutant metastatic prostate cancer, we found that complete loss of Phlpp2 paradoxically blocks prostate tumor growth and disease progression. Surprisingly, we find that Phlpp2 is essential for supporting Myc, a key driver of lethal prostate cancer. Phlpp2 dephosphorylates threonine-58 of Myc, which renders it a limiting positive regulator of Myc stability. Furthermore, we show that small-molecule inhibitors of PHLPP2 can suppress MYC and kill PTEN mutant cells. Our findings reveal that the frequent hemizygous deletions on chromosome 16q present a druggable vulnerability for targeting MYC protein through PHLPP2 phosphatase inhibitors.
Collapse
Affiliation(s)
- Dawid G Nowak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY .,Division of Hematology and Medical Oncology, Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | | | | | - Muhan Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Grinu Mathew
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | | | - Matthew F Lee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | | | | | - Megan C Jibilian
- Division of Hematology and Medical Oncology, Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Caroline L Buckholtz
- Division of Hematology and Medical Oncology, Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | | | - Chun-Hao Pan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | | | - Alexandra C Newton
- Department of Pharmacology, University of California San Diego, La Jolla, CA
| | | |
Collapse
|
29
|
Vriend J, Tate RB. Differential Expression of Genes for Ubiquitin Ligases in Medulloblastoma Subtypes. THE CEREBELLUM 2019; 18:469-488. [PMID: 30810905 DOI: 10.1007/s12311-019-1009-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Using publically available datasets on gene expression in medulloblastoma (MB) subtypes, we selected genes for ubiquitin ligases and identified statistically those that best predicted each of the four major MB subgroups as separate disease entities. We identify a gene coding for an ubiquitin ligase, ZNRF3, whose overexpression alone can predict the WNT subgroup for 100% in the Pfister dataset. For the SHH subgroup, we identify a gene for a regulatory subunit of the protein phosphatase 2A (PP2A), PPP2R2C, as the major predictor among the E3 ligases genes. The ubiquitin and ubiquitin-like conjugation database (UUCD) lists PPP2R2C as coding for a Cullin Ring ubiquitin ligase adaptor. For group 3 MBs, the best ubiquitin ligase predictor was PPP2R2B, a gene which codes for another regulatory subunit of the PP2A holoenzyme. For group 4, the best E3 gene predictors were MID2, ZBTB18, and PPP2R2A, which codes for a third PP2A regulatory subunit. Heatmap analysis of the E3 gene data shows that expression of ten genes for ubiquitin ligases can be used to classify MBs into the four major consensus subgroups. This was illustrated by analysis of gene expression of ubiquitin ligases of the Pfister dataset and confirmed in the dataset of Cavalli. We conclude that genes for ubiquitin ligases can be used as genetic markers for MB subtypes and that the proteins coded for by these genes should be investigated as subtype specific therapeutic targets for MB.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Rm134, BMSB, 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada.
| | - Robert B Tate
- Department of Community Health Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
30
|
Protein Phosphatases-A Touchy Enemy in the Battle Against Glioblastomas: A Review. Cancers (Basel) 2019; 11:cancers11020241. [PMID: 30791455 PMCID: PMC6406705 DOI: 10.3390/cancers11020241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) is the most common malignant tumor arising from brain parenchyma. Although many efforts have been made to develop therapies for GBM, the prognosis still remains poor, mainly because of the difficulty in total resection of the tumor mass from brain tissue and the resistance of the residual tumor against standard chemoradiotherapy. Therefore, novel adjuvant therapies are urgently needed. Recent genome-wide analyses of GBM cases have clarified molecular signaling mechanisms underlying GBM biology. However, results of clinical trials targeting phosphorylation-mediated signaling have been unsatisfactory to date. Protein phosphatases are enzymes that antagonize phosphorylation signaling by dephosphorylating phosphorylated signaling molecules. Recently, the critical roles of phosphatases in the regulation of oncogenic signaling in malignant tumor cells have been reported, and tumorigenic roles of deregulated phosphatases have been demonstrated in GBM. However, a detailed mechanism underlying phosphatase-mediated signaling transduction in the regulation of GBM has not been elucidated, and such information is necessary to apply phosphatases as a therapeutic target for GBM. This review highlights and summarizes the phosphatases that have crucial roles in the regulation of oncogenic signaling in GBM cells.
Collapse
|
31
|
Tang S, Lu C, Mo L, Wang X, Liang Z, Qin F, Liu Y, Liu Y, Huang H, Huang Y, Cai H, Xiao D, Guo S, Ouyang Y, Sun B, Li X. Hydrogen peroxide redistributes the localization of protein phosphatase methylesterase 1. Life Sci 2018; 213:166-173. [DOI: 10.1016/j.lfs.2018.10.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/04/2018] [Accepted: 10/15/2018] [Indexed: 10/28/2022]
|
32
|
Shrestha J, Ki SH, Shin SM, Kim SW, Lee JY, Jun HS, Lee T, Kim S, Baek DJ, Park EY. Synthesis of Novel FTY720 Analogs with Anticancer Activity through PP2A Activation. Molecules 2018; 23:molecules23112750. [PMID: 30355990 PMCID: PMC6278267 DOI: 10.3390/molecules23112750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022] Open
Abstract
FTY720 inhibits various cancers through PP2A activation. The structure of FTY720 is also used as a basic structure for the design of sphingosine kinase (SK) inhibitors. We have synthesized derivatives using an amide chain in FTY720 with a phenyl backbone, and then compounds were screened by an MTT cell viability assay. The PP2A activity of compound 7 was examined. The phosphorylation levels of AKT and ERK, downstream targets of PP2A, in the presence of compound 7, were determined. Compound 7 may exhibit anticancer effects through PP2A activation rather than the mechanism by inhibition of SK1 in cancer cells. In the docking study of compound 7 and PP2A, the amide chain of compound 7 showed an interaction with Asn61 that was different from FTY720, which is expected to affect the activity of the compound.
Collapse
Affiliation(s)
- Jitendra Shrestha
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Korea.
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, Gwangju, 61452, Korea.
| | - Sang Mi Shin
- College of Pharmacy, Chosun University, Gwangju, 61452, Korea.
| | - Seon Woong Kim
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Korea.
| | - Joo-Youn Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
- Korea Chemical Bank, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea.
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Department of Molecular Medicine, Gachon University, Incheon 21999, Korea.
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Korea.
| | - Taeho Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Dong Jae Baek
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Korea.
| | - Eun-Young Park
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Korea.
| |
Collapse
|
33
|
Westermarck J. Targeted therapies don't work for a reason; the neglected tumor suppressor phosphatasePP2A strikes back. FEBS J 2018; 285:4139-4145. [DOI: 10.1111/febs.14617] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/26/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Jukka Westermarck
- Turku Centre for Biotechnology University of Turku and Åbo Akademi University Turku Finland
- Institute of Biomedicine University of Turku Finland
| |
Collapse
|
34
|
Yang C, Li X, Gao W, Wang Q, Zhang L, Li Y, Li L, Zhang L. Cornel Iridoid Glycoside Inhibits Tau Hyperphosphorylation via Regulating Cross-Talk Between GSK-3β and PP2A Signaling. Front Pharmacol 2018; 9:682. [PMID: 29997510 PMCID: PMC6028923 DOI: 10.3389/fphar.2018.00682] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/06/2018] [Indexed: 12/15/2022] Open
Abstract
Neurofibrillary pathology contributes to neuronal dysfunction and correlates with the clinical progression of Alzheimer's disease (AD). Tau phosphorylation is mainly regulated by a balance of glycogen synthase kinase-3β (GSK-3β) and protein phosphatase 2A (PP2A) activities. Cornel iridoid glycoside (CIG) is a main component extracted from Cornus officinalis. The purpose of this study was to investigate the effects of CIG on GSK-3β and PP2A, thus to explore the mechanisms of CIG to inhibit tau hyperphosphorylation. The rat model of tau hyperphosphorylation was established by intraventricular injection of wortmannin and GF-109203X (GFX) to activate GSK-3β. The results showed that intragastrical administration of CIG inhibited tau hyperphosphorylation in the brain of rats induced by wortmannin/GFX. The results in vivo and in vitro exhibited that CIG inhibited tau hyperphosphorylation and GSK-3β over-activation. In the mechanism of action, CIG's attenuating GSK-3β activity was found to be dependent on PI3K/AKT signaling pathway. PP2A catalytic C subunit (PP2Ac) siRNA abrogated the effect of CIG on PI3K/AKT/GSK-3β. Additionally and crucially, we also found that CIG inhibited the demethylation of PP2Ac at Leu309 in vivo and in vitro. It enhanced PP2A activity, decreased tau hyperphosphorylation, and protected cell morphology in okadaic acid (OA)-induced cell model in vitro. PP2Ac siRNA abated the inhibitory effect of CIG on tau hyperphosphorylation. Moreover, CIG inhibited protein phosphatase methylesterase-1 (PME-1) and demethylation of PP2Ac, enhanced PP2A activity, and decreased tau hyperphosphorylation in PME-1-transfectd cells. Taken together, CIG inhibited GSK-3β activity via promoting P13K/AKT and PP2A signaling pathways. In addition, CIG also elevated PP2A activity via inhibiting PME-1-induced PP2Ac demethylation to inhibit GSK-3β activity, thus regulated the cross-talk between GSK-3β and PP2A signaling and consequently inhibited tau hyperphosphorylation. These results suggest that CIG may be a promising agent for AD therapy.
Collapse
Affiliation(s)
- Cuicui Yang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Beijing Engineering Research Center for Nerve System Drugs, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Xuelian Li
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenbin Gao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Beijing Engineering Research Center for Nerve System Drugs, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Yali Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Beijing Engineering Research Center for Nerve System Drugs, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Beijing Engineering Research Center for Nerve System Drugs, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Beijing Engineering Research Center for Nerve System Drugs, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| |
Collapse
|
35
|
Wang HB, Li T, Ma DZ, Zhi H. ERα36 gene silencing promotes tau protein phosphorylation, inhibits cell proliferation, and induces apoptosis in human neuroblastoma SH-SY5Y cells. FASEB J 2018; 32:fj201701386. [PMID: 29932870 DOI: 10.1096/fj.201701386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neuroblastoma is the most common cancer in infants and the third most common cancer in children after leukemia and brain cancer. The purpose of our study was to investigate the effects of estrogen receptor (ER)-α36 gene silencing on tau protein phosphorylation, cell proliferation, and cell apoptosis in human neuroblastoma SH-SY5Y cells. SH-SY5Y cells were treated with estrogen or left untreated, to investigate the effects of estrogen stimulation on ERα36 and the ERK/protein B kinase (AKT) signaling pathway. ERα36 mRNA expressions were detected by quantitative RT-PCR. A phosphatase kit was used to test protein phosphatase (PP)-2A activity before and after treatment. Western blot analysis was conducted to detect protein expression of ERα36; tau protein; phosphorylated- tau (p-tau) at site Thr231 [p-tau (Thr231)]; glycogen synthase kinase (GSK)3β and its specificity sites (Tyr216 and Ser9); Cyclin Dl; proliferating cell nuclear antigen (PCNA); B-cell lymphoma (Bcl)-2; and Bcl-2-associated X protein (Bax). A cell-counting kit (CCK)-8 assay was used to determine cell viability. Cell apoptosis and rate of tumor growth and volume were determined by Annexin V-FITC/PI staining and a xenotransplanted tumor model in nude mice. Results show that without estrogen stimulation, ERα36 was inactivated. When stimulated by estrogen, expression of ERα36, PP2A, p-GSK3β (Ser9)/total protein ( t)-GSK3β, Cyclin Dl, PCNA, and Bcl-2 were up-regulated, and p-GSK3β (Tyr216)/ t-GSK3β expression was down-regulated, as was p-tau (Thr231) and Bax expression. The expression of p-ERK/ERK, p-AKT/AKT, p-methyl ethyl ketone (MEK)/MEK, and p-mammalian target of rapamycin (mTOR)/mTOR expression was up-regulated, suggesting that the ERK/AKT signaling pathway is activated. Cell proliferation was also accelerated, whereas apoptosis was inhibited with stimulation by estrogen. However, we found that the effects of silencing ERα36 on the expression of related intracellular factors had no association with estrogen. Our study demonstrates that ERα36 gene silencing can inhibit the activation of the ERK/AKT signaling pathway, increase tau protein phosphorylation, decrease cell vitality and tumorigenicity, and promote apoptosis of human neuroblastoma SH-SY5Y cells.-Wang, H.-B., Li, T., Ma, D.-Z., Zhi, H. ERα36 gene silencing promotes tau protein phosphorylation, inhibits cell proliferation, and induces apoptosis in human neuroblastoma SH-SY5Y cells.
Collapse
Affiliation(s)
- Hong-Bin Wang
- Department of Neurosurgery, Affiliated Hospital, Hebei University of Engineering, Handan, China
| | - Tao Li
- Department of Neurosurgery, Affiliated Hospital, Hebei University of Engineering, Handan, China
| | - Dong-Zhou Ma
- Department of Neurosurgery, Affiliated Hospital, Hebei University of Engineering, Handan, China
| | - Hua Zhi
- Department of Cardiology, Affiliated Hospital, Hebei University of Engineering, Handan, China
| |
Collapse
|
36
|
Kauko O, Westermarck J. Non-genomic mechanisms of protein phosphatase 2A (PP2A) regulation in cancer. Int J Biochem Cell Biol 2018; 96:157-164. [DOI: 10.1016/j.biocel.2018.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 12/03/2017] [Accepted: 01/09/2018] [Indexed: 02/08/2023]
|
37
|
Dai C, Zhang X, Xie D, Tang P, Li C, Zuo Y, Jiang B, Xue C. Targeting PP2A activates AMPK signaling to inhibit colorectal cancer cells. Oncotarget 2017; 8:95810-95823. [PMID: 29221169 PMCID: PMC5707063 DOI: 10.18632/oncotarget.21336] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/24/2017] [Indexed: 12/19/2022] Open
Abstract
LB-100 is a novel PP2A inhibitor. Its activity in human colorectal cancer (CRC) cells was tested. The in vitro studies demonstrated that LB-100 inhibited survival and proliferation of both established CRC cells (HCT-116 and HT-29 lines) and primary human colon cancer cells. Further, LB-100 activated apoptosis and induced G1-S cell cycle arrest in CRC cells. LB-100 inhibited PP2A activity and activated AMPK signaling in CRC cells. AMPKα1 dominant negative mutation, shRNA-mediated knockdown or complete knockout (by CRISPR/Cas9 method) largely attenuated LB-100-induced AMPK activation and HCT-116 cytotoxicity. Notably, microRNA-17-92-mediated silence of PP2A (regulatory B subunit) also activated AMPK and induced HCT-116 cell death. Such effects were again largely attenuated by AMPKα mutation, silence or complete knockout. In vivo studies showed that intraperitoneal injection of LB-100 inhibited HCT-116 xenograft growth in nude mice. Its anti-tumor activity was largely compromised against HCT-116 tumors-derived from AMPKα1-knockout cells. We conclude that targeting PP2A by LB-100 and microRNA-17-92 activates AMPK signaling to inhibit CRC cells.
Collapse
Affiliation(s)
- Cuiping Dai
- Faculty of Health, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Xuning Zhang
- Huaian Key Laboratory Of Gastrointestinal Cancer, Jiangsu College of Nursing, Huaian, China
| | - Da Xie
- Oncology Department, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peipei Tang
- Huaian Key Laboratory Of Gastrointestinal Cancer, Jiangsu College of Nursing, Huaian, China
| | - Chunmei Li
- Huaian Key Laboratory Of Gastrointestinal Cancer, Jiangsu College of Nursing, Huaian, China
| | - Yi Zuo
- Department of Medicine, Xinglin College, Nantong University, Nantong, China
| | - Baofei Jiang
- Gastrointestinal Surgery, The First People's Hospital of Huaian City, Huaian, China
| | - Caiping Xue
- Huaian Key Laboratory Of Gastrointestinal Cancer, Jiangsu College of Nursing, Huaian, China
| |
Collapse
|
38
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|
39
|
Cristóbal I, Torrejón B, Martínez-Useros J, Madoz-Gurpide J, Rojo F, García-Foncillas J. PP2A regulates signaling through hormonal receptors in breast cancer with important therapeutic implications. Biochim Biophys Acta Rev Cancer 2017; 1868:435-438. [PMID: 28916342 DOI: 10.1016/j.bbcan.2017.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/10/2017] [Accepted: 08/31/2017] [Indexed: 11/27/2022]
Abstract
The functional inhibition of protein phosphatase 2A (PP2A) has emerged in the last years as a common alteration in breast cancer that determines poor outcome and contributes to disease progression and aggressiveness. Furthermore, expression of estrogen receptor (ER) is a high relevant molecular event with key therapeutic implications in breast cancer, and androgen receptor (AR) signaling is involved in the pathogenesis of breast cancer and represents a novel target with crescent importance in this disease. In this review, we summarize the role of the tumor suppressor PP2A in modulating ER and AR signaling in breast cancer, the molecular mechanisms involved, and its biological and therapeutic impact.
Collapse
Affiliation(s)
- Ion Cristóbal
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz, UAM, University Hospital "Fundacion Jimenez Diaz", Madrid, Spain.
| | - Blanca Torrejón
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz, UAM, University Hospital "Fundacion Jimenez Diaz", Madrid, Spain
| | - Javier Martínez-Useros
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz, UAM, University Hospital "Fundacion Jimenez Diaz", Madrid, Spain
| | | | - Federico Rojo
- Pathology Department, IIS "Fundación Jiménez Diaz", Madrid, Spain.
| | - Jesús García-Foncillas
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz, UAM, University Hospital "Fundacion Jimenez Diaz", Madrid, Spain.
| |
Collapse
|