1
|
Bruno P, Pala D, Micoli A, Corsi M, Accetta A, Carzaniga L, Ronchi P, Fiorelli C, Formica M, Pizzirani D, Mazzucato R, Guariento S, Bertolini S, Martucci C, Allen AD, Mileo V, Capacchi S, Gallo PM, Fioni A, Xanxo Fernandez S, Villetti G, Puccini P, Civelli M, Guala M, Retini M, Martinelli P, Visentini F, Pavoni V, Daldosso M, Fontana S, Biagetti M, Capelli AM. Discovery of CHF-6523, an Inhaled Selective PI3Kδ Inhibitor for the Treatment of Chronic Obstructive Pulmonary Disease. J Med Chem 2024. [PMID: 39635891 DOI: 10.1021/acs.jmedchem.4c02062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The design of inhaled selective phosphatidylinositol 3-kinase delta (PI3Kδ) inhibitors for the treatment of inflammatory lung diseases was pursued. Knowledge-based design of a novel isocoumarin scaffold that was able to adopt a propeller-shape topology ensured the desired PI3Kδ selectivity. Achievement of low nanomolar cellular potencies through hinge binder group optimization, reduction of intrinsic permeability through head group optimization to extend lung retention, and screening of crystalline forms suitable for administration as dry powders culminated in the identification of compound 18. This novel inhaled selective PI3Kδ inhibitor displayed durable anti-inflammatory activity in a disease-relevant rat model of Th-2-driven acute lung inflammation and safe in vitro and in vivo preclinical profiles. Therefore, compound 18 showed the appropriate discovery profile and was progressed to clinical trials in healthy volunteers and chronic obstructive pulmonary disease (COPD) patients as CHF-6523.
Collapse
Affiliation(s)
- Paolo Bruno
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Daniele Pala
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Alessandra Micoli
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Mauro Corsi
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Alessandro Accetta
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Laura Carzaniga
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Paolo Ronchi
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Claudio Fiorelli
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Michele Formica
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Daniela Pizzirani
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Roberta Mazzucato
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Sara Guariento
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Serena Bertolini
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Cataldo Martucci
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Andrew Dennis Allen
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Valentina Mileo
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Silvia Capacchi
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Paola Maria Gallo
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Alessandro Fioni
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | | | - Gino Villetti
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Paola Puccini
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Maurizio Civelli
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Matilde Guala
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Michele Retini
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Prisca Martinelli
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Filippo Visentini
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Valentina Pavoni
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Matteo Daldosso
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Stefano Fontana
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Matteo Biagetti
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Anna Maria Capelli
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| |
Collapse
|
2
|
Chen SH, Chen CH, Lin HC, Yeh SA, Hwang TL, Chen PJ. Drug repurposing of cyclin-dependent kinase inhibitors for neutrophilic acute respiratory distress syndrome and psoriasis. J Adv Res 2024:S2090-1232(24)00310-2. [PMID: 39089617 DOI: 10.1016/j.jare.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Neutrophilic inflammation, characterized by dysregulated neutrophil activation, triggers a variety of inflammatory responses such as chemotactic infiltration, oxidative bursts, degranulation, neutrophil extracellular traps (NETs) formation, and delayed turnover. This type of inflammation is pivotal in the pathogenesis of acute respiratory distress syndrome (ARDS) and psoriasis. Despite current treatments, managing neutrophil-associated inflammatory symptoms remains a significant challenge. AIM OF REVIEW This review emphasizes the role of cyclin-dependent kinases (CDKs) in neutrophil activation and inflammation. It aims to highlight the therapeutic potential of repurposing CDK inhibitors to manage neutrophilic inflammation, particularly in ARDS and psoriasis. Additionally, it discusses the necessary precautions for the clinical application of these inhibitors due to potential off-target effects and the need for dose optimization. KEY SCIENTIFIC CONCEPTS OF REVIEW CDKs regulate key neutrophilic functions, including chemotactic responses, degranulation, NET formation, and apoptosis. Repurposing CDK inhibitors, originally developed for cancer treatment, shows promise in controlling neutrophilic inflammation. Clinical anticancer drugs, palbociclib and ribociclib, have demonstrated efficacy in treating neutrophilic ARDS and psoriasis by targeting off-label pathways, phosphoinositide 3-kinase (PI3K) and phosphodiesterase 4 (PDE4), respectively. While CDK inhibitors offer promising therapeutic benefits, their clinical repurposing requires careful consideration of off-target effects and dose optimization. Further exploration and clinical trials are necessary to ensure their safety and efficacy in treating inflammatory conditions.
Collapse
Affiliation(s)
- Shun-Hua Chen
- School of Nursing, Fooyin University, Kaohsiung 831301, Taiwan.
| | - Chun-Hong Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Hsin-Chieh Lin
- Department of Chinese Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung 824410, Taiwan; School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Shyh-An Yeh
- Medical Physics and Informatics Laboratory of Electronic Engineering and Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung 824410, Taiwan; Department of Radiation Oncology, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan.
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan; Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung 824410, Taiwan.
| |
Collapse
|
3
|
Roth‐Walter F, Adcock IM, Benito‐Villalvilla C, Bianchini R, Bjermer L, Caramori G, Cari L, Chung KF, Diamant Z, Eguiluz‐Gracia I, Knol EF, Jesenak M, Levi‐Schaffer F, Nocentini G, O'Mahony L, Palomares O, Redegeld F, Sokolowska M, Van Esch BCAM, Stellato C. Metabolic pathways in immune senescence and inflammaging: Novel therapeutic strategy for chronic inflammatory lung diseases. An EAACI position paper from the Task Force for Immunopharmacology. Allergy 2024; 79:1089-1122. [PMID: 38108546 PMCID: PMC11497319 DOI: 10.1111/all.15977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
The accumulation of senescent cells drives inflammaging and increases morbidity of chronic inflammatory lung diseases. Immune responses are built upon dynamic changes in cell metabolism that supply energy and substrates for cell proliferation, differentiation, and activation. Metabolic changes imposed by environmental stress and inflammation on immune cells and tissue microenvironment are thus chiefly involved in the pathophysiology of allergic and other immune-driven diseases. Altered cell metabolism is also a hallmark of cell senescence, a condition characterized by loss of proliferative activity in cells that remain metabolically active. Accelerated senescence can be triggered by acute or chronic stress and inflammatory responses. In contrast, replicative senescence occurs as part of the physiological aging process and has protective roles in cancer surveillance and wound healing. Importantly, cell senescence can also change or hamper response to diverse therapeutic treatments. Understanding the metabolic pathways of senescence in immune and structural cells is therefore critical to detect, prevent, or revert detrimental aspects of senescence-related immunopathology, by developing specific diagnostics and targeted therapies. In this paper, we review the main changes and metabolic alterations occurring in senescent immune cells (macrophages, B cells, T cells). Subsequently, we present the metabolic footprints described in translational studies in patients with chronic asthma and chronic obstructive pulmonary disease (COPD), and review the ongoing preclinical studies and clinical trials of therapeutic approaches aiming at targeting metabolic pathways to antagonize pathological senescence. Because this is a recently emerging field in allergy and clinical immunology, a better understanding of the metabolic profile of the complex landscape of cell senescence is needed. The progress achieved so far is already providing opportunities for new therapies, as well as for strategies aimed at disease prevention and supporting healthy aging.
Collapse
Affiliation(s)
- F. Roth‐Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University Vienna and University ViennaViennaAustria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - I. M. Adcock
- Molecular Cell Biology Group, National Heart & Lung InstituteImperial College LondonLondonUK
| | - C. Benito‐Villalvilla
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| | - R. Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University Vienna and University ViennaViennaAustria
| | - L. Bjermer
- Department of Respiratory Medicine and Allergology, Lung and Allergy research, Allergy, Asthma and COPD Competence CenterLund UniversityLundSweden
| | - G. Caramori
- Department of Medicine and SurgeryUniversity of ParmaPneumologiaItaly
| | - L. Cari
- Department of Medicine, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - K. F. Chung
- Experimental Studies Medicine at National Heart & Lung InstituteImperial College London & Royal Brompton & Harefield HospitalLondonUK
| | - Z. Diamant
- Department of Respiratory Medicine and Allergology, Institute for Clinical ScienceSkane University HospitalLundSweden
- Department of Respiratory Medicine, First Faculty of MedicineCharles University and Thomayer HospitalPragueCzech Republic
- Department of Clinical Pharmacy & PharmacologyUniversity Groningen, University Medical Center Groningen and QPS‐NLGroningenThe Netherlands
| | - I. Eguiluz‐Gracia
- Allergy UnitHospital Regional Universitario de Málaga‐Instituto de Investigación Biomédica de Málaga (IBIMA)‐ARADyALMálagaSpain
| | - E. F. Knol
- Departments of Center of Translational Immunology and Dermatology/AllergologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - M. Jesenak
- Department of Paediatrics, Department of Pulmonology and Phthisiology, Comenius University in Bratislava, Jessenius Faculty of Medicine in MartinUniversity Teaching HospitalMartinSlovakia
| | - F. Levi‐Schaffer
- Institute for Drug Research, Pharmacology Unit, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - G. Nocentini
- Department of Medicine, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - L. O'Mahony
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of MedicineUniversity College CorkCorkIreland
- School of MicrobiologyUniversity College CorkCorkIreland
| | - O. Palomares
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| | - F. Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - M. Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZürichDavosSwitzerland
- Christine Kühne – Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - B. C. A. M. Van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - C. Stellato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”University of SalernoSalernoItaly
| |
Collapse
|
4
|
Li W, Xue L, Peng C, Zhao P, Peng Y, Chen W, Wang W, Shen J. PP121, a dual inhibitor of tyrosine and phosphoinositide kinases, relieves airway hyperresponsiveness, mucus hypersecretion and inflammation in a murine asthma model. Mol Med 2023; 29:154. [PMID: 37936054 PMCID: PMC10629066 DOI: 10.1186/s10020-023-00748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Tyrosine kinase and phosphoinositide kinase pathways play important roles in asthma formation. As a dual tyrosine and phosphoinositide kinase inhibitor, PP121 has shown anticancer efficacy in multiple tumors. However, the study of PP121 in pulmonary diseases is still limited. Herein, we investigated the therapeutic activities of PP121 in asthma treatment. METHODS Tension measurements and patch clamp recordings were made to investigate the anticontractile characteristics of PP121 in vitro. Then, an asthma mouse model was established to further explore the therapeutic characteristics of PP121 via measurement of respiratory system resistance, histological analysis and western blotting. RESULTS We discovered that PP121 could relax precontracted mouse tracheal rings (mTRs) by blocking certain ion channels, including L-type voltage-dependent Ca2+ channels (L-VDCCs), nonselective cation channels (NSCCs), transient receptor potential channels (TRPCs), Na+/Ca2+ exchangers (NCXs) and K+ channels, and accelerating calcium mobilization. Furthermore, PP121 relieved asthmatic pathological features, including airway hyperresponsiveness, systematic inflammation and mucus secretion, via downregulation of inflammatory factors, mucins and the mitogen-activated protein kinase (MAPK)/Akt signaling pathway in asthmatic mice. CONCLUSION In summary, PP121 exerts dual anti-contractile and anti-inflammatory effects in asthma treatment, which suggests that PP121 might be a promising therapeutic compound and shed new light on asthma therapy.
Collapse
Affiliation(s)
- Wei Li
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Lu Xue
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Changsi Peng
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ping Zhao
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Yongbo Peng
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Weiwei Chen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Wenyi Wang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Jinhua Shen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
5
|
Duan R, Niu H, Dong F, Yu T, Li X, Wu H, Zhang Y, Yang T. Short-term exposure to fine particulate matter and genome-wide DNA methylation in chronic obstructive pulmonary disease: A panel study conducted in Beijing, China. Front Public Health 2023; 10:1069685. [PMID: 36684947 PMCID: PMC9850166 DOI: 10.3389/fpubh.2022.1069685] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Background Fine particulate matter (PM2.5) is a crucial risk factor for chronic obstructive pulmonary disease (COPD). However, the mechanisms whereby PM2.5 contribute to COPD risk have not been fully elucidated. Accumulating evidence suggests that epigenetics, including DNA methylation, play an important role in this process; however, the association between PM2.5 exposure and genome-wide DNA methylation in patients with COPD has not been studied. Objective To evaluate the association of personal exposure to PM2.5 and genome-wide DNA methylation changes in the peripheral blood of patients with COPD. Methods A panel study was conducted in Beijing, China. We repeatedly measured and collected personal PM2.5 data for 72 h. Genome-wide DNA-methylation of peripheral blood was analyzed using the Illumina Infinium Human Methylation BeadChip (850 k). A linear-mixed effect model was used to identify the differentially methylated probe (DMP) associated with PM2.5. Finally, we performed a functional enrichment analysis of the DMPs that were significantly associated with PM2.5. Results A total of 24 COPD patients were enrolled and 48 repeated DNA methylation measurements were associated in this study. When the false discovery rate was < 0.05, 19 DMPs were significantly associated with PM2.5 and were annotated to corresponding genes. Functional enrichment analysis of these genes showed that they were related to the response to toxic substances, regulation of tumor necrosis factor superfamily cytokine production, regulation of photosensitivity 3-kinase signaling, and other pathways. Conclusion This study provided evidence for a significant relationship between personal PM2.5 exposure and DNA methylation in patients with COPD. Our research also revealed a new biological pathway explaining the adverse effects of PM2.5 exposure on COPD risk.
Collapse
Affiliation(s)
- Ruirui Duan
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Hongtao Niu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Fen Dong
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Tao Yu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuexin Li
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Hanna Wu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Yushi Zhang
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ting Yang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
6
|
Bellenie BR, Hall E, Bruce I, Spendiff M, Culshaw A, McDonald S, Ambarkhane A, Chinn C, Thomas M, Rosner E, Bracher M, Nicklin P, Marshall S, Coote J, Cullen E, Tessier C, Wuersch K, Lal A, Wallis G, Hollingworth GJ, Neef J. Discovery and Toxicological Profiling of Aminopyridines as Orally Bioavailable Selective Inhibitors of PI3-Kinase γ. J Med Chem 2021; 64:12304-12321. [PMID: 34384024 DOI: 10.1021/acs.jmedchem.1c00986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Using a novel physiologically relevant in vitro human whole blood neutrophil shape change assay, an aminopyrazine series of selective PI3Kγ inhibitors was identified and prioritized for further optimization. Severe solubility limitations associated with the series leading to low oral bioavailability and poor exposures, especially at higher doses, were overcome by moving to an aminopyridine core. Compound 33, with the optimal balance of on-target activity, selectivity, and pharmacokinetic parameters, progressed into in vivo studies and demonstrated good efficacy (10 mg/kg) in a rat model of airway inflammation. Sufficient exposures were achieved at high doses to support toxicological studies, where unexpected inflammatory cell infiltrates in cardiovascular tissue prevented further compound development.
Collapse
Affiliation(s)
- Benjamin R Bellenie
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, U.K
| | - Edward Hall
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ian Bruce
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, U.K
| | - Matthew Spendiff
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, U.K
| | - Andrew Culshaw
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, U.K
| | - Sarah McDonald
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, U.K
| | - Ameet Ambarkhane
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, U.K
| | - Colin Chinn
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, U.K
| | - Matthew Thomas
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, U.K
| | - Elisabeth Rosner
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, U.K
| | - Marguerite Bracher
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, U.K
| | - Paul Nicklin
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, U.K
| | - Stephen Marshall
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, U.K
| | - Julie Coote
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, U.K
| | - Eva Cullen
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, U.K
| | - Clemence Tessier
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Kuno Wuersch
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Ajay Lal
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Gillian Wallis
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, U.K
| | - Gregory J Hollingworth
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - James Neef
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Chan Y, MacLoughlin R, Zacconi FC, Tambuwala MM, Pabari RM, Singh SK, Jesus Andreoli Pinto TD, Gupta G, Chellappan DK, Dua K. Advances in nanotechnology-based drug delivery in targeting PI3K signaling in respiratory diseases. Nanomedicine (Lond) 2021; 16:1351-1355. [PMID: 33998829 DOI: 10.2217/nnm-2021-0087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yinghan Chan
- School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Dangan, Galway H91 HE94, Ireland.,School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland.,School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin D02 PN40, Ireland
| | - Flavia C Zacconi
- Departamento de Química Orgánica, Facultad de Química y de Farma-cia, Pontificia Universidad Católica deChile, Av Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Murtaza M Tambuwala
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, Londonderry, Northern Ireland, UK
| | - Ritesh M Pabari
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi GT Road, Phagwara, 144411, Punjab, India
| | | | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur 302017, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil 57000 Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, Newcastle, NSW 2305, Australia
| |
Collapse
|
8
|
Xie F, Wu YY, Duan GJ, Wang B, Gao F, Wei PF, Chen L, Liu AP, Li M. Anti-Myocardial Ischemia Reperfusion Injury Mechanism of Dried Ginger-Aconite Decoction Based on Network Pharmacology. Front Pharmacol 2021; 12:609702. [PMID: 34025396 PMCID: PMC8135102 DOI: 10.3389/fphar.2021.609702] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/08/2021] [Indexed: 01/17/2023] Open
Abstract
Dried ginger-aconite decoction (DAD) is a traditional Chinese medicine (TCM) formula that has been extensively used in the treatment of myocardial ischemia reperfusion injury (MI/RI). However, its specific mechanism against MI/RI has not been reported yet. Therefore, this paper studies the potential active components and mechanism of DAD against MI/RI based on network pharmacology and experimental verification. Sixteen active components of DAD were screened according to oral bioavailability and drug similarity indices. Through Cytoscape 3.7.0, a component-target network diagram was drawn, and potential active components of DAD against MI/RI were determined. Protein-protein interaction (PPI) and compound-target-pathway (C-T-P) networks were established through the software to discover the biological processes, core targets and core pathways of DAD against MI/RI. High Performance Liquid Chromatography (HPLC) analysis identified the presence of potentially active core components for network pharmacological prediction in DAD. It was found that DAD might have played a therapeutic role in anti-MI/RI by activating the PI3K/Akt/GSK-3β signaling pathway in order to reduce mitochondrial hypoxia injury and myocardial cell apoptosis. The network pharmacological prediction was validated by Hypoxia/reoxygenation(H/R) model in vitro and ligation model of the ligation of the left anterior descending branch in vivo. It was verified that DAD had activated PI3K/AKT/GSK-3β to reduce myocardial apoptosis and play a therapeutic function in MI/RI.
Collapse
Affiliation(s)
- Feng Xie
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yuan-Yuan Wu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Guang-Jing Duan
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Bin Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Feng Gao
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Pei-Feng Wei
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Lin Chen
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| | - A-Ping Liu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Min Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| |
Collapse
|
9
|
Matera MG, Cazzola M, Page C. Prospects for COPD treatment. Curr Opin Pharmacol 2020; 56:74-84. [PMID: 33333428 DOI: 10.1016/j.coph.2020.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/10/2020] [Indexed: 02/09/2023]
Abstract
The management of chronic obstructive pulmonary disease (COPD) is fundamentally still heavily dependent on the use of bronchodilators and corticosteroids. Therefore, there is a need for alternative, more effective and safer therapeutic approaches. In particular, since inflammation in COPD lungs is often poorly responsive to corticosteroid treatment, novel pharmacological anti-inflammatory approaches are needed to optimally treat COPD patients. There have been multiple attempts to develop drugs that inhibit recruitment and activation of inflammatory cells, such as macrophages, neutrophils and T-lymphocytes, in the lungs of patients with COPD or target inflammatory mediators that are important in the recruitment or activation of these inflammatory cells or released by such cells. This review article focuses on novel classes of anti-inflammatory drugs that have already been tested in humans as possible treatments for patients with COPD.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Cazzola
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Clive Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK
| |
Collapse
|
10
|
Li F, Liang X, Jiang Z, Wang A, Wang J, Chen C, Wang W, Zou F, Qi Z, Liu Q, Hu Z, Cao J, Wu H, Wang B, Wang L, Liu J, Liu Q. Discovery of (S)-2-(1-(4-Amino-3-(3-fluoro-4-methoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)propyl)-3-cyclopropyl-5-fluoroquinazolin-4(3H)-one (IHMT-PI3Kδ-372) as a Potent and Selective PI3Kδ Inhibitor for the Treatment of Chronic Obstructive Pulmonary Disease. J Med Chem 2020; 63:13973-13993. [DOI: 10.1021/acs.jmedchem.0c01544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Feng Li
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaofei Liang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Zongru Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Aoli Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Junjie Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Cheng Chen
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wenliang Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Qingwang Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Zhenquan Hu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Jiangyan Cao
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Li Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| |
Collapse
|
11
|
Morrow JD, Make B, Regan E, Han M, Hersh CP, Tal-Singer R, Quackenbush J, Choi AMK, Silverman EK, DeMeo DL. DNA Methylation Is Predictive of Mortality in Current and Former Smokers. Am J Respir Crit Care Med 2020; 201:1099-1109. [PMID: 31995399 DOI: 10.1164/rccm.201902-0439oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rationale: Smoking results in at least a decade lower life expectancy. Mortality among current smokers is two to three times as high as never smokers. DNA methylation is an epigenetic modification of the human genome that has been associated with both cigarette smoking and mortality.Objectives: We sought to identify DNA methylation marks in blood that are predictive of mortality in a subset of the COPDGene (Genetic Epidemiology of COPD) study, representing 101 deaths among 667 current and former smokers.Methods: We assayed genome-wide DNA methylation in non-Hispanic white smokers with and without chronic obstructive pulmonary disease (COPD) using blood samples from the COPDGene enrollment visit. We tested whether DNA methylation was associated with mortality in models adjusted for COPD status, age, sex, current smoking status, and pack-years of cigarette smoking. Replication was performed in a subset of 231 individuals from the ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints) study.Measurements and Main Results: We identified seven CpG sites associated with mortality (false discovery rate < 20%) that replicated in the ECLIPSE cohort (P < 0.05). None of these marks were associated with longitudinal lung function decline in survivors, smoking history, or current smoking status. However, differential methylation of two replicated PIK3CD (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta) sites were associated with lung function at enrollment (P < 0.05). We also observed associations between DNA methylation and gene expression for the PIK3CD sites.Conclusions: This study is the first to identify variable DNA methylation associated with all-cause mortality in smokers with and without COPD. Evaluating predictive epigenomic marks of smokers in peripheral blood may allow for targeted risk stratification and aid in delivery of future tailored therapeutic interventions.
Collapse
Affiliation(s)
| | - Barry Make
- National Jewish Health, Denver, Colorado
| | | | - MeiLan Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Craig P Hersh
- Channing Division of Network Medicine and.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | | | - John Quackenbush
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts; and
| | - Augustine M K Choi
- Department of Medicine, NewYork-Presbyterian/Weill Cornell Medical Center, New York, New York
| | - Edwin K Silverman
- Channing Division of Network Medicine and.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Dawn L DeMeo
- Channing Division of Network Medicine and.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
12
|
Bheemanaboina RR. Isoform-Selective PI3K Inhibitors for Various Diseases. Curr Top Med Chem 2020; 20:1074-1092. [DOI: 10.2174/1568026620666200106141717] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Abstract
Phosphoinositide 3-kinases (PI3Ks) are a family of ubiquitously distributed lipid kinases that
control a wide variety of intracellular signaling pathways. Over the years, PI3K has emerged as an attractive
target for the development of novel pharmaceuticals to treat cancer and various other diseases.
In the last five years, four of the PI3K inhibitors viz. Idelalisib, Copanlisib, Duvelisib, and Alpelisib
were approved by the FDA for the treatment of different types of cancer and several other PI3K inhibitors
are currently under active clinical development. So far clinical candidates are non-selective kinase
inhibitors with various off-target liabilities due to cross-reactivities. Hence, there is a need for the discovery
of isoform-selective inhibitors with improved efficacy and fewer side-effects. The development
of isoform-selective inhibitors is essential to reveal the unique functions of each isoform and its corresponding
therapeutic potential. Although the clinical effect and relative benefit of pan and isoformselective
inhibition will ultimately be determined, with the development of drug resistance and the demand
for next-generation inhibitors, it will continue to be of great significance to understand the potential
mechanism of isoform-selectivity. Because of the important role of type I PI3K family members in
various pathophysiological processes, isoform-selective PI3K inhibitors may ultimately have considerable
efficacy in a wide range of human diseases. This review summarizes the progress of isoformselective
PI3K inhibitors in preclinical and early clinical studies for anticancer and other various diseases.
Collapse
Affiliation(s)
- Rammohan R.Y. Bheemanaboina
- Department of Chemistry and Biochemistry, Sokol Institute for Pharmaceutical Life Sciences, Montclair State University, Montclair, NJ 07043, United States
| |
Collapse
|
13
|
Yue EW, Li YL, Douty B, He C, Mei S, Wayland B, Maduskuie T, Falahatpisheh N, Sparks RB, Polam P, Zhu W, Glenn J, Feng H, Zhang K, Li Y, He X, Katiyar K, Covington M, Feldman P, Shin N, Wang KH, Diamond S, Li Y, Koblish HK, Hall L, Scherle P, Yeleswaram S, Xue CB, Metcalf B, Combs AP, Yao W. INCB050465 (Parsaclisib), a Novel Next-Generation Inhibitor of Phosphoinositide 3-Kinase Delta (PI3Kδ). ACS Med Chem Lett 2019; 10:1554-1560. [PMID: 31749910 PMCID: PMC6862339 DOI: 10.1021/acsmedchemlett.9b00334] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/17/2019] [Indexed: 01/21/2023] Open
Abstract
A medicinal chemistry effort focused on identifying a structurally diverse candidate for phosphoinositide 3-kinase delta (PI3Kδ) led to the discovery of clinical candidate INCB050465 (20, parsaclisib). The unique structure of 20 contains a pyrazolopyrimidine hinge-binder in place of a purine motif that is present in other PI3Kδ inhibitors, such as idelalisib (1), duvelisib (2), and INCB040093 (3, dezapelisib). Parsaclisib (20) is a potent and highly selective inhibitor of PI3Kδ with drug-like ADME properties that exhibited an excellent in vivo profile as demonstrated through pharmacokinetic studies in rats, dogs, and monkeys and through pharmacodynamic and efficacy studies in a mouse Pfeiffer xenograft model.
Collapse
Affiliation(s)
- Eddy W. Yue
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Yun-Long Li
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Brent Douty
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Chunhong He
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Song Mei
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Brian Wayland
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Thomas Maduskuie
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Nikoo Falahatpisheh
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Richard B. Sparks
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Padmaja Polam
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Wenyu Zhu
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Joseph Glenn
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Hao Feng
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Ke Zhang
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Yanlong Li
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Xin He
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Kamna Katiyar
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Maryanne Covington
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Patricia Feldman
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Niu Shin
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Kathy He Wang
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Sharon Diamond
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Yu Li
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Holly K. Koblish
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Leslie Hall
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Peggy Scherle
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Swamy Yeleswaram
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Chu-Biao Xue
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Brian Metcalf
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Andrew P. Combs
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Wenqing Yao
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| |
Collapse
|
14
|
Leisching GR. PI3-Kinase δγ Catalytic Isoforms Regulate the Th-17 Response in Tuberculosis. Front Immunol 2019; 10:2583. [PMID: 31736982 PMCID: PMC6838131 DOI: 10.3389/fimmu.2019.02583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/18/2019] [Indexed: 01/29/2023] Open
Abstract
Although IL17A plays a protective role at the mucosal surface, when IL17A signaling becomes dysregulated, a pathological response is locally induced. At the early stages of Mycobacterium tuberculosis (M.tb) infection, IL17A contributes to granuloma formation and pathogen containment. In contrast, during disease progression, a dysregulated IL17A hyperinflammatory response drives tissue destruction through enhanced neutrophil recruitment. Cumulative research has implicated the PI3-Kinase pathways as one of the most relevant in the pathophysiology of inflammation. Evidence shows that IL-17A secretion and the expansion of the Th17 population is dependant in PI3-Kinase signaling, with the p110δ and p110γ isoforms playing a prominent role. The p110γ isoform promotes disease progression through dampening of the Th17 response, preventing pathogen clearance and containment. The p110γ gene, PIK3CG is downregulated in TB patients during late-stage disease when compared to healthy controls, demonstrating an important modulatory role for this isoform during TB. Conversely, the p110δ isoform induces IL-17A release from pulmonary γδ T-cells, committed Th17 cells and promotes neutrophil recruitment to the lung. Inhibiting this isoform not only suppresses IL-17A secretion from Th17 cells, but it also inhibits cytokine production from multiple T-helper cell types. Since increased IL-17A levels are observed to be localized in the lung compartments (BAL and lymphocytes) in comparison to circulating levels, an inhalable PI3Kδ inhibitor, which is currently utilized for inflammatory airway diseases characterized by IL-17A over-secretion, may be a therapeutic option for active TB disease.
Collapse
Affiliation(s)
- Gina R Leisching
- SA MRC Centre for TB Research, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
15
|
Jeong JS, Kim JS, Kim SR, Lee YC. Defining Bronchial Asthma with Phosphoinositide 3-Kinase Delta Activation: Towards Endotype-Driven Management. Int J Mol Sci 2019; 20:ijms20143525. [PMID: 31323822 PMCID: PMC6679152 DOI: 10.3390/ijms20143525] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Phosphoinositide 3-kinase (PI3K) pathways play a critical role in orchestrating the chronic inflammation and the structural changes of the airways in patients with asthma. Recently, a great deal of progress has been made in developing selective and effective PI3K-targeted therapies on the basis of a vast amount of studies on the roles of specific PI3K isoforms and fine-tuned modulators of PI3Ks in a particular disease context. In particular, the pivotal roles of delta isoform of class I PI3Ks (PI3K-δ) in CD4-positive type 2 helper T cells-dominant disorders such as asthma have been consistently reported since the early investigations. Furthermore, there has been great advancement in our knowledge of the implications of PI3K-δ in various facets of allergic inflammation. This has involved the airway epithelial interface, adaptive T and B cells, potent effector cells (eosinophils and neutrophils), and, more recently, subcellular organelles (endoplasmic reticulum and mitochondria) and cytoplasmic innate immune receptors such as NLRP3 inflammasome, all of which make this PI3K isoform an important druggable target for treating asthma. Defining subpopulations of asthma patients with PI3K-δ activation, namely PI3K-δ-driven asthma endotype, may therefore provide us with a novel framework for the treatment of the disease, particularly for corticosteroid-resistant severe form, an important unresolved aspect of the current asthma management. In this review, we specifically summarize the recent advancement of our knowledge on the critical roles of PI3K-δ in the pathogenesis of bronchial asthma.
Collapse
Affiliation(s)
- Jae Seok Jeong
- Department of Internal Medicine, Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju 54907, Korea
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea
| | - Jong Seung Kim
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - So Ri Kim
- Department of Internal Medicine, Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju 54907, Korea
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea
| | - Yong Chul Lee
- Department of Internal Medicine, Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju 54907, Korea.
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea.
| |
Collapse
|
16
|
Mahdaviani SA, Rezaei N. Pulmonary Manifestations of Predominantly Antibody Deficiencies. PULMONARY MANIFESTATIONS OF PRIMARY IMMUNODEFICIENCY DISEASES 2019. [PMCID: PMC7123456 DOI: 10.1007/978-3-030-00880-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Predominantly antibody deficiencies (PADs) are the most frequent forms of primary immunodeficiency diseases (PIDs). Commonly accompanied with complications involving several body systems, immunoglobulin substitution therapy along with prophylactic antibiotics remained the cornerstone of treatment for PADs and related complications. Patients with respiratory complications should be prescribed an appropriate therapy as soon as possible and have to be adhering to more and longer medical therapies. Recent studies identified a gap for screening protocols to monitor respiratory manifestations in patients with PADs. In the present chapter, the pulmonary manifestations of different PADs for each have been discussed. The chapter is mainly focused on X-linked agammaglobulinemia, common variable immunodeficiency, activated PI3K-δ syndrome, LRBA deficiency, CD19 complex deficiencies, CD20 deficiency, other monogenic defects associated with hypogammaglobulinemia, immunoglobulin class switch recombination deficiencies affecting B-cells, transient hypogammaglobulinemia of infancy, and selective IgA deficiency.
Collapse
Affiliation(s)
- Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies Children’s Medical Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
17
|
Guo JF, Ning ZQ, Wu X, Qiao YJ, Wang X. Discovery of a natural PI3Kδ inhibitor through virtual screening and biological assay study. Biochem Biophys Res Commun 2018; 508:709-714. [PMID: 30528237 DOI: 10.1016/j.bbrc.2018.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 01/15/2023]
Abstract
Phosphoinositide-3-kinase-δ (PI3Kδ) is a key regulator in the process of IgE mediated mast cell degranulation, which directly induces allergic diseases, such as asthma. This study is aimed at discovery of natural PI3Kδ inhibitors from Chinese medicine and evaluating their anti-mast cell degranulation activity. A combined virtual screening based on 3D pharmacophore model and molecular docking was used to screen for bioactive ingredients directly targeting PI3Kδ. Then, an in vitro kinase inhibition assay was conducted to evaluate the PI3Kδ inhibitory activity of the virtual screening hits. Subsequently, a β-hexosaminidase release assay was performed to verify the anti-mast cell degranulation activity of the active compounds. Finally, ginkgoneolic acid was identified as a PI3Kδ inhibitor (IC50 = 2.49 μM) and exhibited anti-mast cell degranulation activity in vitro (IC50 = 2.40 μM). Docking studies showed that Glu826, Val827 and Val828 were key amino acid residues for PI3Kδ inhibitory activity. Ginkgoneolic acid may be a potential lead compound for developing effective and safe PI3Kδ-inhibiting drugs.
Collapse
Affiliation(s)
- Jun-Fang Guo
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing, 100069, PR China
| | - Zhong-Qi Ning
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing, 100069, PR China
| | - Xia Wu
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing, 100069, PR China; Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Fengtai District, Beijing, 100069, PR China
| | - Yan-Jiang Qiao
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11, North San huan Road, Chaoyang District, Beijing, 100029, PR China.
| | - Xing Wang
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing, 100069, PR China; Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Fengtai District, Beijing, 100069, PR China.
| |
Collapse
|
18
|
Wang J, Zhu M, Wang L, Chen C, Song Y. Amphiregulin potentiates airway inflammation and mucus hypersecretion induced by urban particulate matter via the EGFR-PI3Kα-AKT/ERK pathway. Cell Signal 2018; 53:122-131. [PMID: 30291869 DOI: 10.1016/j.cellsig.2018.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 11/19/2022]
Abstract
Ambient particulate matter (PM) promotes the development and exacerbation of chronic respiratory diseases, including chronic obstructive pulmonary disease (COPD) and asthma, by increasing inflammation and mucus hypersecretion. However, the biological mechanisms underlying PM-induced airway inflammation and mucus hypersecretion remain unclear. Amphiregulin (AREG) is an important ligand for epidermal growth factor receptor (EGFR) and participates in the regulation of several biological functions. Here, the PM-exposed human bronchial epithelial cell (HBEC) model was used to define the role of AREG in PM-induced inflammation and mucus hypersecretion and its related signaling pathways. The expression of AREG was significantly increased in a dose-dependent manner in HBECs subjected to PM exposure. Moreover, PM could induce inflammation and mucus hypersecretion by upregulating the expression of IL-1α, IL-1β, and Muc-5ac in HBECs. The EGFR, AKT, and ERK signaling pathways were also activated in a time- and dose-dependent manner. The AREG siRNA markedly attenuated PM-induced inflammation and mucus hypersecretion, and activation of the EGFR-AKT/ERK pathway. Exogenous AREG significantly increased the expression of IL-1α, IL-1β, and Muc-5ac, and induced activation of the EGFR-AKT/ERK pathway in HBECs. Further, under PM exposure, exogenous AREG significantly potentiated PM-induced inflammation and mucus hypersecretion, and activation of the EGFR-AKT/ERK pathway. Tumor-necrosis factor-alpha converting enzyme (TACE) and EGFR specific inhibitor pretreatment showed that AREG was secreted by TACE-mediated cleavage to regulate PM-induced inflammation and mucus hypersecretion by binding to the EGFR. Moreover, according to the inhibitory effect of specific inhibitors of the class I PI3K isoforms, AKT and ERK, PM-induced inflammation and mucus hypersecretion was regulated by PI3Kα activation and its downstream AKT and ERK pathways. This study strongly suggests the adverse effect of AREG in PM-induced inflammation and mucus hypersecretion via the EGFR-PI3Kα-AKT/ERK pathway. These findings contribute to a better understanding of the biological mechanisms underlying exacerbation of chronic respiratory diseases induced by PM exposure.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, N0.180 Fenglin Road, Shanghai 200030, China
| | - Mengchan Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, N0.180 Fenglin Road, Shanghai 200030, China
| | - Linlin Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, N0.180 Fenglin Road, Shanghai 200030, China
| | - Cuicui Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, N0.180 Fenglin Road, Shanghai 200030, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, N0.180 Fenglin Road, Shanghai 200030, China.
| |
Collapse
|
19
|
Qiao S, Zheng N, Sun L, Pang G, Wang S, Jia P, Uzonna JE, Bai H, Yang X. The p110δ isoforme of phosphatidylinositol 3-kinase plays an important role in host defense against chlamydial lung infection through influencing CD4+ T-cell function. Pathog Dis 2018; 76:5035814. [PMID: 29893841 DOI: 10.1093/femspd/fty053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/08/2018] [Indexed: 11/13/2022] Open
Abstract
PI3Ks display integrant significance in T-cell development and differentiation, which is related to host defense against infections. Here, we investigated the role of p110δ isoform of PI3Ks in host defense against chlamydial lung infection in a mouse model. Our data showed that lung infection with Chlamydia muridarum (Cm) activated PI3K/AKT signaling pathway. Compared to WT mice, p110δD910A mice, mice with an inactivating knockin mutation in the p110δ Isoform of PI3Ks, showed more sever disease phenotype and slower recovery, which was associated with reduced Chlamydia-specific Th1 and Th17 immune responses following infection. Further adoptive transfer experiment showed that mice which received CD4+ T cells from infected p110δD910A mice exhibited greater body weight loss and higher bacterial loads in the lung than those which received CD4+ T cells from WT mice following challenge infection. These results provide in vivo evidence that p110δ isoform of PI3Ks plays an important role in host defense against chlamydial infection by promoting CD4+ T-cell immunity.
Collapse
Affiliation(s)
- Sai Qiao
- Department of Immunology, Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E0T5, Canada.,Department of Immunology, Tianjin Medical University, 300070 Tianjin, P.R. China
| | - Ningbo Zheng
- Department of Immunology, Tianjin Medical University, 300070 Tianjin, P.R. China
| | - Lida Sun
- Department of Immunology, Tianjin Medical University, 300070 Tianjin, P.R. China
| | - Gaoju Pang
- Department of Immunology, Tianjin Medical University, 300070 Tianjin, P.R. China
| | - Shuhe Wang
- Department of Immunology, Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E0T5, Canada
| | - Ping Jia
- Department of Immunology, Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E0T5, Canada
| | - Jude Ezeh Uzonna
- Department of Immunology, Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E0T5, Canada
| | - Hong Bai
- Department of Immunology, Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E0T5, Canada.,Department of Immunology, Tianjin Medical University, 300070 Tianjin, P.R. China
| | - Xi Yang
- Department of Immunology, Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E0T5, Canada
| |
Collapse
|