1
|
Bonilla G, Morris A, Kundu S, DuCasse A, Kirkpatrick G, Jeffries NE, Chetal K, Yvanovich EE, Milosevic J, Zhao T, Xia J, Barghout R, Scadden D, Mansour MK, Kingston RE, Sykes DB, Mercier FE, Sadreyev RI. Leukemia aggressiveness is driven by chromatin remodeling and expression changes of core regulators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582846. [PMID: 38496490 PMCID: PMC10942317 DOI: 10.1101/2024.02.29.582846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Molecular mechanisms driving clonal aggressiveness in leukemia are not fully understood. We tracked and analyzed MLL-rearranged leukemic clones independently evolving towards higher aggressiveness. More aggressive subclones lost their growth differential ex vivo but restored it upon secondary transplantation, suggesting molecular memory of aggressiveness. Development of aggressiveness was associated with clone-specific gradual modulation of chromatin states and expression levels across the genome, with a surprising preferential trend of reversing the earlier changes between normal and leukemic progenitors. To focus on the core aggressiveness program, we identified genes with consistent changes of expression and chromatin marks that were maintained in vivo and ex vivo in both clones. Overexpressing selected core genes (Smad1 as aggressiveness driver, Irx5 and Plag1 as suppressors) affected leukemic progenitor growth in the predicted way and had convergent downstream effects on central transcription factors and repressive epigenetic modifiers, suggesting a broader regulatory network of leukemic aggressiveness.
Collapse
|
2
|
Bogun L, Koch A, Scherer B, Germing U, Fenk R, Maus U, Bormann F, Köhrer K, Petzsch P, Wachtmeister T, Kobbe G, Dietrich S, Haas R, Schroeder T, Geyh S, Jäger P. Overlapping Stromal Alterations in Myeloid and Lymphoid Neoplasms. Cancers (Basel) 2024; 16:2071. [PMID: 38893194 PMCID: PMC11171322 DOI: 10.3390/cancers16112071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Myeloid and lymphoid neoplasms share the characteristics of potential bone marrow infiltration as a primary or secondary effect, which readily leads to hematopoietic insufficiency. The mechanisms by which clonal malignant cells inhibit normal hematopoietic stem and progenitor cells (HSPCs) in the bone marrow (BM) have not been unraveled so far. Given the pivotal role of mesenchymal stromal cells (MSCs) in the regulation of hematopoiesis in the BM niche it is assumed that MSCs also play a relevant role in the pathogenesis of hematological neoplasms. We aimed to identify overlapping mechanisms in MSCs derived from myeloid and lymphoid neoplasms contributing to disease progression and suppression of HSPCs to develop interventions that target these mechanisms. MSCs derived from healthy donors (n = 44) and patients diagnosed with myeloproliferative neoplasia (n = 11), myelodysplastic syndromes (n = 16), or acute myeloid leukemia (n = 25) and B-Non-Hodgkin lymphoma (n = 9) with BM infiltration and acute lymphoblastic leukemia (n = 9) were analyzed for their functionality and by RNA sequencing. A reduced growth and differentiation capacity of MSCs was found in all entities. RNA sequencing distinguished both groups but clearly showed overlapping differentially expressed genes, including major players in the BMP/TGF and WNT-signaling pathway which are crucial for growth, osteogenesis, and hematopoiesis. Functional alterations in healthy MSCs were inducible by exposure to supernatants from malignant cells, implicating the involvement of these factors in disease progression. Overall, we were able to identify overlapping factors that pose potential future therapeutic targets.
Collapse
Affiliation(s)
- Lucienne Bogun
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Annemarie Koch
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Bo Scherer
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Roland Fenk
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Uwe Maus
- Department of Orthopedic Surgery and Traumatology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany;
| | | | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (K.K.); (P.P.); (T.W.)
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (K.K.); (P.P.); (T.W.)
| | - Thorsten Wachtmeister
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (K.K.); (P.P.); (T.W.)
| | - Guido Kobbe
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Sascha Dietrich
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Thomas Schroeder
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Stefanie Geyh
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| | - Paul Jäger
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, University of Duesseldorf, 40225 Duesseldorf, Germany; (L.B.); (A.K.); (B.S.); (U.G.); (R.F.); (G.K.); (S.D.); (R.H.); (T.S.)
| |
Collapse
|
3
|
Peroni E, Randi ML, Rosato A, Cagnin S. Acute myeloid leukemia: from NGS, through scRNA-seq, to CAR-T. dissect cancer heterogeneity and tailor the treatment. J Exp Clin Cancer Res 2023; 42:259. [PMID: 37803464 PMCID: PMC10557350 DOI: 10.1186/s13046-023-02841-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a malignant blood cancer with marked cellular heterogeneity due to altered maturation and differentiation of myeloid blasts, the possible causes of which are transcriptional or epigenetic alterations, impaired apoptosis, and excessive cell proliferation. This neoplasm has a high rate of resistance to anticancer therapies and thus a high risk of relapse and mortality because of both the biological diversity of the patient and intratumoral heterogeneity due to the acquisition of new somatic changes. For more than 40 years, the old gold standard "one size fits all" treatment approach included intensive chemotherapy treatment with anthracyclines and cytarabine.The manuscript first traces the evolution of the understanding of the pathology from the 1970s to the present. The enormous strides made in its categorization prove to be crucial for risk stratification, enabling an increasingly personalized diagnosis and treatment approach.Subsequently, we highlight how, over the past 15 years, technological advances enabling single cell RNA sequencing and T-cell modification based on the genomic tools are affecting the classification and treatment of AML. At the dawn of the new millennium, the advent of high-throughput next-generation sequencing technologies has enabled the profiling of patients evidencing different facets of the same disease, stratifying risk, and identifying new possible therapeutic targets that have subsequently been validated. Currently, the possibility of investigating tumor heterogeneity at the single cell level, profiling the tumor at the time of diagnosis or after treatments exist. This would allow the identification of underrepresented cellular subclones or clones resistant to therapeutic approaches and thus responsible for post-treatment relapse that would otherwise be difficult to detect with bulk investigations on the tumor biopsy. Single-cell investigation will then allow even greater personalization of therapy to the genetic and transcriptional profile of the tumor, saving valuable time and dangerous side effects. The era of personalized medicine will take a huge step forward through the disclosure of each individual piece of the complex puzzle that is cancer pathology, to implement a "tailored" therapeutic approach based also on engineered CAR-T cells.
Collapse
Affiliation(s)
- Edoardo Peroni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padova, 35128, Italy.
| | - Maria Luigia Randi
- First Medical Clinic, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padova, 35128, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padova, Padova, 35131, Italy
- CIR-Myo Myology Center, University of Padova, Padova, 35131, Italy
| |
Collapse
|
4
|
Mayani-Mayani K, González-Arnay E, Acosta-Criado L, Abbas-Khoja NA, Abad-Collazo ME, García-Viera M, Raya Sánchez JM, Govantes-Rodríguez J. Granulocytic Sarcoma Mimicking Cholesteatoma: Beware the Temporal Bone in Haematological Patients. ORL J Otorhinolaryngol Relat Spec 2023; 85:299-304. [PMID: 37586331 DOI: 10.1159/000532080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
Granulocytic sarcoma is a myeloid neoplasm that can occur in isolation or in association with acute leukaemia. The temporal bone represents a sanctuary site for myeloid progenitors: granulocytic sarcoma may develop in this location before or concomitantly with the onset of acute leukaemia. This atypical presentation with clinical and radiological data that closely mimic those of cholesteatoma often delays an accurate diagnosis. We here describe the clinical case of a 28-year-old male with granulocytic sarcoma of the external auditory canal that preceded the relapse of promyelocytic leukaemia.
Collapse
Affiliation(s)
| | - Emilio González-Arnay
- Division of Pathology, General Hospital of La Palma, La Palma, Spain
- Division of Anatomy, Department of Basic Medical Sciences, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Luis Acosta-Criado
- Division of Otorhinolaryngology, General Hospital of La Palma, La Palma, Spain
| | | | - M Eugenia Abad-Collazo
- Division of Pathology, University Hospital Nuestra Señora de La Candelaria, Santa Cruz de Tenerife, Spain
| | | | - José-Maria Raya Sánchez
- Division of Hematology, Canary Islands University Hospital, San Cristóbal de La Laguna, Spain
- Division of Internal Medicine, Department of Internal Medicine, Dermatology and Psychiatry, University of La Laguna, San Cristóbal de La Laguna, Spain
| | | |
Collapse
|
5
|
Ainciburu M, Ezponda T, Berastegui N, Alfonso-Pierola A, Vilas-Zornoza A, San Martin-Uriz P, Alignani D, Lamo-Espinosa J, San-Julian M, Jiménez-Solas T, Lopez F, Muntion S, Sanchez-Guijo F, Molero A, Montoro J, Serrano G, Diaz-Mazkiaran A, Lasaga M, Gomez-Cabrero D, Diez-Campelo M, Valcarcel D, Hernaez M, Romero JP, Prosper F. Uncovering perturbations in human hematopoiesis associated with healthy aging and myeloid malignancies at single-cell resolution. eLife 2023; 12:79363. [PMID: 36629404 PMCID: PMC9904760 DOI: 10.7554/elife.79363] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/10/2023] [Indexed: 01/12/2023] Open
Abstract
Early hematopoiesis is a continuous process in which hematopoietic stem and progenitor cells (HSPCs) gradually differentiate toward specific lineages. Aging and myeloid malignant transformation are characterized by changes in the composition and regulation of HSPCs. In this study, we used single-cell RNA sequencing (scRNA-seq) to characterize an enriched population of human HSPCs obtained from young and elderly healthy individuals. Based on their transcriptional profile, we identified changes in the proportions of progenitor compartments during aging, and differences in their functionality, as evidenced by gene set enrichment analysis. Trajectory inference revealed that altered gene expression dynamics accompanied cell differentiation, which could explain aging-associated changes in hematopoiesis. Next, we focused on key regulators of transcription by constructing gene regulatory networks (GRNs) and detected regulons that were specifically active in elderly individuals. Using previous findings in healthy cells as a reference, we analyzed scRNA-seq data obtained from patients with myelodysplastic syndrome (MDS) and detected specific alterations of the expression dynamics of genes involved in erythroid differentiation in all patients with MDS such as TRIB2. In addition, the comparison between transcriptional programs and GRNs regulating normal HSPCs and MDS HSPCs allowed identification of regulons that were specifically active in MDS cases such as SMAD1, HOXA6, POU2F2, and RUNX1 suggesting a role of these transcription factors (TFs) in the pathogenesis of the disease. In summary, we demonstrate that the combination of single-cell technologies with computational analysis tools enable the study of a variety of cellular mechanisms involved in complex biological systems such as early hematopoiesis and can be used to dissect perturbed differentiation trajectories associated with perturbations such as aging and malignant transformation. Furthermore, the identification of abnormal regulatory mechanisms associated with myeloid malignancies could be exploited for personalized therapeutic approaches in individual patients.
Collapse
Affiliation(s)
- Marina Ainciburu
- Area de Hemato-Oncología, Centro de Investigación Médica Aplicada, Universidad de Navarra, Instituto de investigación sanitaria de Navarra (IDISNA)PamplonaSpain
- Centro de Investigación Biomédica en Red de CáncerMadridSpain
| | - Teresa Ezponda
- Area de Hemato-Oncología, Centro de Investigación Médica Aplicada, Universidad de Navarra, Instituto de investigación sanitaria de Navarra (IDISNA)PamplonaSpain
- Centro de Investigación Biomédica en Red de CáncerMadridSpain
| | - Nerea Berastegui
- Area de Hemato-Oncología, Centro de Investigación Médica Aplicada, Universidad de Navarra, Instituto de investigación sanitaria de Navarra (IDISNA)PamplonaSpain
| | - Ana Alfonso-Pierola
- Centro de Investigación Biomédica en Red de CáncerMadridSpain
- Clinica Universidad de NavarraPamplonaSpain
| | - Amaia Vilas-Zornoza
- Area de Hemato-Oncología, Centro de Investigación Médica Aplicada, Universidad de Navarra, Instituto de investigación sanitaria de Navarra (IDISNA)PamplonaSpain
- Centro de Investigación Biomédica en Red de CáncerMadridSpain
| | - Patxi San Martin-Uriz
- Area de Hemato-Oncología, Centro de Investigación Médica Aplicada, Universidad de Navarra, Instituto de investigación sanitaria de Navarra (IDISNA)PamplonaSpain
- Centro de Investigación Biomédica en Red de CáncerMadridSpain
| | - Diego Alignani
- Flow Cytometry Core, Universidad de NavarraPamplonaSpain
| | | | | | | | - Felix Lopez
- Hospital Universitario de SalamancaSalamancaSpain
| | - Sandra Muntion
- Hospital Universitario de SalamancaSalamancaSpain
- Red de Investigación Cooperativa en Terapia Celular TerCel, ISCIII.MadridSpain
| | - Fermin Sanchez-Guijo
- Hospital Universitario de SalamancaSalamancaSpain
- Red de Investigación Cooperativa en Terapia Celular TerCel, ISCIII.MadridSpain
| | - Antonieta Molero
- Department of Hematology, Vall d'Hebron Hospital UniversitariBarcelonaSpain
| | - Julia Montoro
- Department of Hematology, Vall d'Hebron Hospital UniversitariBarcelonaSpain
| | | | - Aintzane Diaz-Mazkiaran
- Centro de Investigación Biomédica en Red de CáncerMadridSpain
- Computational Biology Program, Universidad de NavarraPamplonaSpain
| | - Miren Lasaga
- Translational Bioinformatics Unit, NavarraBiomedPamplonaSpain
| | - David Gomez-Cabrero
- Translational Bioinformatics Unit, NavarraBiomedPamplonaSpain
- Biological & Environmental Sciences & Engineering Division, King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | | | - David Valcarcel
- Department of Hematology, Vall d'Hebron Hospital UniversitariBarcelonaSpain
| | - Mikel Hernaez
- Computational Biology Program, Universidad de NavarraPamplonaSpain
| | - Juan P Romero
- Area de Hemato-Oncología, Centro de Investigación Médica Aplicada, Universidad de Navarra, Instituto de investigación sanitaria de Navarra (IDISNA)PamplonaSpain
- Centro de Investigación Biomédica en Red de CáncerMadridSpain
| | - Felipe Prosper
- Area de Hemato-Oncología, Centro de Investigación Médica Aplicada, Universidad de Navarra, Instituto de investigación sanitaria de Navarra (IDISNA)PamplonaSpain
- Centro de Investigación Biomédica en Red de CáncerMadridSpain
- Clinica Universidad de NavarraPamplonaSpain
- Red de Investigación Cooperativa en Terapia Celular TerCel, ISCIII.MadridSpain
| |
Collapse
|
6
|
Salazar-Terreros MJ, Vernot JP. In Vitro and In Vivo Modeling of Normal and Leukemic Bone Marrow Niches: Cellular Senescence Contribution to Leukemia Induction and Progression. Int J Mol Sci 2022; 23:7350. [PMID: 35806354 PMCID: PMC9266537 DOI: 10.3390/ijms23137350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/16/2022] Open
Abstract
Cellular senescence is recognized as a dynamic process in which cells evolve and adapt in a context dependent manner; consequently, senescent cells can exert both beneficial and deleterious effects on their surroundings. Specifically, senescent mesenchymal stromal cells (MSC) in the bone marrow (BM) have been linked to the generation of a supporting microenvironment that enhances malignant cell survival. However, the study of MSC's senescence role in leukemia development has been straitened not only by the availability of suitable models that faithfully reflect the structural complexity and biological diversity of the events triggered in the BM, but also by the lack of a universal, standardized method to measure senescence. Despite these constraints, two- and three dimensional in vitro models have been continuously improved in terms of cell culture techniques, support materials and analysis methods; in addition, research on animal models tends to focus on the development of techniques that allow tracking leukemic and senescent cells in the living organism, as well as to modify the available mice strains to generate individuals that mimic human BM characteristics. Here, we present the main advances in leukemic niche modeling, discussing advantages and limitations of the different systems, focusing on the contribution of senescent MSC to leukemia progression.
Collapse
Affiliation(s)
- Myriam Janeth Salazar-Terreros
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia;
| | - Jean-Paul Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia;
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia
| |
Collapse
|
7
|
Zhang P, Li X, Pan C, Zheng X, Hu B, Xie R, Hu J, Shang X, Yang H. Single-cell RNA sequencing to track novel perspectives in HSC heterogeneity. Stem Cell Res Ther 2022; 13:39. [PMID: 35093185 PMCID: PMC8800338 DOI: 10.1186/s13287-022-02718-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/06/2022] [Indexed: 12/21/2022] Open
Abstract
As the importance of cell heterogeneity has begun to be emphasized, single-cell sequencing approaches are rapidly adopted to study cell heterogeneity and cellular evolutionary relationships of various cells, including stem cell populations. The hematopoietic stem and progenitor cell (HSPC) compartment contains HSC hematopoietic stem cells (HSCs) and distinct hematopoietic cells with different abilities to self-renew. These cells perform their own functions to maintain different hematopoietic lineages. Undeniably, single-cell sequencing approaches, including single-cell RNA sequencing (scRNA-seq) technologies, empower more opportunities to study the heterogeneity of normal and pathological HSCs. In this review, we discuss how these scRNA-seq technologies contribute to tracing origin and lineage commitment of HSCs, profiling the bone marrow microenvironment and providing high-resolution dissection of malignant hematopoiesis, leading to exciting new findings in HSC biology.
Collapse
|
8
|
Guyot B, Lefort S, Voeltzel T, Pécheur EI, Maguer-Satta V. Altered BMP2/4 Signaling in Stem Cells and Their Niche: Different Cancers but Similar Mechanisms, the Example of Myeloid Leukemia and Breast Cancer. Front Cell Dev Biol 2022; 9:787989. [PMID: 35047500 PMCID: PMC8762220 DOI: 10.3389/fcell.2021.787989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022] Open
Abstract
Understanding mechanisms of cancer development is mandatory for disease prevention and management. In healthy tissue, the microenvironment or niche governs stem cell fate by regulating the availability of soluble molecules, cell-cell contacts, cell-matrix interactions, and physical constraints. Gaining insight into the biology of the stem cell microenvironment is of utmost importance, since it plays a role at all stages of tumorigenesis, from (stem) cell transformation to tumor escape. In this context, BMPs (Bone Morphogenetic Proteins), are key mediators of stem cell regulation in both embryonic and adult organs such as hematopoietic, neural and epithelial tissues. BMPs directly regulate the niche and stem cells residing within. Among them, BMP2 and BMP4 emerged as master regulators of normal and tumorigenic processes. Recently, a number of studies unraveled important mechanisms that sustain cell transformation related to dysregulations of the BMP pathway in stem cells and their niche (including exposure to pollutants such as bisphenols). Furthermore, a direct link between BMP2/BMP4 binding to BMP type 1 receptors and the emergence and expansion of cancer stem cells was unveiled. In addition, a chronic exposure of normal stem cells to abnormal BMP signals contributes to the emergence of cancer stem cells, or to disease progression independently of the initial transforming event. In this review, we will illustrate how the regulation of stem cells and their microenvironment becomes dysfunctional in cancer via the hijacking of BMP signaling with main examples in myeloid leukemia and breast cancers.
Collapse
Affiliation(s)
- Boris Guyot
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France
- Université de Lyon 1, Lyon, France
- Centre Leon Bérard, Lyon, France
| | - Sylvain Lefort
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France
- Université de Lyon 1, Lyon, France
- Centre Leon Bérard, Lyon, France
| | - Thibault Voeltzel
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France
- Université de Lyon 1, Lyon, France
- Centre Leon Bérard, Lyon, France
| | - Eve-Isabelle Pécheur
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France
- Université de Lyon 1, Lyon, France
- Centre Leon Bérard, Lyon, France
| | - Véronique Maguer-Satta
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France
- Université de Lyon 1, Lyon, France
| |
Collapse
|
9
|
Wong NK, Luo S, Chow EYD, Meng F, Adesanya A, Sun J, Ma HMH, Jin W, Li WC, Yip SP, Huang CL. The Tyrosine Kinase-Driven Networks of Novel Long Non-coding RNAs and Their Molecular Targets in Myeloproliferative Neoplasms. Front Cell Dev Biol 2021; 9:643043. [PMID: 34414175 PMCID: PMC8369571 DOI: 10.3389/fcell.2021.643043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/09/2021] [Indexed: 01/16/2023] Open
Abstract
Recent research has focused on the mechanisms by which long non-coding RNAs (lncRNAs) modulate diverse cellular processes such as tumorigenesis. However, the functional characteristics of these non-coding elements in the genome are poorly understood at present. In this study, we have explored several mechanisms that involve the novel lncRNA and microRNA (miRNA) axis participating in modulation of drug response and the tumor microenvironment of myeloproliferative neoplasms (MPNs). We identified novel lncRNAs via mRNA sequencing that was applied to leukemic cell lines derived from BCR-ABL1-positive and JAK2-mutant MPNs under treatment with therapeutic tyrosine kinase inhibitors (TKI). The expression and sequence of novel LNC000093 were further validated in both leukemic cells and normal primary and pluripotent cells isolated from human blood, including samples from patients with chronic myelogenous leukemia (CML). Downregulation of LNC000093 was validated in TKI-resistant CML while a converse expression pattern was observed in blood cells isolated from TKI-sensitive CML cases. In addition to BCR-ABL1-positive CML cells, the driver mutation JAK2-V617F-regulated lncRNA BANCR axis was further identified in BCR-ABL1-negative MPNs. Further genome-wide validation using MPN patient specimens identified 23 unique copy number variants including the 7 differentially expressed lncRNAs from our database. The newly identified LNC000093 served as a competitive endogenous RNA for miR-675-5p and reversed the imatinib resistance in CML cells through regulating RUNX1 expression. The extrinsic function of LNC000093 in exosomal H19/miR-675-induced modulation for the microenvironment was also determined with significant effect on VEGF expression.
Collapse
Affiliation(s)
- Nonthaphat Kent Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Shumeng Luo
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Eudora Y D Chow
- Department of Pathology, United Christian Hospital, Kwun Tong, Hong Kong
| | - Fei Meng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Adenike Adesanya
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Jiahong Sun
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Herman M H Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,Department of Pathology, United Christian Hospital, Kwun Tong, Hong Kong
| | - Wenfei Jin
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Wan-Chun Li
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
10
|
Khodr V, Machillot P, Migliorini E, Reiser JB, Picart C. High-throughput measurements of bone morphogenetic protein/bone morphogenetic protein receptor interactions using biolayer interferometry. Biointerphases 2021; 16:031001. [PMID: 34241280 PMCID: PMC7614001 DOI: 10.1116/6.0000926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/11/2021] [Indexed: 01/03/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are an important family of growth factors playing a role in a large number of physiological and pathological processes, including bone homeostasis, tissue regeneration, and cancers. In vivo, BMPs bind successively to both BMP receptors (BMPRs) of type I and type II, and a promiscuity has been reported. In this study, we used biolayer interferometry to perform parallel real-time biosensing and to deduce the kinetic parameters (ka, kd) and the equilibrium constant (KD) for a large range of BMP/BMPR combinations in similar experimental conditions. We selected four members of the BMP family (BMP-2, 4, 7, 9) known for their physiological relevance and studied their interactions with five type-I BMP receptors (ALK1, 2, 3, 5, 6) and three type-II BMP receptors (BMPR-II, ACTR-IIA, ACTR-IIB). We reveal that BMP-2 and BMP-4 behave differently, especially regarding their kinetic interactions and affinities with the type-II BMPR. We found that BMP-7 has a higher affinity for the type-II BMPR receptor ACTR-IIA and a tenfold lower affinity with the type-I receptors. While BMP-9 has a high and similar affinity for all type-II receptors, it can interact with ALK5 and ALK2, in addition to ALK1. Interestingly, we also found that all BMPs can interact with ALK5. The interaction between BMPs and both type-I and type-II receptors in a ternary complex did not reveal further cooperativity. Our work provides a synthetic view of the interactions of these BMPs with their receptors and paves the way for future studies on their cell-type and receptor specific signaling pathways.
Collapse
Affiliation(s)
- Valia Khodr
- Interdisciplinary Research Institute of Grenoble (IRIG), ERL BRM 5000 (CNRS/UGA/CEA), CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex, France
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble
| | - Paul Machillot
- Interdisciplinary Research Institute of Grenoble (IRIG), ERL BRM 5000 (CNRS/UGA/CEA), CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex, France
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble
| | - Elisa Migliorini
- Interdisciplinary Research Institute of Grenoble (IRIG), ERL BRM 5000 (CNRS/UGA/CEA), CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex, France
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble
| | - Jean-Baptiste Reiser
- Institut de Biologie Structurale, UMR 5075, Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Catherine Picart
- Interdisciplinary Research Institute of Grenoble (IRIG), ERL BRM 5000 (CNRS/UGA/CEA), CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex, France
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble
| |
Collapse
|
11
|
Hoeksma J, van der Zon GCM, Ten Dijke P, den Hertog J. Cercosporamide inhibits bone morphogenetic protein receptor type I kinase activity in zebrafish. Dis Model Mech 2020; 13:dmm045971. [PMID: 32820031 PMCID: PMC7522027 DOI: 10.1242/dmm.045971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Zebrafish models are well-established tools for investigating the underlying mechanisms of diseases. Here, we identified cercosporamide, a metabolite from the fungus Ascochyta aquiliqiae, as a potent bone morphogenetic protein receptor (BMPR) type I kinase inhibitor through a zebrafish embryo phenotypic screen. The developmental defects in zebrafish, including lack of the ventral fin, induced by cercosporamide were strikingly similar to the phenotypes caused by renowned small-molecule BMPR type I kinase inhibitors and inactivating mutations in zebrafish BMPRs. In mammalian cell-based assays, cercosporamide blocked BMP/SMAD-dependent transcriptional reporter activity and BMP-induced SMAD1/5-phosphorylation. Biochemical assays with a panel of purified recombinant kinases demonstrated that cercosporamide directly inhibited kinase activity of type I BMPRs [also called activin receptor-like kinases (ALKs)]. In mammalian cells, cercosporamide selectively inhibited constitutively active BMPR type I-induced SMAD1/5 phosphorylation. Importantly, cercosporamide rescued the developmental defects caused by constitutively active Alk2 in zebrafish embryos. We believe that cercosporamide could be the first of a new class of molecules with potential to be developed further for clinical use against diseases that are causally linked to overactivation of BMPR signaling, including fibrodysplasia ossificans progressiva and diffuse intrinsic pontine glioma.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jelmer Hoeksma
- Hubrecht Institute - KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Gerard C M van der Zon
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
- Oncode Institute, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
- Oncode Institute, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Jeroen den Hertog
- Hubrecht Institute - KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
- Institute Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| |
Collapse
|
12
|
Gooding S, Leedham SJ. Gremlin 1 - small protein, big impact: the multiorgan consequences of disrupted BMP antagonism †. J Pathol 2020; 251:349-352. [PMID: 32472605 PMCID: PMC8576570 DOI: 10.1002/path.5479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 12/31/2022]
Abstract
Highly conserved, complex and interacting morphogen signalling pathways regulate adult stem cells and control cell fate determination across numerous different organs. In homeostasis, the bone morphogenetic protein (BMP) pathway predominantly promotes cell differentiation. Localised expression of ligand sequestering BMP antagonists, such as Gremlin 1 (Grem1), necessarily restricts BMP activity within the stem cell niche and facilitate stemness and self‐renewal. In a new paper, Rowan, Jahns et al show that acute deletion of Grem1 in adult mice, using a ubiquitous ROSA26‐Cre recombinase, induced not only severe intestinal enteropathy but also hypocellular bone marrow failure suggestive of stem cell niche collapse in both tissues. Grem1 has an increasingly recognised pleiotrophic role in a number of organ systems and is implicated across a wide range of disease states. Although the importance of Grem1 in intestinal stem cell regulation has been well described, a putative function in haematopoietic niche maintenance is novel and requires further exploration. Moreover, the complex and context‐specific regulation of Grem1, among a host of functionally convergent but structurally disparate BMP antagonists, warrants further research as we learn more about the pathogenic consequences of deranged expression of this small, but important, protein. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sarah Gooding
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Simon J Leedham
- Intestinal Stem Cell Biology Laboratory, Oxford Centre for Cancer Gene Research, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|