1
|
Dindo M, Bevilacqua A, Soligo G, Calabrese V, Monti A, Shen AQ, Rosti ME, Laurino P. Chemotactic Interactions Drive Migration of Membraneless Active Droplets. J Am Chem Soc 2024; 146:15965-15976. [PMID: 38620052 DOI: 10.1021/jacs.4c02823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
In nature, chemotactic interactions are ubiquitous and play a critical role in driving the collective behavior of living organisms. Reproducing these interactions in vitro is still a paramount challenge due to the complexity of mimicking and controlling cellular features, such as tangled metabolic networks, cytosolic macromolecular crowding, and cellular migration, on a microorganism size scale. Here, we generate enzymatically active cell-sized droplets able to move freely, and by following a chemical gradient, able to interact with the surrounding droplets in a collective manner. The enzyme within the droplets generates a pH gradient that extends outside the edge of the droplets. We discovered that the external pH gradient triggers droplet migration and controls its directionality, which is selectively toward the neighboring droplets. Hence, by changing the enzyme activity inside the droplet, we tuned the droplet migration speed. Furthermore, we showed that these cellular-like features can facilitate the reconstitution of a simple and linear protometabolic pathway and increase the final reaction product generation. Our work suggests that simple and stable membraneless droplets can reproduce complex biological phenomena, opening new perspectives as bioinspired materials and synthetic biology tools.
Collapse
Affiliation(s)
- Mirco Dindo
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Alessandro Bevilacqua
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Giovanni Soligo
- Complex Fluids and Flows Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Vincenzo Calabrese
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Alessandro Monti
- Complex Fluids and Flows Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Marco Edoardo Rosti
- Complex Fluids and Flows Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Paola Laurino
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
2
|
Han F, Xu B, Lu N, Caliari A, Lu H, Xia Y, Su'etsugu M, Xu J, Yomo T. Optimization and compartmentalization of a cell-free mixture of DNA amplification and protein translation. Appl Microbiol Biotechnol 2022; 106:8139-8149. [PMID: 36355086 DOI: 10.1007/s00253-022-12278-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Recent studies have shown that the reconstituted cell-free DNA replisome and in vitro transcription and translation systems from Escherichia coli are highly important in applied and synthetic biology. To date, no attempt has been made to combine those two systems. Here, we study the performance of the mixed two separately exploited systems commercially available as RCR and PURE systems. Regarding the genetic information flow from DNA to proteins, mixtures with various ratios of RCR/PURE gave low protein expression, possibly due to the well-known conflict between replication and transcription or inappropriate buffer conditions. To further increase the compatibility of the two systems, rationally designed reaction buffers with a lower concentration of nucleoside triphosphates in 50 mM HEPES (pH7.6) were evaluated, showing increased performance from RCR/PURE (85%/15%) in a time-dependent manner. The compatibility was also validated in compartmentalized cell-sized droplets encapsulating the same RCR/PURE soup. Our findings can help to better fine-tune the reaction conditions of RCR-PURE systems and provide new avenues for rewiring the central dogma of molecular biology as self-sustaining systems in synthetic cell models. KEY POINTS: • Commercial reconstituted DNA amplification (RCR) and transcription and translation (PURE) systems hamper each other upon mixing. • A newly optimized buffer with a low bias for PURE was formulated in the RCR-PURE mixture. • The performance and dynamics of RCR-PURE were investigated in either bulk or compartmentalized droplets.
Collapse
Affiliation(s)
- Fuhai Han
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Boying Xu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China.,Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Nan Lu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Adriano Caliari
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Hui Lu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Yang Xia
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Masayuki Su'etsugu
- Department of Life Science, College of Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Jian Xu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China.
| | - Tetsuya Yomo
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China.
| |
Collapse
|
3
|
Xu B, Ding J, Caliari A, Lu N, Han F, Xia Y, Xu J, Yomo T. Photoinducible Azobenzene trimethylammonium bromide (AzoTAB)-mediated giant vesicle fusion compatible with synthetic protein translation reactions. Biochem Biophys Res Commun 2022; 618:113-118. [PMID: 35717905 DOI: 10.1016/j.bbrc.2022.06.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
Lipid giant vesicles represent a versatile minimal model system to study the physicochemical basis of lipid membrane fusion. Membrane fusion processes are also of interest in synthetic cell research, where cell-mimicking behavior often requires dynamically interacting compartments. For these applications, triggered fusion compatible with transcription-translation systems is key in achieving complexity. Recently, a photosensitive surfactant, azobenzene trimethylammonium bromide (AzoTAB), has been reported to induce membrane fusion by a photoinduced conformational change. Using imaging flow cytometer (IFC) and confocal microscopy we quantitatively investigated photoinduced AzoTAB-mediated fusion of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine vesicles. The IFC analysis result showed that the fusion rate could reach about 40% following AzoTAB addition and UV irradiation in optimized conditions. We confirmed the compatibility between AzoTAB-induced vesicle fusion and a synthetic cell-free protein translation system using green fluorescent protein as reporter. With the techniques presented, cell-sized vesicle fusion can be quantitatively analyzed and optimized, paving the way to controllable synthetic cells with fundamental biological functions like the ability to express proteins from encapsulated plasmids.
Collapse
Affiliation(s)
- Boying Xu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, PR China; Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Jinquan Ding
- School of Software Engineering, East China Normal University, Shanghai, 200062, PR China
| | - Adriano Caliari
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, PR China
| | - Nan Lu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, PR China
| | - Fuhai Han
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, PR China
| | - Yang Xia
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, PR China
| | - Jian Xu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, PR China.
| | - Tetsuya Yomo
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, PR China.
| |
Collapse
|
4
|
Gözen I, Köksal ES, Põldsalu I, Xue L, Spustova K, Pedrueza-Villalmanzo E, Ryskulov R, Meng F, Jesorka A. Protocells: Milestones and Recent Advances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106624. [PMID: 35322554 DOI: 10.1002/smll.202106624] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The origin of life is still one of humankind's great mysteries. At the transition between nonliving and living matter, protocells, initially featureless aggregates of abiotic matter, gain the structure and functions necessary to fulfill the criteria of life. Research addressing protocells as a central element in this transition is diverse and increasingly interdisciplinary. The authors review current protocell concepts and research directions, address milestones, challenges and existing hypotheses in the context of conditions on the early Earth, and provide a concise overview of current protocell research methods.
Collapse
Affiliation(s)
- Irep Gözen
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Elif Senem Köksal
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Inga Põldsalu
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Lin Xue
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Karolina Spustova
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Esteban Pedrueza-Villalmanzo
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
- Department of Physics, University of Gothenburg, Universitetsplatsen 1, Gothenburg, 40530, Sweden
| | - Ruslan Ryskulov
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| | - Fanda Meng
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Aldo Jesorka
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| |
Collapse
|
5
|
Zhu Q, Scott TR, Tree DR. Using reactive dissipative particle dynamics to understand local shape manipulation of polymer vesicles. SOFT MATTER 2021; 17:24-39. [PMID: 33179711 DOI: 10.1039/d0sm01654c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biological cells have long been of interest to researchers due to their capacity to actively control their shape. Accordingly, there is significant interest in generating simplified synthetic protocells that can alter their shape based on an externally or internally generated stimulus. To date, most progress has been made towards controlling the global shape of a protocell, whereas less is known about generating a local shape change. Here, we seek to better understand the possible mechanisms for producing local morphological changes in a popular protocell system, the block copolymer vesicle. Accordingly, we have combined Dissipative Particle Dynamics (DPD) and the Split Reactive Brownian Dynamics algorithm (SRBD) to produce a simulation tool that is capable of modeling the dynamics of self-assembled polymer structures as they undergo chemical reactions. Using this Reactive DPD or RDPD method, we investigate local morphological change driven by either the microinjection of a stimulus or an enzymatically-produced stimulus. We find that sub-vesicle-scale morphological change can be induced by either a solvent stimulus that swells the vesicle membrane, or by a reactant stimulus that alters the chemistry of the block polymer in the membrane corona. Notably, the latter method results in a more persistent local deformation than the former, which we attribute to the slower diffusion of polymer chains relative to the solvent. We quantify this deformation and show that it can be modulated by altering the interaction parameter of the parts of the polymer chain that are affected by the stimulus.
Collapse
Affiliation(s)
- Qinyu Zhu
- Chemical Engineering Department, Brigham Young University, Provo, Utah, USA.
| | | | | |
Collapse
|
6
|
Frank T, Vogele K, Dupin A, Simmel FC, Pirzer T. Growth of Giant Peptide Vesicles Driven by Compartmentalized Transcription-Translation Activity. Chemistry 2020; 26:17356-17360. [PMID: 32777105 PMCID: PMC7839564 DOI: 10.1002/chem.202003366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 01/17/2023]
Abstract
Compartmentalization and spatial organization of biochemical reactions are essential for the establishment of complex metabolic pathways inside synthetic cells. Phospholipid and fatty acid membranes are the most natural candidates for this purpose, but also polymers have shown great potential as enclosures of artificial cell mimics. Herein, we report on the formation of giant vesicles in a size range of 1 μm-100 μm using amphiphilic elastin-like polypeptides. The peptide vesicles can accommodate cell-free gene expression reactions, which is demonstrated by the transcription of a fluorescent RNA aptamer and the production of a fluorescent protein. Importantly, gene expression inside the vesicles leads to a strong growth of their size-up to an order of magnitude in volume in several cases-which is driven by changes in osmotic pressure, resulting in fusion events and uptake of membrane peptides from the environment.
Collapse
Affiliation(s)
- Thomas Frank
- Physics-Department and ZNNTechnical University MunichAm Coulombwall 4a85748GarchingGermany
| | - Kilian Vogele
- Physics-Department and ZNNTechnical University MunichAm Coulombwall 4a85748GarchingGermany
| | - Aurore Dupin
- Physics-Department and ZNNTechnical University MunichAm Coulombwall 4a85748GarchingGermany
| | - Friedrich C. Simmel
- Physics-Department and ZNNTechnical University MunichAm Coulombwall 4a85748GarchingGermany
| | - Tobias Pirzer
- Physics-Department and ZNNTechnical University MunichAm Coulombwall 4a85748GarchingGermany
| |
Collapse
|
7
|
Köksal ES, Liese S, Xue L, Ryskulov R, Viitala L, Carlson A, Gözen I. Rapid Growth and Fusion of Protocells in Surface-Adhered Membrane Networks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002529. [PMID: 32776465 DOI: 10.1002/smll.202002529] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Elevated temperatures might have promoted the nucleation, growth, and replication of protocells on the early Earth. Recent reports have shown evidence that moderately high temperatures not only permit protocell assembly at the origin of life, but can have actively supported it. Here, the fast nucleation and growth of vesicular compartments from autonomously formed lipid networks on solid surfaces, induced by a moderate increase in temperature, are shown. Branches of the networks, initially consisting of self-assembled interconnected nanotubes, rapidly swell into microcompartments which can spontaneously encapsulate RNA fragments. The increase in temperature further causes fusion of adjacent network-connected compartments, resulting in the redistribution of the RNA. The experimental observations and the mathematical model indicate that the presence of nanotubular interconnections between protocells facilitates the fusion process.
Collapse
Affiliation(s)
- Elif S Köksal
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Susanne Liese
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, 0315, Norway
| | - Lin Xue
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Ruslan Ryskulov
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| | - Lauri Viitala
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| | - Andreas Carlson
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, 0315, Norway
| | - Irep Gözen
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, 0315, Norway
| |
Collapse
|