1
|
Bauer N, Boettger M, Papadaki S, Leitner T, Klostermann S, Kettenberger H, Georges G, Larraillet V, Gluhacevic von Kruechten D, Hillringhaus L, Vogt A, Ausländer S, Popp O. Procollagen-lysine 2-oxoglutarate 5-dioxygenases are responsible for 5R-hydroxylysine modification of therapeutic T-cell bispecific monoclonal antibodies produced by Chinese hamster ovary cells. Front Bioeng Biotechnol 2024; 12:1414408. [PMID: 39530057 PMCID: PMC11551027 DOI: 10.3389/fbioe.2024.1414408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
We present a detailed mass spectrometric analysis of three 2 + 1 T-cell bispecific monoclonal antibodies (TCB mAbs), where an unexpected +15.9950 Da mass shift in tryptic peptides was observed. This modification was attributed to the occurrence of 5R-hydroxylysine (Hyl) using a hybrid LC-MS/MS molecular characterization and CRISPR/Cas9 gene deletion approach. The modification was found at various sites within TCB mAbs, with a conspicuous hot spot motif mirroring a prior observation where Hyl was mapped to the CH1-VH Fab domain interface of IgGs. In contrast to the preceding report, our structural modeling analysis on TCB mAbs unveiled substantial differences in the orientation and flexibility of motifs in immediate proximity and across the artificial CH1-VL cross Fab interface and upstream elbow segment. Utilizing a hybrid database search, RNAseq, and a CRISPR/Cas9 knockout methodology in Chinese hamster ovary (CHO) production cell lines, procollagen-lysine, 2-oxoglutarate 5-dioxygenases (PLODs) were conclusively identified as the catalyzing enzymes accountable for the 5R-Hyl modification in TCB mAbs. To quantitatively inhibit Hyl formation in TCB mAbs, the activity of all three Chinese hamster PLOD isoenzymes needs to be depleted via CRISPR/Cas9 gene knockout. Moreover, our investigation identified cell culture iron availability, process duration, and clonal variability in CHO cells as elements influencing the levels of Hyl formation in TCB mAbs. This research offers a solution for circumventing Hyl formation in therapeutic complex mAb formats, such as TCB mAbs, produced in CHO cell culture processes, thereby addressing potential technical and biological challenges associated with unintended Hyl modification.
Collapse
Affiliation(s)
- Niels Bauer
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Boettger
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Styliani Papadaki
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Tanja Leitner
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Stefan Klostermann
- Data and Analytics, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Hubert Kettenberger
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Guy Georges
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Vincent Larraillet
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | | | - Lars Hillringhaus
- Special Chemistry, Roche Diagnostics, Roche Innovation Center Munich, Penzberg, Germany
| | - Annette Vogt
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Simon Ausländer
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Oliver Popp
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
2
|
Zhang X, Wang Y, Li H, Wang DW, Chen C. Insights into the post-translational modifications in heart failure. Ageing Res Rev 2024; 100:102467. [PMID: 39187021 DOI: 10.1016/j.arr.2024.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Heart failure (HF), as the terminal manifestation of multiple cardiovascular diseases, causes a huge socioeconomic burden worldwide. Despite the advances in drugs and medical-assisted devices, the prognosis of HF remains poor. HF is well-accepted as a myriad of subcellular dys-synchrony related to detrimental structural and functional remodelling of cardiac components, including cardiomyocytes, fibroblasts, endothelial cells and macrophages. Through the covalent chemical process, post-translational modifications (PTMs) can coordinate protein functions, such as re-localizing cellular proteins, marking proteins for degradation, inducing interactions with other proteins and tuning enzyme activities, to participate in the progress of HF. Phosphorylation, acetylation, and ubiquitination predominate in the currently reported PTMs. In addition, advanced HF is commonly accompanied by metabolic remodelling including enhanced glycolysis. Thus, glycosylation induced by disturbed energy supply is also important. In this review, firstly, we addressed the main types of HF. Then, considering that PTMs are associated with subcellular locations, we summarized the leading regulation mechanisms in organelles of distinctive cell types of different types of HF, respectively. Subsequently, we outlined the aforementioned four PTMs of key proteins and signaling sites in HF. Finally, we discussed the perspectives of PTMs for potential therapeutic targets in HF.
Collapse
Affiliation(s)
- Xudong Zhang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yan Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
3
|
Matsui Y, Togayachi A, Sakamoto K, Angata K, Kadomatsu K, Nishihara S. Integrated Systems Analysis Deciphers Transcriptome and Glycoproteome Links in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.25.573290. [PMID: 38234803 PMCID: PMC10793412 DOI: 10.1101/2023.12.25.573290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Glycosylation is increasingly recognized as a potential therapeutic target in Alzheimer's disease. In recent years, evidence of Alzheimer's disease-specific glycoproteins has been established. However, the mechanisms underlying their dysregulation, including tissue- and cell-type specificity, are not fully understood. We aimed to explore the upstream regulators of aberrant glycosylation by integrating multiple data sources using a glycogenomics approach. We identified dysregulation of the glycosyltransferase PLOD3 in oligodendrocytes as an upstream regulator of cerebral vessels and found that it is involved in COL4A5 synthesis, which is strongly correlated with amyloid fiber formation. Furthermore, COL4A5 has been suggested to interact with astrocytes via extracellular matrix receptors as a ligand. This study suggests directions for new therapeutic strategies for Alzheimer's disease targeting glycosyltransferases.
Collapse
Affiliation(s)
- Yusuke Matsui
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Biomedical and Health Informatics Unit, Department of Integrated Health Science, Nagoya University Graduate School of Medicine, Daiko-minami, Higashi-ku, Nagoya, 461-8673, Japan
| | - Akira Togayachi
- Glycan and Life Systems Integration Center (GaLSIC), Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Kazuma Sakamoto
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kiyohiko Angata
- Glycan and Life Systems Integration Center (GaLSIC), Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Kenji Kadomatsu
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shoko Nishihara
- Glycan and Life Systems Integration Center (GaLSIC), Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| |
Collapse
|
4
|
Tvaroška I. Glycosylation Modulates the Structure and Functions of Collagen: A Review. Molecules 2024; 29:1417. [PMID: 38611696 PMCID: PMC11012932 DOI: 10.3390/molecules29071417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Collagens are fundamental constituents of the extracellular matrix and are the most abundant proteins in mammals. Collagens belong to the family of fibrous or fiber-forming proteins that self-assemble into fibrils that define their mechanical properties and biological functions. Up to now, 28 members of the collagen superfamily have been recognized. Collagen biosynthesis occurs in the endoplasmic reticulum, where specific post-translational modification-glycosylation-is also carried out. The glycosylation of collagens is very specific and adds β-d-galactopyranose and β-d-Glcp-(1→2)-d-Galp disaccharide through β-O-linkage to hydroxylysine. Several glycosyltransferases, namely COLGALT1, COLGALT2, LH3, and PGGHG glucosidase, were associated the with glycosylation of collagens, and recently, the crystal structure of LH3 has been solved. Although not fully understood, it is clear that the glycosylation of collagens influences collagen secretion and the alignment of collagen fibrils. A growing body of evidence also associates the glycosylation of collagen with its functions and various human diseases. Recent progress in understanding collagen glycosylation allows for the exploitation of its therapeutic potential and the discovery of new agents. This review will discuss the relevant contributions to understanding the glycosylation of collagens. Then, glycosyltransferases involved in collagen glycosylation, their structure, and catalytic mechanism will be surveyed. Furthermore, the involvement of glycosylation in collagen functions and collagen glycosylation-related diseases will be discussed.
Collapse
Affiliation(s)
- Igor Tvaroška
- Institute of Chemistry, Slovak Academy of Sciences, 845 38 Bratislava, Slovakia
| |
Collapse
|
5
|
Kaur D, Khan H, Grewal AK, Singh TG. Glycosylation: A new signaling paradigm for the neurovascular diseases. Life Sci 2024; 336:122303. [PMID: 38016576 DOI: 10.1016/j.lfs.2023.122303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
A wide range of life-threatening conditions with complicated pathogenesis involves neurovascular disorders encompassing Neurovascular unit (NVU) damage. The pathophysiology of NVU is characterized by several features including tissue hypoxia, stimulation of inflammatory and angiogenic processes, and the initiation of intricate molecular interactions, collectively leading to an elevation in blood-brain barrier permeability, atherosclerosis and ultimately, neurovascular diseases. The presence of compelling data about the significant involvement of the glycosylation in the development of diseases has sparked a discussion on whether the abnormal glycosylation may serve as a causal factor for neurovascular disorders, rather than being just recruited as a secondary player in regulating the critical events during the development processes like embryo growth and angiogenesis. An essential tool for both developing new anti-ischemic therapies and understanding the processes of ischemic brain damage is undertaking pre-clinical studies of neurovascular disorders. Together with the post-translational modification of proteins, the modulation of glycosylation and its enzymes implicates itself in several abnormal activities which are known to accelerate neuronal vasculopathy. Despite the failure of the majority of glycosylation-based preclinical and clinical studies over the past years, there is a significant probability to provide neuroprotection utilizing modern and advanced approaches to target abnormal glycosylation activity at embryonic stages as well. This article focuses on a variety of experimental evidence to postulate the interconnection between glycosylation and vascular disorders along with possible treatment options.
Collapse
Affiliation(s)
- Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | | | | |
Collapse
|
6
|
Mattoteia D, Chiapparino A, Fumagalli M, De Marco M, De Giorgi F, Negro L, Pinnola A, Faravelli S, Roscioli T, Scietti L, Forneris F. Identification of Regulatory Molecular "Hot Spots" for LH/PLOD Collagen Glycosyltransferase Activity. Int J Mol Sci 2023; 24:11213. [PMID: 37446392 DOI: 10.3390/ijms241311213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Hydroxylysine glycosylations are post-translational modifications (PTMs) essential for the maturation and homeostasis of fibrillar and non-fibrillar collagen molecules. The multifunctional collagen lysyl hydroxylase 3 (LH3/PLOD3) and the collagen galactosyltransferase GLT25D1 are the human enzymes that have been identified as being responsible for the glycosylation of collagen lysines, although a precise description of the contribution of each enzyme to these essential PTMs has not yet been provided in the literature. LH3/PLOD3 is thought to be capable of performing two chemically distinct collagen glycosyltransferase reactions using the same catalytic site: an inverting beta-1,O-galactosylation of hydroxylysines (Gal-T) and a retaining alpha-1,2-glucosylation of galactosyl hydroxylysines (Glc-T). In this work, we have combined indirect luminescence-based assays with direct mass spectrometry-based assays and molecular structure studies to demonstrate that LH3/PLOD3 only has Glc-T activity and that GLT25D1 only has Gal-T activity. Structure-guided mutagenesis confirmed that the Glc-T activity is defined by key residues in the first-shell environment of the glycosyltransferase catalytic site as well as by long-range contributions from residues within the same glycosyltransferase (GT) domain. By solving the molecular structures and characterizing the interactions and solving the molecular structures of human LH3/PLOD3 in complex with different UDP-sugar analogs, we show how these studies could provide insights for LH3/PLOD3 glycosyltransferase inhibitor development. Collectively, our data provide new tools for the direct investigation of collagen hydroxylysine PTMs and a comprehensive overview of the complex network of shapes, charges, and interactions that enable LH3/PLOD3 glycosyltransferase activities, expanding the molecular framework and facilitating an improved understanding and manipulation of glycosyltransferase functions in biomedical applications.
Collapse
Affiliation(s)
- Daiana Mattoteia
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Antonella Chiapparino
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Marco Fumagalli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Matteo De Marco
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Francesca De Giorgi
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Lisa Negro
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Alberta Pinnola
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Silvia Faravelli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Tony Roscioli
- NSW Health Pathology Randwick Genomics Laboratory, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Neuroscience Research Australia (NeuRA), Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Luigi Scietti
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
7
|
Zhu Y, Liu J, Wu J, Feng H, Huang M, Lv H, Mei Y, Chen J, Pan Y, Zhou Y, Liu H. Discovery and characterization of hydroxylysine O-glycosylation in an engineered IL-2 fusion protein. Protein Expr Purif 2023; 205:106244. [PMID: 36737029 DOI: 10.1016/j.pep.2023.106244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
In the present study, an engineered interleukin-2 (IL-2) fusion protein consisting of an anti-human serum albumin nanobody linked by ASTKG and a (G4S)2 linker to IL-2 was constructed. Liquid chromatography-mass spectrometry (LC-MS) characterization was performed on the intact molecule and at the peptide level. The LC-MS molecular mass analysis for the engineered fusion protein showed the appearance of unreported +340 Da peaks, apart from the expected O-glycosylation-related peaks in the IL-2 domain. Through a combination analysis of a K120R mutated molecule (The lysine at the position of 120 was mutated to arginine while the rest amino acid sequence remain unchanged), the possibility of a non-cleaved valine-histidine-serine signal peptide was ruled out and the presence of hydroxylysine (HyK) O-glycosylation in the ASTKG linker was confirmed. HyK O-glycosylation have been reported in other proteins such as collagen, which occurs in the conserved Gly-Xaa-HyK motif and is catalyzed by lysyl hydroxylase-3 complex. The present study showed high similar conserved motif of HyK-O-glycosylation in collagen, implying the HyK O-glycosylation in the engineered IL-2 possibly was catalyzed by the Chinese hamster ovary homolog of enzymes promoting HyK O-glycosylation in collagen. Bioactivity testing results revealed that HyK-O-glycosylation had no obvious effect on the in vitro activity of engineered IL-2. Our study is the first to report HyK-O-glycosylation modifications in therapeutic proteins through LC-MS characterization and in vitro activity analysis, which expands the scope of post-translational modification knowledge of therapeutic proteins.
Collapse
Affiliation(s)
- Yanping Zhu
- Shanghai Junshi Biosciences Co. Ltd, Shanghai, China
| | - Jiyun Liu
- Shanghai Junshi Biosciences Co. Ltd, Shanghai, China
| | - Jing Wu
- Shanghai Junshi Biosciences Co. Ltd, Shanghai, China
| | - Hui Feng
- Shanghai Junshi Biosciences Co. Ltd, Shanghai, China
| | - Min Huang
- Thermo Fisher Scientific Co. Ltd, Shanghai, China
| | - Haiyin Lv
- Shanghai Junshi Biosciences Co. Ltd, Shanghai, China
| | - Yuanli Mei
- Shanghai Junshi Biosciences Co. Ltd, Shanghai, China
| | - Jiaoyu Chen
- Shanghai Junshi Biosciences Co. Ltd, Shanghai, China
| | - Yanping Pan
- Shanghai Junshi Biosciences Co. Ltd, Shanghai, China
| | - Yu Zhou
- Shanghai Junshi Biosciences Co. Ltd, Shanghai, China
| | - Hongchuan Liu
- Shanghai Junshi Biosciences Co. Ltd, Shanghai, China.
| |
Collapse
|
8
|
Reis JSD, Santos MARDC, da Costa KM, Freire-de-Lima CG, Morrot A, Previato JO, Previato LM, da Fonseca LM, Freire-de-Lima L. Increased Expression of the Pathological O-glycosylated Form of Oncofetal Fibronectin in the Multidrug Resistance Phenotype of Cancer Cells. Matrix Biol 2023; 118:47-68. [PMID: 36882122 DOI: 10.1016/j.matbio.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/15/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Changes in protein glycosylation are a hallmark of transformed cells and modulate numerous phenomena associated with cancer progression, such as the acquisition of multidrug resistance (MDR) phenotype. Different families of glycosyltransferases and their products have already been described as possible modulators of the MDR phenotype. Among the glycosyltransferases intensively studied in cancer research, UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase-6 (pp-GalNAc-T6), which is widely expressed in many organs and tissues, stands out. Its influence in several events associated with kidney, oral, pancreatic, renal, lung, gastric and breast cancer progression has already been described. However, its participation in the MDR phenotype has never been studied. Here, we demonstrate that human breast adenocarcinoma MCF-7 MDR cell lines, generated by chronic exposure to doxorubicin, in addition to exhibiting increased expression of proteins belonging to the ABC superfamily (ABCC1 and ABCG2), and anti-apoptotic proteins (Blcl-2 and Bcl-xL), also present high expression of pp-GalNAc-T6, the enzyme currently proposed as the main responsible for the biosynthesis of oncofetal fibronectin (onf-FN), a major extracellular matrix component expressed by cancer cells and embryonic tissues, but absent in healthy cells. Our results show that onf-FN, which is generated by the addition of a GalNAc unit at a specific threonine residue inside the type III homology connective segment (IIICS) domain of FN, is strongly upregulated during the acquisition of the MDR phenotype. Also, the silencing of pp-GalNAc-T6, not only compromises the expression of the oncofetal glycoprotein, but also made the MDR cells more sensitive to all anticancer drugs tested, partially reversing the MDR phenotype. Taken together, our results demonstrate for the first time the upregulation of the O-glycosylated oncofetal fibronectin, as well as the direct participation of pp-GalNAc-T6 during the acquisition of a MDR phenotype in a breast cancer model, giving credence to the hypothesis that in transformed cells, glycosyltransferases and/or their products, such as unusual extracellular matrix glycoproteins can be used as potential therapeutic targets for the treatment of cancer.
Collapse
Affiliation(s)
- Jhenifer Santos Dos Reis
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biologia Celular de Glicoconjugados, Rio de Janeiro, RJ 21941-902, Brazil
| | - Marcos André Rodrigues da Costa Santos
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biologia Celular de Glicoconjugados, Rio de Janeiro, RJ 21941-902, Brazil
| | - Kelli Monteiro da Costa
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biologia Celular de Glicoconjugados, Rio de Janeiro, RJ 21941-902, Brazil
| | - Celio Geraldo Freire-de-Lima
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biologia Celular de Glicoconjugados, Rio de Janeiro, RJ 21941-902, Brazil
| | - Alexandre Morrot
- Universidade Federal do Rio de Janeiro, Faculdade de Medicina, Rio de Janeiro, RJ 21941-902, Brazil; Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunoparasitologia, Rio de Janeiro, RJ 21040-360, Brazil
| | - Jose Osvaldo Previato
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biologia Celular de Glicoconjugados, Rio de Janeiro, RJ 21941-902, Brazil
| | - Lucia Mendonça Previato
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biologia Celular de Glicoconjugados, Rio de Janeiro, RJ 21941-902, Brazil
| | - Leonardo Marques da Fonseca
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biologia Celular de Glicoconjugados, Rio de Janeiro, RJ 21941-902, Brazil
| | - Leonardo Freire-de-Lima
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biologia Celular de Glicoconjugados, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
9
|
Ishikawa Y, Taga Y, Coste T, Tufa SF, Keene DR, Mizuno K, Tournier-Lasserve E, Gould DB. Lysyl hydroxylase 3-mediated post-translational modifications are required for proper biosynthesis of collagen α1α1α2(IV). J Biol Chem 2022; 298:102713. [PMID: 36403858 PMCID: PMC9761383 DOI: 10.1016/j.jbc.2022.102713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Collagens are the most abundant proteins in the body and among the most biosynthetically complex. A molecular ensemble of over 20 endoplasmic reticulum resident proteins participates in collagen biosynthesis and contributes to heterogeneous post-translational modifications. Pathogenic variants in genes encoding collagens cause connective tissue disorders, including osteogenesis imperfecta, Ehlers-Danlos syndrome, and Gould syndrome (caused by mutations in COL4A1 and COL4A2), and pathogenic variants in genes encoding proteins required for collagen biosynthesis can cause similar but overlapping clinical phenotypes. Notably, pathogenic variants in lysyl hydroxylase 3 (LH3) cause a multisystem connective tissue disorder that exhibits pathophysiological features of collagen-related disorders. LH3 is a multifunctional collagen-modifying enzyme; however, its precise role(s) and substrate specificity during collagen biosynthesis has not been defined. To address this critical gap in knowledge, we generated LH3 KO cells and performed detailed quantitative and molecular analyses of collagen substrates. We found that LH3 deficiency severely impaired secretion of collagen α1α1α2(IV) but not collagens α1α1α2(I) or α1α1α1(III). Amino acid analysis revealed that LH3 is a selective LH for collagen α1α1α2(IV) but a general glucosyltransferase for collagens α1α1α2(IV), α1α1α2(I), and α1α1α1(III). Importantly, we identified rare variants that are predicted to be pathogenic in the gene encoding LH3 in two of 113 fetuses with intracranial hemorrhage-a cardinal feature of Gould syndrome. Collectively, our findings highlight a critical role of LH3 in α1α1α2(IV) biosynthesis and suggest that LH3 pathogenic variants might contribute to Gould syndrome.
Collapse
Affiliation(s)
- Yoshihiro Ishikawa
- Department of Ophthalmology, University of California San Francisco, School of Medicine, California, USA.
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Ibaraki, Japan
| | - Thibault Coste
- Université Paris Cité, Inserm Neurodiderot, AP-HP Paris, France
| | - Sara F Tufa
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Douglas R Keene
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | | | | | - Douglas B Gould
- Department of Ophthalmology, University of California San Francisco, School of Medicine, California, USA; Department Anatomy, Cardiovascular Research Institute, Bakar Aging Research Institute, and Institute for Human Genetics, University of California, San Francisco, California, USA.
| |
Collapse
|
10
|
Scietti L, Moroni E, Mattoteia D, Fumagalli M, De Marco M, Negro L, Chiapparino A, Serapian SA, De Giorgi F, Faravelli S, Colombo G, Forneris F. A Fe2+-dependent self-inhibited state influences the druggability of human collagen lysyl hydroxylase (LH/PLOD) enzymes. Front Mol Biosci 2022; 9:876352. [PMID: 36090047 PMCID: PMC9453210 DOI: 10.3389/fmolb.2022.876352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Multifunctional human collagen lysyl hydroxylase (LH/PLOD) enzymes catalyze post-translational hydroxylation and subsequent glycosylation of collagens, enabling their maturation and supramolecular organization in the extracellular matrix (ECM). Recently, the overexpression of LH/PLODs in the tumor microenvironment results in abnormal accumulation of these collagen post-translational modifications, which has been correlated with increased metastatic progression of a wide variety of solid tumors. These observations make LH/PLODs excellent candidates for prospective treatment of aggressive cancers. The recent years have witnessed significant research efforts to facilitate drug discovery on LH/PLODs, including molecular structure characterizations and development of reliable high-throughput enzymatic assays. Using a combination of biochemistry and in silico studies, we characterized the dual role of Fe2+ as simultaneous cofactor and inhibitor of lysyl hydroxylase activity and studied the effect of a promiscuous Fe2+ chelating agent, 2,2’-bipyridil, broadly considered a lysyl hydroxylase inhibitor. We found that at low concentrations, 2,2’-bipyridil unexpectedly enhances the LH enzymatic activity by reducing the inhibitory effect of excess Fe2+. Together, our results show a fine balance between Fe2+-dependent enzymatic activity and Fe2+-induced self-inhibited states, highlighting exquisite differences between LH/PLODs and related Fe2+, 2-oxoglutarate dioxygenases and suggesting that conventional structure-based approaches may not be suited for successful inhibitor development. These insights address outstanding questions regarding druggability of LH/PLOD lysyl hydroxylase catalytic site and provide a solid ground for upcoming drug discovery and screening campaigns.
Collapse
Affiliation(s)
- Luigi Scietti
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- *Correspondence: Luigi Scietti, ; Federico Forneris,
| | - Elisabetta Moroni
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC-CNR), Milano, Italy
| | - Daiana Mattoteia
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Marco Fumagalli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Matteo De Marco
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Lisa Negro
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Antonella Chiapparino
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Francesca De Giorgi
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Silvia Faravelli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- *Correspondence: Luigi Scietti, ; Federico Forneris,
| |
Collapse
|
11
|
Koenig SN, Cavus O, Williams J, Bernier M, Tonniges J, Sucharski H, Dew T, Akel M, Baker P, Madiai F, De Giorgi F, Scietti L, Faravelli S, Forneris F, Mohler PJ, Bradley EA. New mechanistic insights to PLOD1-mediated human vascular disease. Transl Res 2022; 239:1-17. [PMID: 34400365 PMCID: PMC8671190 DOI: 10.1016/j.trsl.2021.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 01/03/2023]
Abstract
Heritable thoracic aortic disease and familial thoracic aortic aneurysm/dissection are important causes of human morbidity/mortality, most without identifiable genetic cause. In a family with familial thoracic aortic aneurysm/dissection, we identified a missense p. (Ser178Arg) variant in PLOD1 segregating with disease, and evaluated PLOD1 enzymatic activity, collagen characteristics and in human aortic vascular smooth muscle cells, studied the effect on function. Comparison with homologous PLOD3 enzyme indicated that the pathogenic variant may affect the N-terminal glycosyltransferase domain, suggesting unprecedented PLOD1 activity. In vitro assays demonstrated that wild-type PLOD1 is capable of processing UDP-glycan donor substrates, and that the variant affects the folding stability of the glycosyltransferase domain and associated enzymatic functions. The PLOD1 substrate lysine was elevated in the proband, however the enzymatic product hydroxylysine and total collagen content was not different, albeit despite collagen fibril narrowing and preservation of collagen turnover. In VSMCs overexpressing wild-type PLOD1, there was upregulation in procollagen gene expression (secretory function) which was attenuated in the variant, consistent with loss-of-function. In comparison, si-PLOD1 cells demonstrated hypercontractility and upregulation of contractile markers, providing evidence for phenotypic switching. Together, the findings suggest that the PLOD1 product is preserved, however newly identified glucosyltransferase activity of PLOD1 appears to be affected by folding stability of the variant, and is associated with compensatory vascular smooth muscle cells phenotypic switching to support collagen production, albeit with less robust fibril girth. Future studies should focus on the impact of PLOD1 folding/variant stability on the tertiary structure of collagen and ECM interactions.
Collapse
Affiliation(s)
- Sara N Koenig
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology, Columbus, Ohio; The Dorothy Davis Heart and Lung Research Institute and the Frick Center for Heart Failure and Arrhythmia, The Ohio State University, Columbus, Ohio
| | - Omer Cavus
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology, Columbus, Ohio; The Dorothy Davis Heart and Lung Research Institute and the Frick Center for Heart Failure and Arrhythmia, The Ohio State University, Columbus, Ohio
| | - Jordan Williams
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology, Columbus, Ohio; The Dorothy Davis Heart and Lung Research Institute and the Frick Center for Heart Failure and Arrhythmia, The Ohio State University, Columbus, Ohio
| | - Matthew Bernier
- The Ohio State University Mass Spectrometry and Proteomics Facility, Office of Research, Columbus, Ohio
| | - Jeff Tonniges
- The Ohio State University Microscopy and Imaging Facility (CMIF), Office of Research, Columbus, Ohio
| | - Holly Sucharski
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology, Columbus, Ohio; The Dorothy Davis Heart and Lung Research Institute and the Frick Center for Heart Failure and Arrhythmia, The Ohio State University, Columbus, Ohio
| | - Trevor Dew
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology, Columbus, Ohio; The Dorothy Davis Heart and Lung Research Institute and the Frick Center for Heart Failure and Arrhythmia, The Ohio State University, Columbus, Ohio
| | - Muhannad Akel
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology, Columbus, Ohio; The Dorothy Davis Heart and Lung Research Institute and the Frick Center for Heart Failure and Arrhythmia, The Ohio State University, Columbus, Ohio
| | - Peter Baker
- Nationwide Children's Hospital, Department of Pathology, Columbus, Ohio
| | - Francesca Madiai
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology, Columbus, Ohio; The Dorothy Davis Heart and Lung Research Institute and the Frick Center for Heart Failure and Arrhythmia, The Ohio State University, Columbus, Ohio
| | - Francesca De Giorgi
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Luigi Scietti
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Silvia Faravelli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Peter J Mohler
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology, Columbus, Ohio; The Dorothy Davis Heart and Lung Research Institute and the Frick Center for Heart Failure and Arrhythmia, The Ohio State University, Columbus, Ohio
| | - Elisa A Bradley
- The Dorothy Davis Heart and Lung Research Institute and the Frick Center for Heart Failure and Arrhythmia, The Ohio State University, Columbus, Ohio; The Ohio State University College of Medicine and Wexner Medical Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Columbus, Ohio.
| |
Collapse
|