1
|
Jiang S, Yang N, Tan RP, Moh ESX, Fu L, Packer NH, Whitelock JM, Wise SG, Rnjak-Kovacina J, Lord MS. Tuning Recombinant Perlecan Domain V to Regulate Angiogenic Growth Factors and Enhance Endothelialization of Electrospun Silk Vascular Grafts. Adv Healthc Mater 2024; 13:e2400855. [PMID: 38780418 DOI: 10.1002/adhm.202400855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Synthetic vascular grafts are used to bypass significant arterial blockage when native blood vessels are unsuitable, yet their propensity to fail due to poor blood compatibility and progressive graft stenosis remains an intractable challenge. Perlecan is the major heparan sulfate (HS) proteoglycan in the blood vessel wall with an inherent ability to regulate vascular cell activities associated with these major graft failure modes. Here the ability of the engineered form of perlecan domain V (rDV) to bind angiogenic growth factors is tuned and endothelial cell proliferation via the composition of its glycosaminoglycan (GAG) chain is supported. It is shown that the HS on rDV supports angiogenic growth factor signaling, including fibroblast growth factor (FGF) 2 and vascular endothelial growth factor (VEGF)165, while both HS and chondroitin sulfate on rDV are involved in VEGF189 signaling. It is also shown that physisorption of rDV on emerging electrospun silk fibroin vascular grafts promotes endothelialization and patency in a murine arterial interposition model, compared to the silk grafts alone. Together, this study demonstrates the potential of rDV as a tunable, angiogenic biomaterial coating that both potentiates growth factors and regulates endothelial cells.
Collapse
Affiliation(s)
- Shouyuan Jiang
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nanji Yang
- School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Richard P Tan
- School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Edward S X Moh
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, 2109, Australia
- School of Natural Science, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Lu Fu
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nicolle H Packer
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, 2109, Australia
- School of Natural Science, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - John M Whitelock
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Steven G Wise
- School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Megan S Lord
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
2
|
Vuong TNAM, Bartolf‐Kopp M, Andelovic K, Jungst T, Farbehi N, Wise SG, Hayward C, Stevens MC, Rnjak‐Kovacina J. Integrating Computational and Biological Hemodynamic Approaches to Improve Modeling of Atherosclerotic Arteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307627. [PMID: 38704690 PMCID: PMC11234431 DOI: 10.1002/advs.202307627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/12/2024] [Indexed: 05/07/2024]
Abstract
Atherosclerosis is the primary cause of cardiovascular disease, resulting in mortality, elevated healthcare costs, diminished productivity, and reduced quality of life for individuals and their communities. This is exacerbated by the limited understanding of its underlying causes and limitations in current therapeutic interventions, highlighting the need for sophisticated models of atherosclerosis. This review critically evaluates the computational and biological models of atherosclerosis, focusing on the study of hemodynamics in atherosclerotic coronary arteries. Computational models account for the geometrical complexities and hemodynamics of the blood vessels and stenoses, but they fail to capture the complex biological processes involved in atherosclerosis. Different in vitro and in vivo biological models can capture aspects of the biological complexity of healthy and stenosed vessels, but rarely mimic the human anatomy and physiological hemodynamics, and require significantly more time, cost, and resources. Therefore, emerging strategies are examined that integrate computational and biological models, and the potential of advances in imaging, biofabrication, and machine learning is explored in developing more effective models of atherosclerosis.
Collapse
Affiliation(s)
| | - Michael Bartolf‐Kopp
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
| | - Kristina Andelovic
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
| | - Tomasz Jungst
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
- Department of Orthopedics, Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht3584Netherlands
| | - Nona Farbehi
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydney2052Australia
- Tyree Institute of Health EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Garvan Weizmann Center for Cellular GenomicsGarvan Institute of Medical ResearchSydneyNSW2010Australia
| | - Steven G. Wise
- School of Medical SciencesUniversity of SydneySydneyNSW2006Australia
| | - Christopher Hayward
- St Vincent's HospitalSydneyVictor Chang Cardiac Research InstituteSydney2010Australia
| | | | - Jelena Rnjak‐Kovacina
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydney2052Australia
- Tyree Institute of Health EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Australian Centre for NanoMedicine (ACN)University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
3
|
Tian Z, Zhao C, Huang T, Yu L, Sun Y, Tao Y, Cao Y, Du R, Lin W, Zeng J. Silkworm Cocoon: Dual Functions as a Traditional Chinese Medicine and the Raw Material of Promising Biocompatible Carriers. Pharmaceuticals (Basel) 2024; 17:817. [PMID: 39065668 PMCID: PMC11279987 DOI: 10.3390/ph17070817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The silkworm cocoon (SC), both as a traditional Chinese medicine and as the raw material for biocompatible carriers, has been extensively used in the medical and biomedical fields. This review elaborates on the multiple functions of SC, with an in-depth analysis of its chemical composition, biological activities, as well as its applications in modern medicine. The primary chemical components of SC include silk fibroin (SF), silk sericin (SS), and other flavonoid-like bioactive compounds demonstrating various biological effects. These include hypoglycemic, cardioprotective, hypolipidemic, anti-inflammatory, antioxidant, and antimicrobial actions, which highlight its potential therapeutic benefits. Furthermore, the review explores the applications of silk-derived materials in drug delivery systems, tissue engineering, regenerative medicine, and in vitro diagnostics. It also highlights the progression of SC from laboratory research to clinical trials, emphasizing the safety and efficacy of SC-based materials across multiple medical domains. Moreover, we discuss the market products developed from silk proteins, illustrating the transition from traditional uses to contemporary medical applications. This review provides support in understanding the current research status of SC and the further development and application of its derived products.
Collapse
Affiliation(s)
- Zhijie Tian
- School of Chemistry & Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Chuncao Zhao
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Ting Huang
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Lining Yu
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Yijie Sun
- Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China;
| | - Yian Tao
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Yunfeng Cao
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Ruofei Du
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Wenhui Lin
- School of Chemistry & Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
| | - Jia Zeng
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| |
Collapse
|
4
|
Koczoń P, Dąbrowska A, Laskowska E, Łabuz M, Maj K, Masztakowski J, Bartyzel BJ, Bryś A, Bryś J, Gruczyńska-Sękowska E. Applications of Silk Fibroin in Human and Veterinary Medicine. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7128. [PMID: 38005058 PMCID: PMC10672237 DOI: 10.3390/ma16227128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
The properties of silk make it a promising material for medical applications, both in human and veterinary medicine. Its predominant amino acids, glycine and alanine, exhibit low chemical reactivity, reducing the risk of graft rejection, a notable advantage over most synthetic polymers. Hence, silk is increasingly used as a material for 3D printing in biomedicine. It can be used to build cell scaffolding with the desired cytocompatibility and biodegradability. In combination with gelatine, silk can be used in the treatment of arthritis, and as a hydrogel, to regenerate chondrocytes and mesenchymal cells. When combined with gelatine and collagen, it can also make skin grafts and regenerate the integumentary system. In the treatment of bone tissue, it can be used in combination with polylactic acid and hydroxyapatite to produce bone clips having good mechanical properties and high immunological tolerance. Furthermore, silk can provide a good microenvironment for the proliferation of bone marrow stem cells. Moreover, research is underway to produce artificial blood vessels using silk in combination with glycidyl methacrylate. Silk vascular grafts have demonstrated a high degree of patency and a satisfactory degree of endothelial cells coverage.
Collapse
Affiliation(s)
- Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 159C, Nowoursynowska St., 02-776 Warsaw, Poland; (P.K.); (J.B.)
| | - Alicja Dąbrowska
- The Scientific Society of Veterinary Medicine Students, Warsaw University of Life Sciences, 159, Nowoursynowska St., 02-776 Warsaw, Poland; (A.D.); (E.L.); (M.Ł.); (K.M.); (J.M.)
| | - Ewa Laskowska
- The Scientific Society of Veterinary Medicine Students, Warsaw University of Life Sciences, 159, Nowoursynowska St., 02-776 Warsaw, Poland; (A.D.); (E.L.); (M.Ł.); (K.M.); (J.M.)
| | - Małgorzata Łabuz
- The Scientific Society of Veterinary Medicine Students, Warsaw University of Life Sciences, 159, Nowoursynowska St., 02-776 Warsaw, Poland; (A.D.); (E.L.); (M.Ł.); (K.M.); (J.M.)
| | - Katarzyna Maj
- The Scientific Society of Veterinary Medicine Students, Warsaw University of Life Sciences, 159, Nowoursynowska St., 02-776 Warsaw, Poland; (A.D.); (E.L.); (M.Ł.); (K.M.); (J.M.)
| | - Jakub Masztakowski
- The Scientific Society of Veterinary Medicine Students, Warsaw University of Life Sciences, 159, Nowoursynowska St., 02-776 Warsaw, Poland; (A.D.); (E.L.); (M.Ł.); (K.M.); (J.M.)
| | - Bartłomiej J. Bartyzel
- Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 159, Nowoursynowska St., 02-776 Warsaw, Poland;
| | - Andrzej Bryś
- Department of Fundamental Engineering and Energetics, Institute of Mechanical Engineering, Warsaw University of Life Sciences, 164, Nowoursynowska St., 02-787 Warsaw, Poland;
| | - Joanna Bryś
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 159C, Nowoursynowska St., 02-776 Warsaw, Poland; (P.K.); (J.B.)
| | - Eliza Gruczyńska-Sękowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 159C, Nowoursynowska St., 02-776 Warsaw, Poland; (P.K.); (J.B.)
| |
Collapse
|
5
|
Su X, Wei L, Xu Z, Qin L, Yang J, Zou Y, Zhao C, Chen L, Hu N. Evaluation and Application of Silk Fibroin Based Biomaterials to Promote Cartilage Regeneration in Osteoarthritis Therapy. Biomedicines 2023; 11:2244. [PMID: 37626740 PMCID: PMC10452428 DOI: 10.3390/biomedicines11082244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterized by cartilage damage and degeneration. Traditional treatments such as NSAIDs and joint replacement surgery only relieve pain and do not achieve complete cartilage regeneration. Silk fibroin (SF) biomaterials are novel materials that have been widely studied and applied to cartilage regeneration. By mimicking the fibrous structure and biological activity of collagen, SF biomaterials can promote the proliferation and differentiation of chondrocytes and contribute to the formation of new cartilage tissue. In addition, SF biomaterials have good biocompatibility and biodegradability and can be gradually absorbed and metabolized by the human body. Studies in recent years have shown that SF biomaterials have great potential in treating OA and show good clinical efficacy. Therefore, SF biomaterials are expected to be an effective treatment option for promoting cartilage regeneration and repair in patients with OA. This article provides an overview of the biological characteristics of SF, its role in bone and cartilage injuries, and its prospects in clinical applications to provide new perspectives and references for the field of bone and cartilage repair.
Collapse
Affiliation(s)
- Xudong Su
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Li Wei
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Zhenghao Xu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Leilei Qin
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Jianye Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Yinshuang Zou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Chen Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Li Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Ning Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
6
|
Mitchell TC, Feng NL, Lam YT, Michael P, Santos M, Wise SG. Engineering vascular bioreactor systems to closely mimic physiological forces in vitro. TISSUE ENGINEERING PART B: REVIEWS 2022. [DOI: 10.1089/ten.teb.2022.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Timothy C Mitchell
- The University of Sydney, 4334, School of Medical Sciences, Sydney, New South Wales, Australia,
| | - Nicolas L Feng
- The University of Sydney, 4334, School of Medical Sciences, Sydney, New South Wales, Australia,
| | - Yuen Ting Lam
- The University of Sydney, 4334, School of Medical Sciences, Sydney, New South Wales, Australia,
| | - Praveesuda Michael
- The University of Sydney, 4334, School of Medical Sciences, Sydney, New South Wales, Australia,
| | - Miguel Santos
- The University of Sydney, 4334, School of Medical Sciences, Sydney, New South Wales, Australia,
| | - Steven G Wise
- The University of Sydney, 4334, School of Medical Sciences, Sydney, New South Wales, Australia,
| |
Collapse
|
7
|
Xiao R, Yuan Y, Xia H, Ge Q, Chen L, Zhu F, Xu J, Wang X, Fan Y, Wang Q, Yang Y, Chen K. Comparative transcriptome and proteome reveal synergistic functions of differentially expressed genes and proteins implicated in an over-dominant silkworm heterosis of increased silk yield. INSECT MOLECULAR BIOLOGY 2022; 31:551-567. [PMID: 35445454 DOI: 10.1111/imb.12779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/09/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
We previously observed an over-dominant silkworm heterosis of increased yield in a cross of Bombyx mori nuclear polyhydrosis virus-resistant strain NB with a susceptible strain 306. In the present study, we found that heterosis also exists in crosses of NB with other susceptible strains, indicating it is a more general phenomenon. We performed comparative transcriptome and proteome and identified 1624 differentially expressed genes (DEGs) and 298 differentially expressed proteins (DEPs) in silk glands between parents and F1 hybrids, of which 24 DEGs/DEPs showed consistent expression at mRNA and protein levels revealed by Venn joint analysis. Their expressions are completely non-additive, mainly transgressive and under low-parent, suggesting recombination of parental genomes may be the major genetic mechanism for the heterosis. GO and KEGG analyses revealed that they may function in generally similar but distinctive aspects of metabolisms and processes with signal transduction and translation being most affected. Notably, they may not only up-regulate biosynthesis and transport of silk proteins but also down-regulate other unrelated processes, synergistically and globally remodelling the silk gland to increase yield and cause the heterosis. Our findings contribute insights into the understanding of silkworm heterosis and silk gland development and provide targets for transgenic manipulation to further increase the silk yield.
Collapse
Affiliation(s)
- Rui Xiao
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yi Yuan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hengchuan Xia
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qi Ge
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jia Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xueqi Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yixuan Fan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yanhua Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
8
|
Haghighattalab M, Kajbafzadeh A, Baghani M, Gharehnazifam Z, Jobani BM, Baniassadi M. Silk Fibroin Hydrogel Reinforced With Magnetic Nanoparticles as an Intelligent Drug Delivery System for Sustained Drug Release. Front Bioeng Biotechnol 2022; 10:891166. [PMID: 35910019 PMCID: PMC9334656 DOI: 10.3389/fbioe.2022.891166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/30/2022] [Indexed: 11/22/2022] Open
Abstract
Due to the well-known biocompatibility, tunable biodegradability, and mechanical properties, silk fibroin hydrogel is an exciting material for localized drug delivery systems to decrease the therapy cost, decrease the negative side effects, and increase the efficiency of chemotherapy. However, the lack of remote stimuli response and active drug release behavior has yet to be analyzed comparatively. In this study, we developed magnetic silk fibroin (SF) hydrogel samples through the facile blending method, loaded with doxorubicin hydrochloride (DOX) and incorporated with different concentrations of iron oxide nanoparticles (IONPs), to investigate the presumable ability of controlled and sustained drug release under the various external magnetic field (EMF). The morphology and rheological properties of SF hydrogel and magnetic SF hydrogel were compared through FESEM images and rheometer analysis. Here, we demonstrated that adding magnetic nanoparticles (MNPs) into SFH decreased the complex viscosity and provided a denser porosity with a bigger pore size matrix structure, which allowed the drug to be released faster in the absence of an EMF. Release kinetic studies show that magnetic SF hydrogel could achieve controlled release of DOX in the presence of an EMF. Furthermore, the drug release from magnetic SF hydrogel decreased in the presence of a static magnetic field (SMF) and an alternating magnetic field (AMF), and the release rate decreased even more with the higher MNPs concentration and magnetic field strength. Subsequently, Wilms’ tumor and human fibroblast cells were cultured with almost the same concentration of DOX released in different periods, and cell viability was investigated using MTT assay. MTT results indicated that the Wilms’ tumor cells were more resistant to DOX than the human fibroblasts, and the IC50 values were calculated at 1.82 ± 0.001 and 2.73 ± 0.004 (μg/ml) for human fibroblasts and Wilms’ tumor cells, respectively. Wilms’ tumor cells showed drug resistance in a higher DOX concentration, indicating the importance of controlled drug delivery. These findings suggest that the developed magnetic SFH loaded with DOX holds excellent potential for intelligent drug delivery systems with noninvasive injection and remotely controlled abilities.
Collapse
Affiliation(s)
- Mahsa Haghighattalab
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Abdolmohammad Kajbafzadeh
- Department of Urology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Urology Research Center, Children’s Medical Center, Tehran, Iran
- *Correspondence: Abdolmohammad Kajbafzadeh, ; Majid Baniassadi,
| | - Mostafa Baghani
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Ziba Gharehnazifam
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Majid Baniassadi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
- *Correspondence: Abdolmohammad Kajbafzadeh, ; Majid Baniassadi,
| |
Collapse
|