1
|
Kirkgöz K, Vogtmann R, Xie Y, Zhao F, Riedel A, Adam LM, Freitag N, Harms C, Garcia MG, Plösch T, Gellhaus A, Blois SM. Placental glycosylation senses the anti-angiogenic milieu induced by human sFLT1 during pregnancy. J Reprod Immunol 2024; 164:104284. [PMID: 38908337 DOI: 10.1016/j.jri.2024.104284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Abnormal placental angiogenesis during gestation resulting from high levels of anti-angiogenic factors, soluble fms-like tyrosine kinase-1 (sFLT1) and soluble endoglin, has been implicated in the progression of preeclampsia (PE). This heterogeneous syndrome (defined by hypertension with or without proteinuria after 20 weeks of pregnancy) remains a major global health burden with long-term consequences for both mothers and child. Previously, we showed that in vivo systemic human (hsFLT1) overexpression led to reduced placental efficiency and PE-like syndrome in mice. Galectins (gal-1, -3 and -9) are critical determinants of vascular adaptation to pregnancy and dysregulation of the galectin-glycan circuits is associated with the development of this life-threatening disease. In this study, we assessed the galectin-glycan networks at the maternal-fetal interface associated with the hsFLT1-induced PE in mice. We observed an increase on the maternal gal-1 expression in the decidua and junctional zone layers of the placenta derived from hs FLT1high pregnancies. In contrast, placental gal-3 and gal-9 expression were not sensitive to the hsFLT1 overexpression. In addition, O- and N-linked glycan expression, poly-LacNAc sequences and terminal sialylation were down-regulated in hsFLT1 high placentas. Thus, the gal-1-glycan axis appear to play an important role counteracting the anti-angiogenic status caused by sFLT1, becoming critical for vascular adaptation at the maternal-fetal interface.
Collapse
Affiliation(s)
- Kürsat Kirkgöz
- Department of Obstetrics and Fetal Medicine, Glycoimmunology Research Group, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rebekka Vogtmann
- Department of Gynecology and Obstetrics, University Hospital Essen, Germany
| | - Yiran Xie
- Department of Obstetrics and Fetal Medicine, Glycoimmunology Research Group, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fangqi Zhao
- Department of Obstetrics and Fetal Medicine, Glycoimmunology Research Group, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alina Riedel
- Department of Gynecology and Obstetrics, University Hospital Essen, Germany
| | - Lisa-Marie Adam
- Department of Obstetrics and Fetal Medicine, Glycoimmunology Research Group, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nancy Freitag
- Department of Obstetrics and Fetal Medicine, Glycoimmunology Research Group, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charlotte Harms
- Department of Obstetrics and Fetal Medicine, Glycoimmunology Research Group, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mariana G Garcia
- Department of Obstetrics and Fetal Medicine, Glycoimmunology Research Group, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Perinatal Neurobiology, Department of Human Medicine, School of Medicine and Health Sciences, Carlvon Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University Hospital Essen, Germany
| | - Sandra M Blois
- Department of Obstetrics and Fetal Medicine, Glycoimmunology Research Group, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
2
|
Zhang L, Feng Y, Zhang Y, Sun X, Ma Q, Ma F. The Sweet Relationship between the Endometrium and Protein Glycosylation. Biomolecules 2024; 14:770. [PMID: 39062484 PMCID: PMC11274983 DOI: 10.3390/biom14070770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The endometrium is an important part of women's bodies for menstruation and pregnancy. Various proteins are widely expressed on the surface of endometrial cells, and glycosylation is an important post-translational modification of proteins. Glycosylation modification is closely related not only to endometrial receptivity but also to common diseases related to endometrial receptivity. Glycosylation can improve endometrial receptivity, promote embryo localization and trophoblast cell adhesion and invasion, and contribute to successful implantation. Two diseases related to endometrial receptivity include endometriosis and endometrial cancer. As a common benign disease in women, endometriosis is often accompanied by an increased menstrual volume, prolonged menstrual periods, progressive and aggravated dysmenorrhea, and may be accompanied by infertility. Protein glycosylation modification of the endometrial surface indicates the severity of the disease and may be an important pathogenesis of endometriosis. In cancer, glycosylation modifications on the surface of tumor cells can be a marker to distinguish the type and severity of endometrial cancer. This review highlights the role of protein glycosylation in embryo-maternal endometrial dialogue and explores its potential mechanisms in diseases related to endometrial receptivity, which could provide a new clinical approach for their diagnosis and treatment.
Collapse
Affiliation(s)
- Linyu Zhang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Feng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yue Zhang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Xinrui Sun
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Qianhong Ma
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Zhong J, Li J, Burton GJ, Koistinen H, Cheung KW, Ng EHY, Yao Y, Yeung WSB, Lee CL, Chiu PCN. The functional roles of protein glycosylation in human maternal-fetal crosstalk. Hum Reprod Update 2024; 30:81-108. [PMID: 37699855 DOI: 10.1093/humupd/dmad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/20/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND The establishment of maternal-fetal crosstalk is vital to a successful pregnancy. Glycosylation is a post-translational modification in which glycans (monosaccharide chains) are attached to an organic molecule. Glycans are involved in many physiological and pathological processes. Human endometrial epithelium, endometrial gland secretions, decidual immune cells, and trophoblasts are highly enriched with glycoconjugates and glycan-binding molecules important for a healthy pregnancy. Aberrant glycosylation in the placenta and uterus has been linked to repeated implantation failure and various pregnancy complications, but there is no recent review summarizing the functional roles of glycosylation at the maternal-fetal interface and their associations with pathological processes. OBJECTIVE AND RATIONALE This review aims to summarize recent findings on glycosylation, glycosyltransferases, and glycan-binding receptors at the maternal-fetal interface, and their involvement in regulating the biology and pathological conditions associated with endometrial receptivity, placentation and maternal-fetal immunotolerance. Current knowledge limitations and future insights into the study of glycobiology in reproduction are discussed. SEARCH METHODS A comprehensive PubMed search was conducted using the following keywords: glycosylation, glycosyltransferases, glycan-binding proteins, endometrium, trophoblasts, maternal-fetal immunotolerance, siglec, selectin, galectin, repeated implantation failure, early pregnancy loss, recurrent pregnancy loss, preeclampsia, and fetal growth restriction. Relevant reports published between 1980 and 2023 and studies related to these reports were retrieved and reviewed. Only publications written in English were included. OUTCOMES The application of ultrasensitive mass spectrometry tools and lectin-based glycan profiling has enabled characterization of glycans present at the maternal-fetal interface and in maternal serum. The endometrial luminal epithelium is covered with highly glycosylated mucin that regulates blastocyst adhesion during implantation. In the placenta, fucose and sialic acid residues are abundantly presented on the villous membrane and are essential for proper placentation and establishment of maternal-fetal immunotolerance. Glycan-binding receptors, including selectins, sialic-acid-binding immunoglobulin-like lectins (siglecs) and galectins, also modulate implantation, trophoblast functions and maternal-fetal immunotolerance. Aberrant glycosylation is associated with repeated implantation failure, early pregnancy loss and various pregnancy complications. The current limitation in the field is that most glycobiological research relies on association studies, with few studies revealing the specific functions of glycans. Technological advancements in analytic, synthetic and functional glycobiology have laid the groundwork for further exploration of glycans in reproductive biology under both physiological and pathological conditions. WIDER IMPLICATIONS A deep understanding of the functions of glycan structures would provide insights into the molecular mechanisms underlying their involvement in the physiological and pathological regulation of early pregnancy. Glycans may also potentially serve as novel early predictive markers and therapeutic targets for repeated implantation failure, pregnancy loss, and other pregnancy complications.
Collapse
Affiliation(s)
- Jiangming Zhong
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jianlin Li
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Graham J Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hannu Koistinen
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ka Wang Cheung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuanqing Yao
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
4
|
Emerging in vitro platforms and omics technologies for studying the endometrium and early embryo-maternal interface in humans. Placenta 2022; 125:36-46. [DOI: 10.1016/j.placenta.2022.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/09/2021] [Accepted: 01/09/2022] [Indexed: 12/11/2022]
|
5
|
Ziganshina MM, Dolgushina NV, Kulikova GV, Fayzullina NM, Yarotskaya EL, Khasbiullina NR, Abdurakhmanova NF, Asaturova AV, Shchegolev AI, Dovgan AA, Sukhikh GT. Epithelial apical glycosylation changes associated with thin endometrium in women with infertility - a pilot observational study. Reprod Biol Endocrinol 2021; 19:73. [PMID: 33992099 PMCID: PMC8122553 DOI: 10.1186/s12958-021-00750-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Low endometrial receptivity is one of the major factors affecting successful implantation in assisted reproductive technologies (ART). Infertile patients with thin endometrium have a significantly lower cumulative clinical pregnancy rate than patients with normal endometrium. Molecular pathophysiology of low receptivity of thin endometrium remains understudied. We have investigated composition of glycocalyx of the apical surface of luminal and glandular epithelial cells in thin endometrium of infertile women. METHODS Thirty-two patients with tubal-peritoneal infertility undergoing in vitro fertilization (IVF) were included in the study. Endometrial samples were obtained in a natural menstrual cycle. Patients were divided into two groups: patients with normal endometrium (≥8 mm) and with thin endometrium (< 8 mm). Histochemical and immunohistochemical analysis of paraffin-embedded endometrial samples was performed using six biotinylated lectins (UEA-I, MAL-II, SNA, VVL, ECL, Con A) and anti-LeY and MECA-79 monoclonal antibodies (MAbs). RESULTS Complex glycans analysis taking into account the adjusted specificity of glycan-binding MAbs revealed 1.3 times less expression of MECA-79 glycans on the apical surface of the luminal epithelial cells of thin endometrium compared to normal endometrium; this deficiency may adversely affect implantation, since MECA-79 glycans are a ligand of L-selectin and mediate intercellular interactions. The glycans containing a type-2 unit Galβ1-4GlcNAcβ (LacNAc) but lacking sulfo-residues at 6-OH of GlcNAcβ, and binding to MECA-79 MAbs were found; they can be considered as potential markers of endometrium receptivity. Expression of the lectins-stained glycans on the apical surfaces of the luminal and glandular epithelial cells did not differ significantly. Correlation between the expression of difucosylated oligosaccharide LeY on the apical surfaces of the luminal and glandular epithelial cells was found in patients with thin endometrium and recurrent implantation failure. A similar relationship was shown for mannose-rich glycans. CONCLUSIONS Specific features of key glycans expression in epithelial compartments of thin endometrium may be essential for morphogenesis of the endometrial functional layer and explain its low receptivity.
Collapse
Affiliation(s)
- Marina M Ziganshina
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology, and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russian Federation, 117997.
| | - Nataliya V Dolgushina
- R&D Department, National Medical Research Center for Obstetrics, Gynecology, and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, 117997, Russia
- First Moscow State Medical University named after I.M. Sechenov, Trubetskaya str. 8-2, Moscow, 119991, Russia
| | - Galina V Kulikova
- Department of Pathology, National Medical Research Center for Obstetrics, Gynecology, and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, 117997, Russia
| | - Nafisa M Fayzullina
- Department of Pathology, National Medical Research Center for Obstetrics, Gynecology, and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, 117997, Russia
| | - Ekaterina L Yarotskaya
- Department of International Cooperation, National Medical Research Center for Obstetrics, Gynecology, and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, 117997, Russia
| | - Nailia R Khasbiullina
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology, and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russian Federation, 117997
| | - Nigora F Abdurakhmanova
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology, and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, 117997, Russia
| | - Aleksandra V Asaturova
- Department of Pathology, National Medical Research Center for Obstetrics, Gynecology, and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, 117997, Russia
| | - Alexander I Shchegolev
- Department of Pathology, National Medical Research Center for Obstetrics, Gynecology, and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, 117997, Russia
| | - Alina A Dovgan
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology, and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, 117997, Russia
| | - Gennady T Sukhikh
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology, and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russian Federation, 117997
- First Moscow State Medical University named after I.M. Sechenov, Trubetskaya str. 8-2, Moscow, 119991, Russia
| |
Collapse
|
6
|
Fernando SR, Kottawatta KSA, Jiang L, Chen X, Cheng KW, Wong BPC, Ng EHY, Yeung WSB, Lee KF. Differential expression of protein disulfide isomerase (PDI) in regulating endometrial receptivity in humans. Reprod Biol 2021; 21:100498. [PMID: 33677360 DOI: 10.1016/j.repbio.2021.100498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/17/2022]
Abstract
Estrogen and progesterone regulate the expression of endometrial proteins that determine endometrial receptivity for embryo implantation. The protein disulfide isomerase (PDI) family of proteins play a diverse role in regulating protein modification and redox function. Although the role of PDIs in cancer progression has been widely studied, their role in endometrial receptivity is largely unknown. We have focused on the expressions of PDIA1, PDIA2, PDIA3, PDIA4, PDIA5, and PDIA6 isoforms in endometrial epithelium under the influence of estrogen and progesterone and investigated their functional role in regulating endometrial receptivity. We found PDIA1-6 transcripts were expressed in endometrial epithelial Ishikawa, RL95-2, AN3CA, and HEC1-B cell lines. The expression of PDIA1 was low and PDIA5 was high in HEC1-B cells, whereas PDIA2 was high in both AN3CA and HEC1-B cells. In Ishikawa cells, estrogen (10 and 100 nM) upregulated PDIA1 and PDIA6, whereas estrogen (100 nM) downregulated PDIA4 and PDIA5; and progesterone (0.1 and 1 μM) downregulated transcript expressions of PDIA1-6. In human endometrial samples, significantly lowered transcript expressions of PDIA2 and PDIA5 were observed in the secretory phase compared with the proliferative phase, whereas no change was observed in the other studied transcripts throughout the cycle. Inhibition of PDI by PDI antibody (5 and 10 μg/mL) and PDI inhibitor bacitracin (1 and 5 mM) significantly increased the attachment of Jeg-3 spheroids onto AN3CA cells. Taken together, our study suggests a role of PDI in regulating endometrial receptivity and the possibility of using PDI inhibitors to enhance endometrial receptivity.
Collapse
Affiliation(s)
- Sudini Ranshaya Fernando
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla, Sri Lanka
| | - Kottawattage Sanda Arunika Kottawatta
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Science, The University of Peradeniya, Peradeniya, Sri Lanka
| | - Luhan Jiang
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Xian Chen
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Kiu-Wai Cheng
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Benancy Po-Chau Wong
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Ernest Hung-Yu Ng
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Futian District, Shenzhen, China
| | - William Shu-Biu Yeung
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Futian District, Shenzhen, China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Futian District, Shenzhen, China.
| |
Collapse
|
7
|
Ojosnegros S, Seriola A, Godeau AL, Veiga A. Embryo implantation in the laboratory: an update on current techniques. Hum Reprod Update 2021; 27:501-530. [PMID: 33410481 DOI: 10.1093/humupd/dmaa054] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 07/18/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The embryo implantation process is crucial for the correct establishment and progress of pregnancy. During implantation, the blastocyst trophectoderm cells attach to the epithelium of the endometrium, triggering intense cell-to-cell crosstalk that leads to trophoblast outgrowth, invasion of the endometrial tissue, and formation of the placenta. However, this process, which is vital for embryo and foetal development in utero, is still elusive to experimentation because of its inaccessibility. Experimental implantation is cumbersome and impractical in adult animal models and is inconceivable in humans. OBJECTIVE AND RATIONALE A number of custom experimental solutions have been proposed to recreate different stages of the implantation process in vitro, by combining a human embryo (or a human embryo surrogate) and endometrial cells (or a surrogate for the endometrial tissue). In vitro models allow rapid high-throughput interrogation of embryos and cells, and efficient screening of molecules, such as cytokines, drugs, or transcription factors, that control embryo implantation and the receptivity of the endometrium. However, the broad selection of available in vitro systems makes it complicated to decide which system best fits the needs of a specific experiment or scientific question. To orient the reader, this review will explore the experimental options proposed in the literature, and classify them into amenable categories based on the embryo/cell pairs employed.The goal is to give an overview of the tools available to study the complex process of human embryo implantation, and explain the differences between them, including the advantages and disadvantages of each system. SEARCH METHODS We performed a comprehensive review of the literature to come up with different categories that mimic the different stages of embryo implantation in vitro, ranging from initial blastocyst apposition to later stages of trophoblast invasion or gastrulation. We will also review recent breakthrough advances on stem cells and organoids, assembling embryo-like structures and endometrial tissues. OUTCOMES We highlight the most relevant systems and describe the most significant experiments. We focus on in vitro systems that have contributed to the study of human reproduction by discovering molecules that control implantation, including hormones, signalling molecules, transcription factors and cytokines. WIDER IMPLICATIONS The momentum of this field is growing thanks to the use of stem cells to build embryo-like structures and endometrial tissues, and the use of bioengineering to extend the life of embryos in culture. We propose to merge bioengineering methods derived from the fields of stem cells and reproduction to develop new systems covering a wider window of the implantation process.
Collapse
Affiliation(s)
- Samuel Ojosnegros
- Bioengineering in Reproductive Health, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anna Seriola
- Bioengineering in Reproductive Health, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Amélie L Godeau
- Bioengineering in Reproductive Health, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anna Veiga
- B arcelona Stem Cell Bank, Regenerative Medicine Programme, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, Barcelona, Spain.,Reproductive Medicine Service, Dexeus Mujer, Hospital Universitari Dexeus, Barcelona, Spain
| |
Collapse
|
8
|
Yu M, Qin H, Wang H, Liu J, Liu S, Yan Q. N-glycosylation of uterine endometrium determines its receptivity. J Cell Physiol 2019; 235:1076-1089. [PMID: 31276203 DOI: 10.1002/jcp.29022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/22/2019] [Indexed: 01/13/2023]
Abstract
Glycosylation alters the molecular and functional features of glycoproteins, which is closely related with many physiological processes and diseases. During "window of implantation", uterine endometrium transforms into a receptive status to accept the embryo, thereby establishing successful embryo implantation. In this article, we aimed at investigating the role of N-glycosylation, a major modification type of glycoproteins, in the process of endometrial receptivity establishment. Results found that human uterine endometrial tissues at mid-secretory phase exhibited Lectin PHA-E+L (recognizes the branched N-glycans) positive N-glycans as measured by the Lectin fluorescent staining analysis. By utilizing in vitro implantation model, we found that de-N-glycosylation of human endometrial Ishikawa and RL95-2 cells by tunicamycin (inhibitor of N-glycosylation) and peptide-N-glycosidase F (PNGase F) impaired their receptive ability to human trophoblastic JAR cells. Meanwhile, N-glycosylation of integrin αvβ3 and leukemia inhibitory factor receptor (LIFR) are found to play key roles in regulating the ECM-dependent FAK/Paxillin and LIF-induced STAT3 signaling pathways, respectively, thus affecting the receptive potentials of endometrial cells. Furthermore, in vivo experiments and primary mouse endometrial cells-embryos coculture model further verified that N-glycosylation of mouse endometrial cells contributed to the successful implantation. Our results provide new evidence to show that N-glycosylation of uterine endometrium is essential for maintaining the receptive functions, which gives a better understanding of the glycobiology of implantation.
Collapse
Affiliation(s)
- Ming Yu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, Liaoning, China
| | - Huamin Qin
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hao Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, Liaoning, China
| | - Jianwei Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, Liaoning, China
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, Liaoning, China
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, Liaoning, China
| |
Collapse
|
9
|
Cui D, Sui L, Han X, Zhang M, Guo Z, Chen W, Yu X, Sun Q, Dong M, Ma T, Kong Y. Aquaporin-3 mediates ovarian steroid hormone-induced motility of endometrial epithelial cells. Hum Reprod 2019; 33:2060-2073. [PMID: 30285121 PMCID: PMC6195804 DOI: 10.1093/humrep/dey290] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/07/2018] [Indexed: 12/17/2022] Open
Abstract
STUDY QUESTION How does aquaporin-3 (AQP3) affect endometrial receptivity? SUMMARY ANSWER AQP3, which is regulated by the combination and estrogen (E2) and progesterone (P4), induces epithelial-mesenchymal transition (EMT) of endometrial epithelial cells. WHAT IS KNOWN ALREADY Embryo implantation is an extremely complex process, and endometrial receptivity is essential for successful embryo implantation. Estrogen and progesterone regulate endometrial receptivity. AQP3, which is regulated by estrogen (E2), increases cell migration and invasion ability by regulating the expression of EMT-related factors and influencing the reorganization of the actin cytoskeleton. STUDY DESIGN, SIZE, DURATION This study investigated the pathophysiological significance of AQP3 in human endometrial function during different phases of the menstrual cycle. PARTICIPANTS/MATERIALS, SETTING, METHODS AQP3 expression levels during different phases of the menstrual cycle were measured using immunohistochemical assays. In cells of different receptivity (high-receptive RL95-2 cells and low-receptive HEC-1A cells), the expression of AQP3 was measured using western blotting, qRT-PCR and immunofluorescence assays. Activities of AQP3, and its regulation by E2 and P4, were studied through in-vitro experiments using RL95-2 cells. MAIN RESULTS AND THE ROLE OF CHANCE AQP3 expression in the mid- and late-secretory phases of the human endometrium is significantly higher than in other phases. Since AQP3 expression levels were higher in RL95-2 cells than in HEC-1A cells, mechanisms of AQP3 regulation by E2 and P4 were studied using RL95-2 cells. We provided the first report that P4 up-regulates AQP3 by directly targeting the promoter of the AQP3 gene. The up-regulation of AQP3 expression by a combination of E2 and P4 is significantly higher than that caused by either E2 or P4 alone. Together E2 and P4 promote RL95-2 cell migration and invasion by inducing EMT through AQP3. We also found that AQP3 co-localizes with ezrin and affects the formation of filopodia and lamellipodia during the E2 and P4-induced EMT process but has no effect on the expression of ezrin and F-actin. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION It is still unclear whether AQP3 is a main regulator of endometrial receptivity or one of several factors influencing the process. WIDER IMPLICATIONS OF THE FINDINGS Further investigation on AQP3 may contribute to a greater understanding of endometrial receptivity. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Natural Scientific Grants of China (No. 31570798), the Program for Liaoning Excellent Talents in University (LR2017042), the Doctoral Scientific Research Foundation of Liaoning province (201601236), and the Liaoning Provincial Program for Top Discipline of Basic Medical Sciences. There are no conflicts of interest.
Collapse
Affiliation(s)
- Dan Cui
- Core Lab Glycobiol & Glycoengn,college of Basic Sciences, Dalian Medical University, Dalian , Liaoning, China
| | - Linlin Sui
- Core Lab Glycobiol & Glycoengn,college of Basic Sciences, Dalian Medical University, Dalian , Liaoning, China
| | - Xiao Han
- Core Lab Glycobiol & Glycoengn,college of Basic Sciences, Dalian Medical University, Dalian , Liaoning, China
| | - Man Zhang
- Core Lab Glycobiol & Glycoengn,college of Basic Sciences, Dalian Medical University, Dalian , Liaoning, China
| | - Zhenzhen Guo
- Core Lab Glycobiol & Glycoengn,college of Basic Sciences, Dalian Medical University, Dalian , Liaoning, China
| | - Wanfang Chen
- Core Lab Glycobiol & Glycoengn,college of Basic Sciences, Dalian Medical University, Dalian , Liaoning, China
| | - Xinxin Yu
- Core Lab Glycobiol & Glycoengn,college of Basic Sciences, Dalian Medical University, Dalian , Liaoning, China
| | - Qiannan Sun
- Core Lab Glycobiol & Glycoengn,college of Basic Sciences, Dalian Medical University, Dalian , Liaoning, China
| | - Ming Dong
- Core Lab Glycobiol & Glycoengn,college of Basic Sciences, Dalian Medical University, Dalian , Liaoning, China
| | - Tonghui Ma
- Core Lab Glycobiol & Glycoengn,college of Basic Sciences, Dalian Medical University, Dalian , Liaoning, China
| | - Ying Kong
- Core Lab Glycobiol & Glycoengn,college of Basic Sciences, Dalian Medical University, Dalian , Liaoning, China
| |
Collapse
|
10
|
Yu M, Wang H, Liu J, Qin H, Liu S, Yan Q. The sialyltransferase ST3Gal3 facilitates the receptivity of the uterine endometrium
in vitro
and
in vivo. FEBS Lett 2018; 592:3696-3707. [DOI: 10.1002/1873-3468.13252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/13/2018] [Accepted: 09/02/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Ming Yu
- Department of Biochemistry and Molecular Biology Liaoning Provincial Core Lab of Glycobiology and Glycoengineering Dalian Medical University China
| | - Hao Wang
- Department of Biochemistry and Molecular Biology Liaoning Provincial Core Lab of Glycobiology and Glycoengineering Dalian Medical University China
| | - Jianwei Liu
- Department of Biochemistry and Molecular Biology Liaoning Provincial Core Lab of Glycobiology and Glycoengineering Dalian Medical University China
| | - Huamin Qin
- Department of Pathology The Second Affiliated Hospital of Dalian Medical University China
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology Liaoning Provincial Core Lab of Glycobiology and Glycoengineering Dalian Medical University China
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology Liaoning Provincial Core Lab of Glycobiology and Glycoengineering Dalian Medical University China
| |
Collapse
|
11
|
Zheng Q, Zhang D, Yang YU, Cui X, Sun J, Liang C, Qin H, Yang X, Liu S, Yan Q. MicroRNA-200c impairs uterine receptivity formation by targeting FUT4 and α1,3-fucosylation. Cell Death Differ 2017; 24:2161-2172. [PMID: 28914881 PMCID: PMC5686352 DOI: 10.1038/cdd.2017.136] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/12/2022] Open
Abstract
Successful embryo implantation requires the establishment of a receptive endometrium. Poor endometrial receptivity has generally been considered as a major cause of infertility. Protein glycosylation is associated with many physiological and pathological processes. The fucosylation is catalyzed by the specific fucosyltransferases. Fucosyltransferase IV (FUT4) is the key enzyme for the biosynthesis of α1,3-fucosylated glycans carried by glycoproteins, and the previous studies showed FUT4 expression changed dynamically during perimplantation. MicroRNAs (miRNAs) are known to regulate specific gene expression. However, the relationship between specific miRNA and FUT4, as well as the role of miRNA/FUT4 in the establishment of uterine receptivity remains elusive. In the current study, we reported that the levels of miR-200 family members were significantly increased in serum from infertility and abortion patients relative to healthy non-pregnancy and early-pregnancy women. Among these, miR-200c was the most sensitive diagnostic criterion for infertility by receiver operating characteristic curve analysis. FUT4 was lower in the serum from infertility and abortion patients compared with the healthy non-pregnancy and early-pregnancy women. Using endometrial cell lines and a mouse model, we demonstrated that miR-200c targeted and inhibited FUT4 expression, leading to the dysfunction of uterine receptivity. Our results also revealed that miR-200c decreased α1.3-fucosylation on glycoprotein CD44, which further inactivated Wnt/β-catenin signaling pathway. Taken together, miR-200c hampers uterine receptivity formation by targeting FUT4 and α1.3-fucosylation on CD44. miR-200c and FUT4 may be applied together as the potential markers for endometrial receptivity, and useful diagnostic and therapeutic targets for infertility.
Collapse
Affiliation(s)
- Qin Zheng
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Dandan Zhang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Y U Yang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Xinyuan Cui
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Jiaqi Sun
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Caixia Liang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Huamin Qin
- Department of Pathology, the Secondary Affiliated Hospital of Dalian Medical University, Dalian 116000, People's Republic of China
| | - Xuesong Yang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| |
Collapse
|
12
|
Abstract
At implantation, with the acquisition of a receptive phenotype in the uterine epithelium, an initial tenuous attachment of embryonic trophectoderm initiates reorganisation of epithelial polarity to enable stable embryo attachment and the differentiation of invasive trophoblasts. In this Cell Science at a Glance article, we describe cellular and molecular events during the epithelial phase of implantation in rodent, drawing on morphological studies both in vivo and in vitro, and genetic models. Evidence is emerging for a repertoire of transcription factors downstream of the master steroidal regulators estrogen and progesterone that coordinate alterations in epithelial polarity, delivery of signals to the stroma and epithelial cell death or displacement. We discuss what is known of the cell interactions that occur during implantation, before considering specific adhesion molecules. We compare the rodent data with our much more limited knowledge of the human system, where direct mechanistic evidence is hard to obtain. In the accompanying poster, we represent the embryo-epithelium interactions in humans and laboratory rodents, highlighting similarities and differences, as well as depict some of the key cell biological events that enable interstitial implantation to occur.
Collapse
Affiliation(s)
- John D Aplin
- Maternal and Fetal Health Research Group, Manchester Academic Health Sciences Centre, St Mary's Hospital, University of Manchester, Manchester M13 9WL, UK
| | - Peter T Ruane
- Maternal and Fetal Health Research Group, Manchester Academic Health Sciences Centre, St Mary's Hospital, University of Manchester, Manchester M13 9WL, UK
| |
Collapse
|
13
|
Yu M, Wang J, Liu S, Wang X, Yan Q. Novel function of pregnancy-associated plasma protein A: promotes endometrium receptivity by up-regulating N-fucosylation. Sci Rep 2017; 7:5315. [PMID: 28706275 PMCID: PMC5509645 DOI: 10.1038/s41598-017-04735-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/19/2017] [Indexed: 12/27/2022] Open
Abstract
Glycosylation of uterine endometrial cells plays important roles to determine their receptive function to blastocysts. Trophoblast-derived pregnancy-associated plasma protein A (PAPPA) is specifically elevated in pregnant women serum, and is known to promote trophoblast cell proliferation and adhesion. However, the relationship between PAPPA and endometrium receptivity, as well as the regulation of N-fucosylation remains unclear. We found that rhPAPPA and PAPPA in the serum samples from pregnant women or conditioned medium of trophoblast cells promoted endometrium receptivity in vitro. Moreover, rhPAPPA increased α1,2-, α1,3- and α1,6-fucosylation levels by up-regulating N-fucosyltransferases FUT1, FUT4 and FUT8 expression, respectively, through IGF-1R/PI3K/Akt signaling pathway in human endometrial cells. Additionally, α1,2-, α1,3- and α1,6-fucosylation of integrin αVβ3, a critical endometrium receptivity biomarker, was up-regulated by PAPPA, thereby enhanced its adhesive functions. Furthermore, PAPPA blockage with antibody inhibited embryo implantation in vivo, mouse embryo adhesion and spreading in vitro, as well as N-fucosylation level of the endometrium in pregnant mice. In summary, this study suggests that PAPPA is essential to maintain a receptive endometrium by up-regulating N-fucosylation, which is a potential useful biomarker to evaluate the receptive functions of the endometrium.
Collapse
Affiliation(s)
- Ming Yu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, 116044, China
| | - Jiao Wang
- Departmentof Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, 116044, China
| | - Xiaoqi Wang
- Departmentof Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, 116044, China.
| |
Collapse
|
14
|
Tian L, Shen D, Li X, Shan X, Wang X, Yan Q, Liu J. Ginsenoside Rg3 inhibits epithelial-mesenchymal transition (EMT) and invasion of lung cancer by down-regulating FUT4. Oncotarget 2016; 7:1619-32. [PMID: 26636541 PMCID: PMC4811485 DOI: 10.18632/oncotarget.6451] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 11/21/2015] [Indexed: 01/17/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is an important factor in lung cancer metastasis, and targeting EMT is a potential therapeutic strategy. Fucosyltransferase IV (FUT4) and its synthetic cancer sugar antigen Lewis Y (LeY) was abnormally elevated in many cancers. In this study, a traditional Chinese medicine ginsenoside Rg3 was used to investigate whether its inhibition to EMT and invasion of lung cancer is by the glycobiology mechanism. We found that Rg3 treatment (25, 50, 100 μg/ml) inhibited cell migration and invasion by wound-healing and transwell assays. Rg3 could significantly alter EMT marker proteins with increased E-cadherin, but decreased Snail, N-cadherin and Vimentin expression. Rg3 also down-regulated FUT4 gene and protein expression in lung cancer cells by qPCR, Western blot and immunofluorescence. After FUT4 down-regulated with shFUT4, EMT was obviously inhibited. Furthermore, the activation of EGFR through decreased LeY biosynthesis was inhibited, which blocked the downstream MAPK and NF-κB signal pathways. In addition, Rg3 reduced tumor volume and weight in xenograft mouse model, and significantly decreased tumor metastasis nodules in lung tissues by tail vein injection. In conclusion, Rg3 inhibits EMT and invasion of lung cancer by down-regulating FUT4 mediated EGFR inactivation and blocking MAPK and NF-κB signal pathways. Rg3 may be a potentially effective agent for the treatment of lung cancer.
Collapse
Affiliation(s)
- Lili Tian
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Dachuan Shen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Xiaodong Li
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Xiu Shan
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Xiaoqi Wang
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, Liaoning Province, China
| | - Jiwei Liu
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
15
|
Gu J, Fan J, Xu Y, Xie Y, Gong T, Kong Y. Regulatory function of β1,4-galactosyltransferase I expression on Lewis-Y glycan and embryo implantation. Gene 2015; 562:220-5. [PMID: 25735572 DOI: 10.1016/j.gene.2015.02.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 02/15/2015] [Accepted: 02/26/2015] [Indexed: 11/18/2022]
Abstract
β1,4-Galactosyltransferase I (β1,4-GalT-I), a key enzyme in glycobiology, mediates several biological mechanisms. However, the correlation between β-1,4-GalT-I expression in the uterine endometrium and embryo implantation remains unclear. This study aims to elucidate the relationship between β1,4-GalT-I and Lewis(Y) (Le(Y)) glycan during embryo implantation. So far, using green fluorescent protein as an indicator, β1,4-GalT-I interference plasmid (pcDNA3.0-siGalT I), overexpression plasmid (pcDNA3.0-HA-GalT I), interference control plasmid (control pcDNA3.0-siGalT I), and empty vector (pcDNA3.0) were transfected into human uterine epithelial RL95-2 cells that imitate the receptive endometrium. Invasive embryos at pre-implantation and treated RL95-2 cells were co-cultured to determine embryo attachment in each of the transfection groups. The results showed that plasmid transfection was successful in all the groups. β1,4-GalT-I and Fucosyltransferase 1 (FUT1) gene expression declined in the interference group, and the synthesis of Le(Y) decreased accordingly, but the expression of this antigen increased in the overexpression group. After co-culturing of the embryos and 36h transfection of RL95-2, the results of these in vitro implantation models showed that the attachment rate was lower in the interference group (30.0 ± 0.2%) than in the untreated group (50.0 ± 0.6%), empty vector group (50.0 ± 0.2%), and interference control group (46.7 ± 0.6%), however, it was highest in the overexpression group (70.0 ± 0.2%). These results indicated that β1,4-galactosyltransferase I possibly regulate mutual uterus-embryo adhesion and embryo implantation by regulating cell surface Le(Y) glycan expression.
Collapse
Affiliation(s)
- Juan Gu
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Key Laboratory of Glycobiology and Glycoengineering, Dalian Medical University, Dalian 116044, China; Reproduction Medicine Center, Xuzhou Central Hospital, Xuzhou 221009, China
| | - Jianhui Fan
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Key Laboratory of Glycobiology and Glycoengineering, Dalian Medical University, Dalian 116044, China
| | - Yuefei Xu
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Key Laboratory of Glycobiology and Glycoengineering, Dalian Medical University, Dalian 116044, China
| | - Yunpeng Xie
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Key Laboratory of Glycobiology and Glycoengineering, Dalian Medical University, Dalian 116044, China
| | - Ting Gong
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Key Laboratory of Glycobiology and Glycoengineering, Dalian Medical University, Dalian 116044, China
| | - Ying Kong
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Key Laboratory of Glycobiology and Glycoengineering, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
16
|
Baicalin promotes embryo adhesion and implantation by upregulating fucosyltransferase IV (FUT4) via Wnt/beta-catenin signaling pathway. FEBS Lett 2015; 589:1225-33. [PMID: 25896022 DOI: 10.1016/j.febslet.2015.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/01/2015] [Accepted: 04/09/2015] [Indexed: 12/30/2022]
Abstract
Glycosylation plays a significant role in determining the receptivity of the uterine endometrium to embryo. Fucosyltransferase IV (FUT4) is expressed stage-specifically in the uterine endometrium of mammalians, and considered as a marker of the endometrial receptivity. Baicalin, a monomer of flavonoids, is known to have functions in improving reproduction. However, the mechanism by which baicalin regulates the expression of FUT4 in embryo-endometrium adhesion remains unclear. Our results showed that baicalin significantly increased FUT4 mRNA and protein expression levels both in human endometrial cells and mouse endometrial tissue, and consistently elevated embryo adhesion rate during implantation in vitro and embryonic implantation competence in pregnant mouse. This study suggests that baicalin facilitates endometrial reproduction via elevating FUT4 expression through Wnt/β-catenin signaling pathway.
Collapse
|
17
|
LIF upregulates poFUT1 expression and promotes trophoblast cell migration and invasion at the fetal-maternal interface. Cell Death Dis 2014; 5:e1396. [PMID: 25165882 PMCID: PMC4454310 DOI: 10.1038/cddis.2014.335] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 12/22/2022]
Abstract
Trophoblast cell migration and invasion are crucial for the establishment of a successful pregnancy. Protein O-fucosyltransferases, such as poFUT1 and poFUT2, catalyze the O-fucosylation of proteins and have important roles in embryonic development. Leukemia inhibitory factor (LIF) is a critical cytokine in the regulation of embryonic development and implantation. However, the exact roles of poFUTs in embryo migration and invasion and the effects of LIF on the expression of poFUTs have not been studied in detail. In the current study, we showed that poFUT1 and LIF were highly expressed in human trophoblast cells and in the serum of women during the first trimester of a normal pregnancy. However, in patients with threatened abortion, poFUT1 and LIF levels were found to be reduced. There were no significant differences in the expression levels of poFUT2 between the two groups. The migration and invasion potential of trophoblasts in an explant culture and in an in vitro implantation model was decreased or increased upon altering poFUT1 expression levels by siRNA or cDNA transfection. Our results also revealed that LIF upregulated the expression of poFUT1. The upregulation of poFUT1 by LIF promoted trophoblast cell migration and invasion at the fetal–maternal interface by activating the PI3K/Akt signaling pathway. Taken together, these study findings suggest that poFUT1 may be used as a marker of embryo implantation.
Collapse
|
18
|
Bhagwat SR, Redij T, Phalnikar K, Nayak S, Iyer S, Gadkar S, Chaudhari U, Kholkute SD, Sachdeva G. Cell surfactomes of two endometrial epithelial cell lines that differ in their adhesiveness to embryonic cells. Mol Reprod Dev 2014; 81:326-40. [DOI: 10.1002/mrd.22301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/06/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Sonali R. Bhagwat
- Primate Biology Laboratory; National Institute for Research in Reproductive Health, Indian Council of Medical Research; Mumbai India
| | - Tejashree Redij
- Primate Biology Laboratory; National Institute for Research in Reproductive Health, Indian Council of Medical Research; Mumbai India
| | - Kruttika Phalnikar
- Primate Biology Laboratory; National Institute for Research in Reproductive Health, Indian Council of Medical Research; Mumbai India
| | - Sumeet Nayak
- Primate Biology Laboratory; National Institute for Research in Reproductive Health, Indian Council of Medical Research; Mumbai India
| | - Swati Iyer
- Primate Biology Laboratory; National Institute for Research in Reproductive Health, Indian Council of Medical Research; Mumbai India
| | - Sushama Gadkar
- Primate Biology Laboratory; National Institute for Research in Reproductive Health, Indian Council of Medical Research; Mumbai India
| | - Uddhav Chaudhari
- Primate Biology Laboratory; National Institute for Research in Reproductive Health, Indian Council of Medical Research; Mumbai India
| | - Sanjeeva D. Kholkute
- Primate Biology Laboratory; National Institute for Research in Reproductive Health, Indian Council of Medical Research; Mumbai India
| | - Geetanjali Sachdeva
- Primate Biology Laboratory; National Institute for Research in Reproductive Health, Indian Council of Medical Research; Mumbai India
| |
Collapse
|
19
|
Kaneko Y, Murphy CR, Day ML. Extracellular matrix proteins secreted from both the endometrium and the embryo are required for attachment: a study using a co-culture model of rat blastocysts and Ishikawa cells. J Morphol 2012; 274:63-72. [PMID: 22972746 DOI: 10.1002/jmor.20076] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 06/25/2012] [Accepted: 08/09/2012] [Indexed: 11/08/2022]
Abstract
Integrins are expressed in a highly regulated manner at the maternal-fetal interface during implantation. However, the significance of extracellular matrix (ECM) ligands during the integrin-mediated embryo attachment to the endometrium is not fully understood. Thus, the distribution of fibronectin in the rat uterus and blastocyst was studied at the time of implantation. Fibronectin was absent in the uterine luminal epithelial cells but was intensely expressed in the trophoblast cells and the inner cell mass suggesting that fibronectin secreted from the blastocyst may be a possible bridging ligand for the integrins expressed at the maternal-fetal interface. An Arg-Gly-Asp (RGD) peptide was used to block the RGD recognition sites on integrins, and the effect on rat blastocyst attachment to Ishikawa cells was examined. There was a significant reduction in blastocyst attachment when either the blastocysts or the Ishikawa cells were pre-incubated with the RGD-blocking peptide. Thus, successful attachment of the embryo to the endometrium requires the interaction of integrins on both the endometrium and the blastocyst with the RGD sequence of ECM ligands, such as fibronectin. Pre-treatment of both blastocysts and Ishikawa cells with the RGD peptide also inhibited blastocyst attachment, but not completely, suggesting that ECM bridging ligands that do not contain the RGD sequence are also involved in embryo attachment.
Collapse
Affiliation(s)
- Yui Kaneko
- Discipline of Anatomy and Histology, School of Medical Sciences and The Bosch Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.
| | | | | |
Collapse
|