1
|
Electronegative Low-Density Lipoprotein L5 Impairs Viability and NGF-Induced Neuronal Differentiation of PC12 Cells via LOX-1. Int J Mol Sci 2017; 18:ijms18081744. [PMID: 28800073 PMCID: PMC5578134 DOI: 10.3390/ijms18081744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/05/2017] [Accepted: 08/07/2017] [Indexed: 12/30/2022] Open
Abstract
There have been striking associations of cardiovascular diseases (e.g., atherosclerosis) and hypercholesterolemia with increased risk of neurodegeneration including Alzheimer's disease (AD). Low-density lipoprotein (LDL), a cardiovascular risk factor, plays a crucial role in AD pathogenesis; further, L5, a human plasma LDL fraction with high electronegativity, may be a factor contributing to AD-type dementia. Although L5 contributing to atherosclerosis progression has been studied, its role in inducing neurodegeneration remains unclear. Here, PC12 cell culture was used for treatments with human LDLs (L1, L5, or oxLDL), and subsequently cell viability and nerve growth factor (NGF)-induced neuronal differentiation were assessed. We identified L5 as a neurotoxic LDL, as demonstrated by decreased cell viability in a time- and concentration-dependent manner. Contrarily, L1 had no such effect. L5 caused cell damage by inducing ATM/H2AX-associated DNA breakage as well as by activating apoptosis via lectin-like oxidized LDL receptor-1 (LOX-1) signaling to p53 and ensuring cleavage of caspase-3. Additionally, sublethal L5 long-termly inhibited neurite outgrowth in NGF-treated PC12 cells, as evidenced by downregulation of early growth response factor-1 and neurofilament-M. This inhibitory effect was mediated via an interaction between L5 and LOX-1 to suppress NGF-induced activation of PI3k/Akt cascade, but not NGF receptor TrkA and downstream MAPK pathways. Together, our data suggest that L5 creates a neurotoxic stress via LOX-1 in PC12 cells, thereby leading to impairment of viability and NGF-induced differentiation. Atherogenic L5 likely contributes to neurodegenerative disorders.
Collapse
|
2
|
Navarro-Dorado J, Villalba N, Prieto D, Brera B, Martín-Moreno AM, Tejerina T, de Ceballos ML. Vascular Dysfunction in a Transgenic Model of Alzheimer's Disease: Effects of CB1R and CB2R Cannabinoid Agonists. Front Neurosci 2016; 10:422. [PMID: 27695396 PMCID: PMC5025475 DOI: 10.3389/fnins.2016.00422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/29/2016] [Indexed: 01/21/2023] Open
Abstract
There is evidence of altered vascular function, including cerebrovascular, in Alzheimer's disease (AD) and transgenic models of the disease. Indeed vasoconstrictor responses are increased, while vasodilation is reduced in both conditions. β-Amyloid (Aβ) appears to be responsible, at least in part, of alterations in vascular function. Cannabinoids, neuroprotective and anti-inflammatory agents, induce vasodilation both in vivo and in vitro. We have demonstrated a beneficial effect of cannabinoids in models of AD by preventing glial activation. In this work we have studied the effects of these compounds on vessel density in amyloid precursor protein (APP) transgenic mice, line 2576, and on altered vascular responses in aortae isolated ring. First we showed increased collagen IV positive vessels in AD brain compared to control subjects, with a similar increase in TgAPP mice, which was normalized by prolonged oral treatment with the CB1/CB2 mixed agonist WIN 55,212-2 (WIN) and the CB2 selective agonist JWH-133 (JWH). In Tg APP mice the vasoconstriction induced by phenylephrine and the thromboxane agonist U46619 was significantly increased, and no change in the vasodilation to acetylcholine (ACh) was observed. Tg APP displayed decreased vasodilation to both cannabinoid agonists, which were able to prevent decreased ACh relaxation in the presence of Aβ. In summary, we have confirmed and extended the existence of altered vascular responses in Tg APP mice. Moreover, our results suggest that treatment with cannabinoids may ameliorate the vascular responses in AD-type pathology.
Collapse
Affiliation(s)
- Jorge Navarro-Dorado
- Department of Pharmacology, School of Medicine, Complutense University of Madrid Madrid, Spain
| | - Nuria Villalba
- Department of Physiology, Faculty of Pharmacy, Complutense University of Madrid Madrid, Spain
| | - Dolores Prieto
- Department of Physiology, Faculty of Pharmacy, Complutense University of Madrid Madrid, Spain
| | - Begoña Brera
- Neurodegeneration Group, Cellular, Molecular and Developmental Neurobiology and CIBERNED, Cajal Institute, CSIC Madrid, Spain
| | - Ana M Martín-Moreno
- Neurodegeneration Group, Cellular, Molecular and Developmental Neurobiology and CIBERNED, Cajal Institute, CSIC Madrid, Spain
| | - Teresa Tejerina
- Department of Pharmacology, School of Medicine, Complutense University of Madrid Madrid, Spain
| | - María L de Ceballos
- Neurodegeneration Group, Cellular, Molecular and Developmental Neurobiology and CIBERNED, Cajal Institute, CSIC Madrid, Spain
| |
Collapse
|
3
|
Serum oxidized low-density lipoprotein level and risk of cognitive impairment in older women. Neurobiol Aging 2012; 34:634-635.e2. [PMID: 22483339 DOI: 10.1016/j.neurobiolaging.2012.02.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/30/2012] [Accepted: 02/27/2012] [Indexed: 11/23/2022]
Abstract
We investigated the association between serum level of oxidized low-density lipoprotein (oxLDL) and risk of cognitive impairment (dementia or mild cognitive impairment) among 572 nondemented community-dwelling women from a prospective cohort study of aging. After 5 years of follow-up, 228 (39.9%) developed cognitive impairment; and this did not differ by tertile of baseline oxLDL level (highest compared with lowest tertile 38.2% vs. 39.5%; odds ratio, 0.90; 95% confidence interval, 0.63-1.43). Multivariate adjustment produced similar results (odds ratio, 0.91; 95% confidence interval, 0.60-1.39). These findings suggest that increased levels of serum oxLDL are not associated with a greater risk of incident cognitive impairment in older women.
Collapse
|
4
|
Miller TW, Isenberg JS, Shih HB, Wang Y, Roberts DD. Amyloid-β inhibits No-cGMP signaling in a CD36- and CD47-dependent manner. PLoS One 2010; 5:e15686. [PMID: 21203512 PMCID: PMC3008726 DOI: 10.1371/journal.pone.0015686] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 11/21/2010] [Indexed: 11/26/2022] Open
Abstract
Amyloid-β interacts with two cell surface receptors, CD36 and CD47, through which the matricellular protein thrombospondin-1 inhibits soluble guanylate cyclase activation. Here we examine whether amyloid-β shares this inhibitory activity. Amyloid-β inhibited both drug and nitric oxide-mediated activation of soluble guanylate cyclase in several cell types. Known cGMP-dependent functional responses to nitric oxide in platelets and vascular smooth muscle cells were correspondingly inhibited by amyloid-β. Functional interaction of amyloid-β with the scavenger receptor CD36 was indicated by inhibition of free fatty acid uptake via this receptor. Both soluble oligomer and fibrillar forms of amyloid-β were active. In contrast, amyloid-β did not compete with the known ligand SIRPα for binding to CD47. However, both receptors were necessary for amyloid-β to inhibit cGMP accumulation. These data suggest that amyloid-β interaction with CD36 induces a CD47-dependent signal that inhibits soluble guanylate cyclase activation. Combined with the pleiotropic effects of inhibiting free fatty acid transport via CD36, these data provides a molecular mechanism through which amyloid-β can contribute to the nitric oxide signaling deficiencies associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Thomas W. Miller
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeff S. Isenberg
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Hubert B. Shih
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Howard Hughes Medical Institute–National Institutes of Health Research Scholars Program, Bethesda, Maryland, United States of America
| | - Yichen Wang
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
5
|
Merlo S, Spampinato S, Canonico PL, Copani A, Sortino MA. Alzheimer's disease: brain expression of a metabolic disorder? Trends Endocrinol Metab 2010; 21:537-44. [PMID: 20541952 DOI: 10.1016/j.tem.2010.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 05/11/2010] [Accepted: 05/12/2010] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is of rapidly increasing health, social and economic impact. Recent evidence suggests a strict link between metabolic disorders and AD. In the last decade much attention has focused specifically on the connection between dysfunction of lipid metabolism and AD. Here we discuss aspects of lipid regulation, including changes in cholesterol levels, function of apolipoproteins and leptin, and how these relate to AD pathogenesis. Despite the vast literature available, many aspects still need clarification. Nevertheless, the route is already delineated to directly connect aspects of lipid regulation to AD. This could represent a starting point to identify novel potential targets for a preventive and/or treatment strategy of the disease.
Collapse
Affiliation(s)
- Sara Merlo
- Department of Experimental and Clinical Pharmacology, University of Catania, Catania, Italy
| | | | | | | | | |
Collapse
|
6
|
Martins IJ, Berger T, Sharman MJ, Verdile G, Fuller SJ, Martins RN. Cholesterol metabolism and transport in the pathogenesis of Alzheimer's disease. J Neurochem 2010; 111:1275-308. [PMID: 20050287 DOI: 10.1111/j.1471-4159.2009.06408.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, affecting millions of people worldwide. Apart from age, the major risk factor identified so far for the sporadic form of AD is possession of the epsilon4 allele of apolipoprotein E (APOE), which is also a risk factor for coronary artery disease (CAD). Other apolipoproteins known to play an important role in CAD such as apolipoprotein B are now gaining attention for their role in AD as well. AD and CAD share other risk factors, such as altered cholesterol levels, particularly high levels of low density lipoproteins together with low levels of high density lipoproteins. Statins--drugs that have been used to lower cholesterol levels in CAD, have been shown to protect against AD, although the protective mechanism(s) involved are still under debate. Enzymatic production of the beta amyloid peptide, the peptide thought to play a major role in AD pathogenesis, is affected by membrane cholesterol levels. In addition, polymorphisms in several proteins and enzymes involved in cholesterol and lipoprotein transport and metabolism have been linked to risk of AD. Taken together, these findings provide strong evidence that changes in cholesterol metabolism are intimately involved in AD pathogenic processes. This paper reviews cholesterol metabolism and transport, as well as those aspects of cholesterol metabolism that have been linked with AD.
Collapse
Affiliation(s)
- Ian J Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University, Joondalup, Australia.
| | | | | | | | | | | |
Collapse
|
7
|
Gonzalez-Velasquez FJ, Kotarek JA, Moss MA. Soluble aggregates of the amyloid-beta protein selectively stimulate permeability in human brain microvascular endothelial monolayers. J Neurochem 2008; 107:466-77. [PMID: 18702666 DOI: 10.1111/j.1471-4159.2008.05618.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cerebral amyloid angiopathy associated with Alzheimer's disease is characterized by cerebrovascular deposition of the amyloid-beta protein (Abeta). Abeta elicits a number of morphological and biochemical alterations in the cerebral microvasculature, which culminate in hemorrhagic stroke. Among these changes, compromise of the blood-brain barrier has been described in Alzheimer's disease brain, transgenic animal models of Alzheimer's disease, and cell culture experiments. In the current study, presented data illustrates that isolated soluble Abeta(1-40) aggregates, but not unaggregated monomer or mature fibril, enhance permeability in human brain microvascular endothelial monolayers. Abeta(1-40)-induced changes in permeability are paralleled by both a decrease in transendothelial electrical resistance and a re-localization of the tight junction-associated protein zonula occludin-1 away from cell borders and into the cytoplasm. Small soluble Abeta(1-40) aggregates are confirmed to be the most potent stimulators of endothelial monolayer permeability by establishing an inverse relationship between average aggregate size and stimulated changes in diffusional permeability coefficients. These results support previous findings demonstrating that small soluble Abeta(1-40) aggregates are also primarily responsible for endothelial activation, suggesting that these same species may elicit other changes in the cerebrovasculature associated with cerebral amyloid angiopathy and Alzheimer's disease.
Collapse
Affiliation(s)
- Francisco J Gonzalez-Velasquez
- Department of Chemical Engineering, University of South Carolina, Swearingen Engineering Center, Columbia, South Carolina, USA
| | | | | |
Collapse
|