1
|
Zhang J, Cai W, Fan Z, Yang C, Wang W, Xiong M, Ma C, Yang J. MicroRNA-24 inhibits the oxidative stress induced by vascular injury by activating the Nrf2/Ho-1 signaling pathway. Atherosclerosis 2019; 290:9-18. [PMID: 31539718 DOI: 10.1016/j.atherosclerosis.2019.08.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS The process of endothelial repair in diabetic patients after stent implantation was significantly delayed compared with that in non-diabetic patients, and oxidative stress is increasingly considered to be relevant to the pathogenesis of diabetic endothelial repair. However, the mechanisms linking diabetes and reendothelialization after vascular injury have not been fully elucidated. The aim of this study was to evaluate the effect of microRNA-24 (miR-24) up-regulation in delayed endothelial repair caused by oxidative stress after balloon injury in diabetic rats. METHODS In vitro, vascular smooth muscle cells (VSMCs) isolated from the thoracic aorta were stimulated with high glucose (HG) after miR-24 recombinant adenovirus (Ad-miR-24-GFP) transfection for 3 days. In vivo, diabetic rats induced using high-fat diet (HFD) and low-dose streptozotocin (30 mg/kg) underwent carotid artery balloon injury followed by Ad-miR-24-GFP transfection for 20 min. RESULTS The expression of miR-24 was decreased in HG-stimulated VSMCs and balloon-injured carotid arteries of diabetic rats, which was accompanied by increased expression of Ogt and Keap1 and decreased expression of Nrf2 and Ho-1. Up-regulation of miR-24 suppressed VSMC oxidative stress induced by HG in vitro, and miR-24 up-regulation promoted reendothelialization in balloon-injured diabetic rats. The underlying mechanism was related to the activation of the Nrf2/Ho-1 signaling pathway, which subsequently suppressed intracellular reactive oxidative species (ROS) production and malondialdehyde (MDA) and NADPH oxidase (Nox) activity, and to the restoration of Sod and Gsh-px activation. CONCLUSIONS The up-regulation of miR-24 significantly promoted endothelial repair after balloon injury through inhibition of oxidative stress by activating the Nrf2/Ho-1 signaling pathway.
Collapse
MESH Headings
- Animals
- Blood Glucose/metabolism
- Carotid Artery Injuries/enzymology
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/pathology
- Cell Proliferation
- Cells, Cultured
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Heme Oxygenase (Decyclizing)/metabolism
- Kelch-Like ECH-Associated Protein 1/genetics
- Kelch-Like ECH-Associated Protein 1/metabolism
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- N-Acetylglucosaminyltransferases/genetics
- N-Acetylglucosaminyltransferases/metabolism
- NF-E2-Related Factor 2/metabolism
- Oxidative Stress
- Rats, Sprague-Dawley
- Re-Epithelialization
- Signal Transduction
Collapse
Affiliation(s)
- Jing Zhang
- Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China; Yichang Key Laboratory of Ischemic Cardiovascular and Cerebrovascular Disease Translational Medicine, China
| | - Wanyin Cai
- Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China; Yichang Key Laboratory of Ischemic Cardiovascular and Cerebrovascular Disease Translational Medicine, China
| | - Zhixing Fan
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China; Yichang Key Laboratory of Ischemic Cardiovascular and Cerebrovascular Disease Translational Medicine, China
| | - Chaojun Yang
- Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China; Yichang Key Laboratory of Ischemic Cardiovascular and Cerebrovascular Disease Translational Medicine, China
| | - Wei Wang
- Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China; Yichang Key Laboratory of Ischemic Cardiovascular and Cerebrovascular Disease Translational Medicine, China
| | - Mengting Xiong
- Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China; Yichang Key Laboratory of Ischemic Cardiovascular and Cerebrovascular Disease Translational Medicine, China
| | - Cong Ma
- Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China; Yichang Key Laboratory of Ischemic Cardiovascular and Cerebrovascular Disease Translational Medicine, China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China; Yichang Key Laboratory of Ischemic Cardiovascular and Cerebrovascular Disease Translational Medicine, China.
| |
Collapse
|
2
|
Tanaka LY, Laurindo FRM. Vascular remodeling: A redox-modulated mechanism of vessel caliber regulation. Free Radic Biol Med 2017; 109:11-21. [PMID: 28109889 DOI: 10.1016/j.freeradbiomed.2017.01.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/13/2017] [Accepted: 01/15/2017] [Indexed: 11/17/2022]
Abstract
Vascular remodeling, i.e. whole-vessel structural reshaping, determines lumen caliber in (patho)physiology. Here we review mechanisms underlying vessel remodeling, with emphasis in redox regulation. First, we discuss confusing terminology and focus on strictu sensu remodeling. Second, we propose a mechanobiological remodeling paradigm based on the concept of tensional homeostasis as a setpoint regulator. We first focus on shear-mediated models as prototypes of remodeling closely dominated by highly redox-sensitive endothelial function. More detailed discussions focus on mechanosensors, integrins, extracellular matrix, cytoskeleton and inflammatory pathways as potential of mechanisms potentially coupling tensional homeostasis to redox regulation. Further discussion of remodeling associated with atherosclerosis and injury repair highlights important aspects of redox vascular responses. While neointima formation has not shown consistent responsiveness to antioxidants, vessel remodeling has been more clearly responsive, indicating that despite the multilevel redox signaling pathways, there is a coordinated response of the whole vessel. Among mechanisms that may orchestrate redox pathways, we discuss roles of superoxide dismutase activity and extracellular protein disulfide isomerase. We then discuss redox modulation of aneurysms, a special case of expansive remodeling. We propose that the redox modulation of vascular remodeling may reflect (1) remodeling pathophysiology is dominated by a particularly redox-sensitive cell type, e.g., endothelial cells (2) redox pathways are temporospatially coordinated at an organ level across distinct cellular and acellular structures or (3) the tensional homeostasis setpoint is closely connected to redox signaling. The mechanobiological/redox model discussed here can be a basis for improved understanding of remodeling and helps clarifying mechanisms underlying prevalent hard-to-treat diseases.
Collapse
Affiliation(s)
- Leonardo Y Tanaka
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, Av. Enéas Carvalho Aguiar, 44, Annex II, 9th Floor, São Paulo CEP 05403-000, Brazil
| | - Francisco R M Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, Av. Enéas Carvalho Aguiar, 44, Annex II, 9th Floor, São Paulo CEP 05403-000, Brazil.
| |
Collapse
|
3
|
Eluting combination drugs from stents. Int J Pharm 2013; 454:4-10. [DOI: 10.1016/j.ijpharm.2013.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/03/2013] [Accepted: 07/06/2013] [Indexed: 11/23/2022]
|
4
|
Juni RP, Duckers HJ, Vanhoutte PM, Virmani R, Moens AL. Oxidative stress and pathological changes after coronary artery interventions. J Am Coll Cardiol 2013; 61:1471-81. [PMID: 23500310 DOI: 10.1016/j.jacc.2012.11.068] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/02/2012] [Accepted: 11/07/2012] [Indexed: 11/28/2022]
Abstract
Oxidative stress greatly influences the pathogenesis of various cardiovascular disorders. Coronary interventions, including balloon angioplasty and coronary stent implantation, are associated with increased vascular levels of reactive oxygen species in conjunction with altered endothelial cell and smooth muscle cell function. These alterations potentially lead to restenosis, thrombosis, or endothelial dysfunction in the treated artery. Therefore, the understanding of the pathophysiological role of reactive oxygen species (ROS) generated during or after coronary interventions, or both, is essential to improve the success rate of these procedures. Superoxide O2(·-) anions, whether derived from uncoupled endothelial nitric oxide synthase, nicotinamide adenine dinucleotide phosphate oxidase, xanthine oxidase, or mitochondria, are among the most harmful ROS. O2(·-) can scavenge nitric oxide, modify proteins and nucleotides, and induce proinflammatory signaling, which may lead to greater ROS production. Current innovations in stent technologies, including biodegradable stents, nitric oxide donor-coated stents, and a new generation of drug-eluting stents, therefore address persistent oxidative stress and reduced nitric oxide bioavailability after percutaneous coronary interventions. This review discusses the molecular mechanisms of ROS generation after coronary interventions, the related pathological events-including restenosis, endothelial dysfunction, and stent thrombosis-and possible therapeutic ways forward.
Collapse
Affiliation(s)
- Rio P Juni
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, the Netherlands
| | | | | | | | | |
Collapse
|
5
|
Peroxisome proliferator-activated receptor-gamma agonists suppress tissue factor overexpression in rat balloon injury model with paclitaxel infusion. PLoS One 2011; 6:e28327. [PMID: 22140576 PMCID: PMC3226685 DOI: 10.1371/journal.pone.0028327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 11/06/2011] [Indexed: 11/19/2022] Open
Abstract
The role and underlying mechanisms of rosiglitazone, a peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonist, on myocardial infarction are poorly understood. We investigated the effects of this PPAR-γ agonist on the expression of tissue factor (TF), a primary molecule for thrombosis, and elucidated its underlying mechanisms. The PPAR-γ agonist inhibited TF expression in response to TNF-α in human umbilical vein endothelial cells, human monocytic leukemia cell line, and human umbilical arterial smooth muscle cells. The overexpression of TF was mediated by increased phosphorylation of mitogen-activated protein kinase (MAPK), which was blocked by the PPAR-γ agonist. The effective MAPK differed depending on each cell type. Luciferase and ChIP assays showed that transcription factor, activator protein-1 (AP-1), was a pivotal target of the PPAR-γ agonist to lower TF transcription. Intriguingly, two main drugs for drug-eluting stent, paclitaxel or rapamycin, significantly exaggerated thrombin-induced TF expression, which was also effectively blocked by the PPAR-γ agonist in all cell types. This PPAR-γ agonist did not impair TF pathway inhibitor (TFPI) in three cell types. In rat balloon injury model (Sprague-Dawley rats, n = 10/group) with continuous paclitaxel infusion, the PPAR-γ agonist attenuated TF expression by 70±5% (n = 4; P<0.0001) in injured vasculature. Taken together, rosiglitazone reduced TF expression in three critical cell types involved in vascular thrombus formation via MAPK and AP-1 inhibitions. Also, this PPAR-γ agonist reversed the paclitaxel-induced aggravation of TF expression, which suggests a possibility that the benefits might outweigh its risks in a group of patients with paclitaxel-eluting stent implanted.
Collapse
|
6
|
Ewart MA, Kennedy S. AMPK and vasculoprotection. Pharmacol Ther 2010; 131:242-53. [PMID: 21111758 DOI: 10.1016/j.pharmthera.2010.11.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 11/10/2010] [Indexed: 01/25/2023]
Abstract
AMP-activated protein kinase (AMPK) is proposed to be a key regulator of cellular and organismal metabolism and has reported vasculoprotective effects. In addition, many therapeutic agents used in the treatment of diabetes and atherosclerosis such as metformin, thiazolidinediones and statins may exert their vasculoprotective effects through activation of AMPK. Activation of AMPK has a number of potentially beneficial anti-atherosclerotic effects including reducing adhesion of inflammatory cells to the blood vessel endothelium, reducing lipid accumulation and the proliferation of inflammatory cells caused by oxidised lipids, stimulation of gene expression responsible for cellular antioxidant defenses and stimulation of enzymes responsible for nitric oxide formation. In humans and animals the AMPK cascade triggers vascular protective mechanisms that have been shown to reduce myocardial ischaemic injury and mutations in AMPK can cause familial hypertrophic cardiomyopathy. Taken together, these data suggest that activation and function of AMPK contributes to cardiovascular health. In this review we propose to focus on the vasculoprotective effects of AMPK, the evidence for AMPK activation with currently used therapeutic agents and the potential for agents which specifically activate AMPK as a treatment for vascular disease.
Collapse
Affiliation(s)
- Marie-Ann Ewart
- College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | | |
Collapse
|
7
|
Echeverri D. Efectos biológicos de los stents medicados en la circulación coronaria. REVISTA COLOMBIANA DE CARDIOLOGÍA 2010. [DOI: 10.1016/s0120-5633(10)70219-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
8
|
DNA damage and repair in a model of rat vascular injury. Clin Sci (Lond) 2009; 118:473-85. [PMID: 19804370 DOI: 10.1042/cs20090416] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 09/18/2009] [Accepted: 10/05/2009] [Indexed: 12/21/2022]
Abstract
Restenosis rate following vascular interventions still limits their long-term success. Oxidative stress plays a relevant role in this pathophysiological phenomenon, but less attention has been devoted to its effects on DNA damage and to the subsequent mechanisms of repair. We analysed in a model of arteriotomy-induced stenosis in rat carotids the time-dependent expression of DNA damage markers and of DNA repair genes, together with the assessment of proliferation and apoptosis indexes. The expression of the oxidative DNA damage marker 7,8-dihydro-8-oxo-2'-deoxyguanosine was increased at 3 and 7 days after arteriotomy, with immunostaining distributed in the injured vascular wall and in perivascular tissue. The expression of the DNA damage marker phospho-H2A.X was less relevant but increasing from 4 hrs to 7 days after arteriotomy, with immunostaining prevalently present in the adventitia and, to a lesser extent, in medial smooth muscle cells at the injury site. RT-PCR indicated a decrease of 8 out of 12 genes of the DNA repair machinery we selected from 4 hrs to 7 days after arteriotomy with the exception of increased Muyth and Slk genes (p<0.05). Western Blot revealed a decrease of p53 and catalase at 3 days after arteriotomy (p<0.05). A maximal 7% of BrdU-positive cells in endothelium and media occurred at 7 days after arteriotomy, while the apoptotic index peaked at 3 days after injury (p<0.05). Our results highlight a persistent DNA damage presumably related to a temporary decreased expression of the DNA repair machinery and of the antioxidant enzyme catalase, playing a role in stenosis progression.
Collapse
|
9
|
Mekki M, Durual S, Scherrer SS, Lammers J, Wiskott HWA. Optimization of Plasma Treatment, Manipulative Variables and Coating Composition for the Controlled Filling and Coating of a Microstructured Reservoir Stent. J Med Device 2009. [DOI: 10.1115/1.3081394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The object of the study was to fill and coat the microcavities of a drug eluting stent using a batch dipping process. 316L coronary stents, which were coated with a 0.25 μm layer of TiNOx were used as substrates. The stents’ surface was dimpled with 0.21 μl microcavities separated by distances of 17–28 μm depending on location. The experiment consisted of (1) optimizing the procedures to fill the microcavities with a solution of therapeutic agent and (2) covering the filled microcavities with a protective “lid” that shielded the solution during stent insertion in the arteries and then controlled its release into the surrounding tissue. The filling solution was a water-propanol mix containing 20% L-arginine. The coating solution was comprised of poly-ethylene-glycol (PEG-8000) and dexamethasone. The filling quality was investigated after altering the following variables: plasma surface activation (type of gas, pressure, power, and duration), water-propanol percentage ratio of the filling solution, lifting speed from the bath, and effect of ultrasonic vibration (monofrequency versus multifrequency). The surface coating was evaluated by altering the PEG-8000-dexamethasone percentage ratio and recording the effects on coating thickness and structure, on elution rate, and on wear resistance. The optimized process is presented in detail.
Collapse
Affiliation(s)
| | - Stéphane Durual
- Laboratory of Biomaterials, University of Geneva, 19 rue Barthélemy-Menn, 1205 Geneva, Switzerland
| | - Susanne S. Scherrer
- Laboratory of Biomaterials, University of Geneva, 19 rue Barthélemy-Menn, 1205 Geneva, Switzerland
| | | | - H. W. Anselm Wiskott
- Laboratory of Biomaterials, School of Dentistry, University of Geneva, 19 rue Barthélemy-Menn, 1205 Geneva, Switzerland
| |
Collapse
|