1
|
MCL-1 Matrix maintains neuronal survival by enhancing mitochondrial integrity and bioenergetic capacity under stress conditions. Cell Death Dis 2020; 11:321. [PMID: 32371858 PMCID: PMC7200794 DOI: 10.1038/s41419-020-2498-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
Abstract
Mitochondria play a crucial role in neuronal survival through efficient energy metabolism. In pathological conditions, mitochondrial stress leads to neuronal death, which is regulated by the anti-apoptotic BCL-2 family of proteins. MCL-1 is an anti-apoptotic BCL-2 protein localized to mitochondria either in the outer membrane (OM) or inner membrane (Matrix), which have distinct roles in inhibiting apoptosis and promoting bioenergetics, respectively. While the anti-apoptotic role for Mcl1 is well characterized, the protective function of MCL-1 Matrix remains poorly understood. Here, we show MCL-1OM and MCL-1Matrix prevent neuronal death through distinct mechanisms. We report that MCL-1Matrix functions to preserve mitochondrial energy transduction and improves respiratory chain capacity by modulating mitochondrial oxygen consumption in response to mitochondrial stress. We show that MCL-1Matrix protects neurons from stress by enhancing respiratory function, and by inhibiting mitochondrial permeability transition pore opening. Taken together, our results provide novel insight into how MCL-1Matrix may confer neuroprotection under stress conditions involving loss of mitochondrial function.
Collapse
|
2
|
Araki T, Wakatsuki S. Regulation of neuronal/axonal degeneration by ZNRF1 ubiquitin ligase. Neurosci Res 2019; 139:21-25. [DOI: 10.1016/j.neures.2018.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 11/24/2022]
|
3
|
Jones NK, Arab NT, Eid R, Gharib N, Sheibani S, Vali H, Khoury C, Murray A, Boucher E, Mandato CA, Young PG, Greenwood MT. Human Thyroid Cancer-1 (TC-1) is a vertebrate specific oncogenic protein that protects against copper and pro-apoptotic genes in yeast. MICROBIAL CELL 2015; 2:247-255. [PMID: 28357300 PMCID: PMC5349172 DOI: 10.15698/mic2015.07.213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The human Thyroid Cancer-1 (hTC-1) protein, also known as C8orf4 was initially identified as a gene that was up-regulated in human thyroid cancer. Here we show that hTC-1 is a peptide that prevents the effects of over-expressing Bax in yeast. Analysis of the 106 residues of hTC-1 in available protein databases revealed direct orthologues in jawed-vertebrates, including mammals, frogs, fish and sharks. No TC-1 orthologue was detected in lower organisms, including yeast. Here we show that TC-1 is a general pro-survival peptide since it prevents the growth- and cell death-inducing effects of copper in yeast. Human TC-1 also prevented the deleterious effects that occur due to the over-expression of a number of key pro-apoptotic peptides, including YCA1, YBH3, NUC1, and AIF1. Even though the protective effects were more pronounced with the over-expression of YBH3 and YCA1, hTC-1 could still protect yeast mutants lacking YBH3 and YCA1 from the effects of copper sulfate. This suggests that the protective effects of TC-1 are not limited to specific pathways or processes. Taken together, our results indicate that hTC-1 is a pro-survival protein that retains its function when heterologously expressed in yeast. Thus yeast is a useful model to characterize the potential roles in cell death and survival of cancer related genes.
Collapse
Affiliation(s)
- Natalie K Jones
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada. ; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada. ; Present address: Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Nagla T Arab
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada. ; Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Rawan Eid
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada. ; Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Nada Gharib
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada. ; Present address: Department of Biomedical Sciences, Queen's University, Kingston, Ontario, Canada
| | - Sara Sheibani
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada. ; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada. ; Present address: Defence Research and Development Canada, Alberta, Canada
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Chamel Khoury
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Alistair Murray
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada. ; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Eric Boucher
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Paul G Young
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Michael T Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| |
Collapse
|
4
|
Cucurbitacin E has neuroprotective properties and autophagic modulating activities on dopaminergic neurons. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:425496. [PMID: 25574337 PMCID: PMC4276330 DOI: 10.1155/2014/425496] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/14/2014] [Accepted: 11/16/2014] [Indexed: 12/11/2022]
Abstract
Natural molecules are under intensive study for their potential as preventive and/or adjuvant therapies for neurodegenerative disorders such as Parkinson's disease (PD). We evaluated the neuroprotective potential of cucurbitacin E (CuE), a tetracyclic triterpenoid phytosterol extracted from the Ecballium elaterium (Cucurbitaceae), using a known cellular model of PD, NGF-differentiated PC12. In our postmitotic experimental paradigm, neuronal cells were treated with the parkinsonian toxin 1-methyl-4-phenylpyridinium (MPP+) to provoke significant cellular damage and apoptosis or with the potent N,N-diethyldithiocarbamate (DDC) to induce superoxide (O2•−) production, and CuE was administered prior to and during the neurotoxic treatment. We measured cellular death and reactive oxygen species to evaluate the antioxidant and antiapoptotic properties of CuE. In addition, we analyzed cellular macroautophagy, a bulk degradation process involving the lysosomal pathway. CuE showed neuroprotective effects on MPP+-induced cell death. However, CuE failed to rescue neuronal cells from oxidative stress induced by MPP+ or DDC. Microscopy and western blot data show an intriguing involvement of CuE in maintaining lysosomal distribution and decreasing autophagy flux. Altogether, these data indicate that CuE decreases neuronal death and autophagic flux in a postmitotic cellular model of PD.
Collapse
|
5
|
Oliveras-Ferraros C, Vazquez-Martin A, Cuyàs E, Corominas-Faja B, Rodríguez-Gallego E, Fernández-Arroyo S, Martin-Castillo B, Joven J, Menendez JA. Acquired resistance to metformin in breast cancer cells triggers transcriptome reprogramming toward a degradome-related metastatic stem-like profile. Cell Cycle 2014; 13:1132-44. [PMID: 24553122 DOI: 10.4161/cc.27982] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Therapeutic interventions based on metabolic inhibitor-based therapies are expected to be less prone to acquired resistance. However, there has not been any study assessing the possibility that the targeting of the tumor cell metabolism may result in unforeseeable resistance. We recently established a pre-clinical model of estrogen-dependent MCF-7 breast cancer cells that were chronically adapted to grow (> 10 months) in the presence of graded, millimolar concentrations of the anti-diabetic biguanide metformin, an AMPK agonist/mTOR inhibitor that has been evaluated in multiple in vitro and in vivo cancer studies and is now being tested in clinical trials. To assess what impact the phenomenon of resistance might have on the metformin-like "dirty" drugs that are able to simultaneously hit several metabolic pathways, we employed the ingenuity pathway analysis (IPA) software to functionally interpret the data from Agilent whole-human genome arrays in the context of biological processes, networks, and pathways. Our findings establish, for the first time, that a "global" targeting of metabolic reprogramming using metformin certainly imposes a great selective pressure for the emergence of new breast cancer cellular states. Intriguingly, acquired resistance to metformin appears to trigger a transcriptome reprogramming toward a metastatic stem-like profile, as many genes encoding the components of the degradome (KLK11, CTSF, FREM1, BACE-2, CASP, TMPRSS4, MMP16, HTRA1), cancer cell migration and invasion factors (TP63, WISP2, GAS3, DKK1, BCAR3, PABPC1, MUC1, SPARCL1, SEMA3B, SEMA6A), stem cell markers (DCLK1, FAK), and key pro-metastatic lipases (MAGL and Cpla2) were included in the signature. Because this convergent activation of pathways underlying tumor microenvironment interactions occurred in low-proliferative cancer cells exhibiting a notable downregulation of the G 2/M DNA damage checkpoint regulators that maintain genome stability (CCNB1, CCNB2, CDC20, CDC25C, AURKA, AURKB, BUB1, CENP-A, CENP-M) and pro-autophagic features (i.e., TRAIL upregulation and BCL-2 downregulation), it appears that the unique mechanism of acquired resistance to metformin has opposing roles in growth and metastatic dissemination. While refractoriness to metformin limits breast cancer cell growth, likely due to aberrant mitotic/cytokinetic machinery and accelerated autophagy, it notably increases the potential of metastatic dissemination by amplifying the number of pro-migratory and stemness inputs via the activation of a significant number of proteases and EMT regulators. Future studies should elucidate whether our findings using supra-physiological concentrations of metformin mechanistically mimic the ultimate processes that could paradoxically occur in a polyploid, senescent-autophagic scenario triggered by the chronic metabolic stresses that occur during cancer development and after treatment with cancer drugs.
Collapse
Affiliation(s)
- Cristina Oliveras-Ferraros
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology-Girona (ICO-Girona); Girona, Spain; Molecular Oncology; Girona Biomedical Research Institute (IDIBGI); Girona, Spain
| | - Alejandro Vazquez-Martin
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology-Girona (ICO-Girona); Girona, Spain; Molecular Oncology; Girona Biomedical Research Institute (IDIBGI); Girona, Spain
| | - Elisabet Cuyàs
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology-Girona (ICO-Girona); Girona, Spain; Molecular Oncology; Girona Biomedical Research Institute (IDIBGI); Girona, Spain
| | - Bruna Corominas-Faja
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology-Girona (ICO-Girona); Girona, Spain; Molecular Oncology; Girona Biomedical Research Institute (IDIBGI); Girona, Spain
| | - Esther Rodríguez-Gallego
- Unitat de Recerca Biomèdica; Hospital Universitari Sant Joan and Hospital Universitari Joan XXIII; Institut d'Investigació Sanitària Pere Virgili; Universitat Rovira i Virgili; Reus, Spain
| | - Salvador Fernández-Arroyo
- Unitat de Recerca Biomèdica; Hospital Universitari Sant Joan and Hospital Universitari Joan XXIII; Institut d'Investigació Sanitària Pere Virgili; Universitat Rovira i Virgili; Reus, Spain
| | - Begoña Martin-Castillo
- Molecular Oncology; Girona Biomedical Research Institute (IDIBGI); Girona, Spain; Unit of Clinical Research; Catalan Institute of Oncology-Girona (ICO-Girona); Girona, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica; Hospital Universitari Sant Joan and Hospital Universitari Joan XXIII; Institut d'Investigació Sanitària Pere Virgili; Universitat Rovira i Virgili; Reus, Spain
| | - Javier A Menendez
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology-Girona (ICO-Girona); Girona, Spain; Molecular Oncology; Girona Biomedical Research Institute (IDIBGI); Girona, Spain
| |
Collapse
|
6
|
Stadler LKJ, Tomlinson DC, Lee T, Knowles MA, Ko Ferrigno P. The use of a neutral peptide aptamer scaffold to anchor BH3 peptides constitutes a viable approach to studying their function. Cell Death Dis 2014; 5:e1037. [PMID: 24481451 PMCID: PMC4040713 DOI: 10.1038/cddis.2013.564] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 11/11/2022]
Abstract
The B-cell CLL/lymphoma-2 (Bcl-2) family of proteins are important regulators of the intrinsic pathway of apoptosis, and their interactions, driven by Bcl-2 homology (BH) domains, are of great interest in cancer research. Particularly, the BH3 domain is of clinical relevance, as it promotes apoptosis through activation of Bcl-2-associated x protein (Bax) and Bcl-2 antagonist killer (Bak), as well as by antagonising the anti-apoptotic Bcl-2 family members. Although investigated extensively in vitro, the study of the BH3 domain alone inside cells is more problematic because of diminished secondary structure of the unconstrained peptide and a lack of stability. In this study, we report the successful use of a novel peptide aptamer scaffold – Stefin A quadruple mutant – to anchor and present the BH3 domains from Bcl-2-interacting mediator of cell death (Bim), p53 upregulated modulator of apoptosis (Puma), Bcl-2-associated death promoter (Bad) and Noxa, and demonstrate its usefulness in the study of the BH3 domains in vivo. When expressed intracellularly, anchored BH3 peptides exhibit much the same binding specificities previously established in vitro, however, we find that, at endogenous expression levels, Bcl-2 does not bind to any of the anchored BH3 domains tested. Nonetheless, when expressed inside cells the anchored PUMA and Bim BH3 α-helices powerfully induce cell death in the absence of efficient targeting to the mitochondrial membrane, whereas the Noxa helix requires a membrane insertion domain in order to kill Mcl-1-dependent myeloma cells. Finally, the binding of the Bim BH3 peptide to Bax was the only interaction with a pro-apoptotic effector protein observed in this study.
Collapse
Affiliation(s)
- L K J Stadler
- 1] Section of Experimental Therapeutics, Leeds LS9 7TF, UK [2] Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - D C Tomlinson
- Section of Experimental Oncology, Leeds Institute of Molecular Medicine, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - T Lee
- Section of Experimental Therapeutics, Leeds LS9 7TF, UK
| | - M A Knowles
- Section of Experimental Oncology, Leeds Institute of Molecular Medicine, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - P Ko Ferrigno
- Section of Experimental Therapeutics, Leeds LS9 7TF, UK
| |
Collapse
|
7
|
The human septin7 and the yeast CDC10 septin prevent Bax and copper mediated cell death in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3186-3194. [DOI: 10.1016/j.bbamcr.2013.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/08/2013] [Accepted: 09/10/2013] [Indexed: 01/18/2023]
|
8
|
Abstract
Autosomal-dominant polycystic kidney disease is the most common form of polycystic kidney disease in adults and is caused by a mutation in the polycystic kidney disease 1 or 2 genes, which encode, respectively, polycystin-1 and polycystin-2. Autophagy is present in polycystic kidneys in rat and mouse models of polycystic kidney disease. Autophagy has yet to be shown in human polycystic kidney disease kidneys. The mechanism of cyst growth has been studied extensively in vitro and in vivo. Multiple molecules and signaling pathways have been implicated in cyst growth including mammalian target of rapamycin, the renin-angiotensin-aldosterone system, vasopressin and cyclic adenosine monophosphate, epidermal growth factor and insulin-like growth factor tyrosine kinases, vascular endothelial growth factor, extracellular signal-related kinase, tumor necrosis factor-α, cyclin-dependent kinases, caspases and apoptosis, and cyclic adenosine monophosphate-activated protein kinases. Many of the agents that inhibit these signaling pathways and slow cyst growth are also autophagy inducers such as mammalian target of rapamycin inhibitors, cyclin-dependent kinase inhibitors, caspase inhibitors, tyrosine kinase inhibitors, metformin, curcumin, and triptolide. There are reasons to believe that suppression of autophagy may play a role in cyst formation and growth. This review presents the hypothesis that suppression of autophagy may play a role in cyst formation and growth, based on the following: (1) many of the agents that protect against polycystic kidney disease also induce autophagy, (2) suppression of autophagy in polycystic kidney disease 1 knockout cells, (3) a defect in autophagy in congenital polycystic kidney mice with polycystic kidney disease, (4) how suppressed autophagy may relate to apoptosis in polycystic kidney disease, and (5) conditions with defective cilia, the ciliopathies, are associated with decreased autophagy.
Collapse
Affiliation(s)
| | - Charles L Edelstein
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Aurora, CO.
| |
Collapse
|
9
|
Beclin 1 Influences Cisplatin-Induced Apoptosis in Cervical Cancer CaSki Cells by Mitochondrial Dependent Pathway. Int J Gynecol Cancer 2012; 22:1118-24. [DOI: 10.1097/igc.0b013e31825e0caa] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PurposeTo investigate the role of Beclin 1 expression on the cisplatin-induced apoptosis in cervical cancer CaSki cells and to explore the potential mechanism underlying this effect.Materials and MethodsAfter overexpression or partial silencing of Beclin 1 in cervical cancer CaSki cells, the transfected group and the control group were treated with cisplatin for 24 hours. The percentage of apoptotic cells were assessed by flow cytometry. The mitochondrial membrane potential and activities of caspase-8/9/3 were detected by JC-1 fluorescence staining and colorimetry. The expression of cytochrome c was measured using a Western blot. The messenger RNA expression of Bax and Bcl-2 were detected by real-time quantitative reverse transcription polymerase chain reaction.ResultsExpression of Beclin 1 protein was up-regulated in overexpressed transfectants of CaSki cells. After treatment with cisplatin, the Beclin 1 overexpression group led to the decrease of mitochondrial membrane potential and increase of activities of caspase-9 and caspase-3, and showed a greater increase in apoptosis than did the nontransfected group. Furthermore, Beclin 1 overexpression resulted in increased cytoplasmic cytochrome c and Bax expression and decreased mitochondrial cytochrome c and Bcl-2 expression.ConclusionOverexpression of Beclin 1 in CaSki cells may influence cisplatin-induced apoptosis by mitochondrial dependent pathway.
Collapse
|
10
|
Huber TB, Edelstein CL, Hartleben B, Inoki K, Jiang M, Koya D, Kume S, Lieberthal W, Pallet N, Quiroga A, Ravichandran K, Susztak K, Yoshida S, Dong Z. Emerging role of autophagy in kidney function, diseases and aging. Autophagy 2012; 8:1009-31. [PMID: 22692002 PMCID: PMC3429540 DOI: 10.4161/auto.19821] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 02/24/2012] [Accepted: 02/27/2012] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a highly conserved process that degrades cellular long-lived proteins and organelles. Accumulating evidence indicates that autophagy plays a critical role in kidney maintenance, diseases and aging. Ischemic, toxic, immunological, and oxidative insults can cause an induction of autophagy in renal epithelial cells modifying the course of various kidney diseases. This review summarizes recent insights on the role of autophagy in kidney physiology and diseases alluding to possible novel intervention strategies for treating specific kidney disorders by modifying autophagy.
Collapse
Affiliation(s)
- Tobias B Huber
- Renal Division, University Hospital Freiburg; Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
RNF185, a novel mitochondrial ubiquitin E3 ligase, regulates autophagy through interaction with BNIP1. PLoS One 2011; 6:e24367. [PMID: 21931693 PMCID: PMC3170314 DOI: 10.1371/journal.pone.0024367] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/08/2011] [Indexed: 01/07/2023] Open
Abstract
Autophagy is an evolutionarily conserved catabolic process that allows recycling of cytoplasmic organelles, such as mitochondria, to offer a bioenergetically efficient pathway for cell survival. Considerable progress has been made in characterizing mitochondrial autophagy. However, the dedicated ubiquitin E3 ligases targeting mitochondria for autophagy have not been revealed. Here we show that human RNF185 is a mitochondrial ubiquitin E3 ligase that regulates selective mitochondrial autophagy in cultured cells. The two C-terminal transmembrane domains of human RNF185 mediate its localization to mitochondrial outer membrane. RNF185 stimulates LC3II accumulation and the formation of autophagolysosomes in human cell lines. We further identified the Bcl-2 family protein BNIP1 as one of the substrates for RNF185. Human BNIP1 colocalizes with RNF185 at mitochondria and is polyubiquitinated by RNF185 through K63-based ubiquitin linkage in vivo. The polyubiquitinated BNIP1 is capable of recruiting autophagy receptor p62, which simultaneously binds both ubiquitin and LC3 to link ubiquitination and autophagy. Our study might reveal a novel RNF185-mediated mechanism for modulating mitochondrial homeostasis through autophagy.
Collapse
|
12
|
Khanna A, Muthusamy S, Liang R, Sarojini H, Wang E. Gain of survival signaling by down-regulation of three key miRNAs in brain of calorie-restricted mice. Aging (Albany NY) 2011; 3:223-36. [PMID: 21415464 PMCID: PMC3091518 DOI: 10.18632/aging.100276] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The decline in cognitive robustness with aging can be attributed to complex genetic pathways involving many cellular dysfunctions, cumulative over time, precipitating in frailty and loss of wellness in the elderly brain. The size and health of the neuronal cell population determines cognitive robustness in mammals. A transgenic mouse model over-expressing Bcl-2 has been shown to rescue neurons from naturally occurring cell death (NOCD). Here we show that in the brain of calorie-restricted (CR) mice, there is an age-dependent decreased expression of microRNAs mmu-miR-181a-1*, mmu-miR-30e and mmu-miR-34a, with a corresponding gain in Bcl-2 expression, and decreases in pro-apoptosis genes such as Bax and cleavage of Caspases. Functional characterization shows that these miRNAs repress Bcl-2 expression by the 3'UTR reporter assays, accompanied by loss of this gene's endogenous expression, and a gain in pro-apoptosome-specific proteins. Over-expression of these miRNAs increases the rate of apoptosis, accompanied by a decline in Bcl-2 expression in miRNA-transfected mouse and human cell lines. We report here that down-regulation of miR-34a, -30e, and -181a permits their shared target gene expression (Bcl-2) to remain at a high level without post-transcriptional repression, accompanied by concomitant low levels of Bax expression and Caspase cleaving; this chain event may be a part of the underlying mechanism contributing to the gain in neuronal survival in long-lived CR-fed mice.
Collapse
Affiliation(s)
- Amit Khanna
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
13
|
Boumela I, Assou S, Aouacheria A, Haouzi D, Dechaud H, De Vos J, Handyside A, Hamamah S. Involvement of BCL2 family members in the regulation of human oocyte and early embryo survival and death: gene expression and beyond. Reproduction 2011; 141:549-61. [PMID: 21339285 DOI: 10.1530/rep-10-0504] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In women, up to 99.9% of the oocyte stockpile formed during fetal life is decimated by apoptosis. Apoptotic features are also detected in human preimplantation embryos both in vivo and in vitro. Despite the important consequences of cell death processes to oocyte competence and early embryonic development, little is known about its genetic and molecular control. B cell lymphoma-2 (BCL2) family proteins are major regulators of cell death and survival. Here, we present a literature review on BCL2 family expression and protein distribution in human and animal oocytes and early embryos. Most of the studies focused on the expression of two antagonistic members: the founding and survival family member BCL2 and its proapoptotic homolog BAX. However, recent transcriptomic analyses have identified novel candidate genes related to oocyte and/or early embryonic viability (such as BCL2L10) or commitment to apoptosis (e.g. BIK). Interestingly, some BCL2 proteins appear to be differentially distributed at the subcellular level during oocyte maturation and early embryonic development, a process probably linked to the functional compartmentalization of the ooplasm and blastomere. Assessment of BCL2 family involvement in regulating the survival of human oocytes and embryos may be of particular value for diagnosis and assisted reproductive technology. We suggest that implications of not only aberrant gene expression but also abnormal subcellular protein redistribution should be established in pathological conditions resulting in infertility.
Collapse
Affiliation(s)
- Imene Boumela
- CHU Montpellier, Institute for Research in Biotherapy, Hôpital Saint-Eloi, Montpellier F-34000, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
MCL-1 is a stress sensor that regulates autophagy in a developmentally regulated manner. EMBO J 2010; 30:395-407. [PMID: 21139567 DOI: 10.1038/emboj.2010.327] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/16/2010] [Indexed: 12/21/2022] Open
Abstract
Apoptosis has an important role during development to regulate cell number. In differentiated cells, however, activation of autophagy has a critical role by enabling cells to remain functional following stress. In this study, we show that the antiapoptotic BCL-2 homologue MCL-1 has a key role in controlling both processes in a developmentally regulated manner. Specifically, MCL-1 degradation is an early event not only following induction of apoptosis, but also under nutrient deprivation conditions where MCL-1 levels regulate activation of autophagy. Furthermore, deletion of MCL-1 in cortical neurons of transgenic mice activates a robust autophagic response. This autophagic response can, however, be converted to apoptosis by either reducing the levels of the autophagy regulator Beclin-1, or by a concomitant activation of BAX. Our results define a pathway whereby MCL-1 has a key role in determining cell fate, by coordinately regulating apoptosis and autophagy.
Collapse
|
15
|
Portt L, Norman G, Clapp C, Greenwood M, Greenwood MT. Anti-apoptosis and cell survival: a review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:238-59. [PMID: 20969895 DOI: 10.1016/j.bbamcr.2010.10.010] [Citation(s) in RCA: 436] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/04/2010] [Accepted: 10/11/2010] [Indexed: 02/08/2023]
Abstract
Type I programmed cell death (PCD) or apoptosis is critical for cellular self-destruction for a variety of processes such as development or the prevention of oncogenic transformation. Alternative forms, including type II (autophagy) and type III (necrotic) represent the other major types of PCD that also serve to trigger cell death. PCD must be tightly controlled since disregulated cell death is involved in the development of a large number of different pathologies. To counter the multitude of processes that are capable of triggering death, cells have devised a large number of cellular processes that serve to prevent inappropriate or premature PCD. These cell survival strategies involve a myriad of coordinated and systematic physiological and genetic changes that serve to ward off death. Here we will discuss the different strategies that are used to prevent cell death and focus on illustrating that although anti-apoptosis and cellular survival serve to counteract PCD, they are nevertheless mechanistically distinct from the processes that regulate cell death.
Collapse
Affiliation(s)
- Liam Portt
- Department of Chemistry and Chemical Engineering, Royal Military College, Ontario, Canada
| | | | | | | | | |
Collapse
|
16
|
Current world literature. Curr Opin Rheumatol 2010; 22:704-12. [PMID: 20881793 DOI: 10.1097/bor.0b013e3283404094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|