1
|
Sharma P, Kale S, Phugare S, Goel SK, Gairola S. Analytical Challenges in Novel Pentavalent Meningococcal Conjugate Vaccine (A, C, Y, W, X). Vaccines (Basel) 2024; 12:1227. [PMID: 39591130 PMCID: PMC11598276 DOI: 10.3390/vaccines12111227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/22/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024] Open
Abstract
Multivalent meningococcal conjugate vaccines are a significant focus for the scientific community in light of the WHO's mission to defeat meningitidis by 2030. Well-known meningococcal vaccines such as MenAfriVac, Nimenrix, Menveo, and MenQuadfi are licensed in various parts of the world and have been successful. Recently, the World Health Organization (WHO) qualified MenFive (meningococcal A, C, Y, W, and X) conjugate vaccine, further enhancing the battery of vaccines against meningitis. The antigenic nature of the current and new serogroups, the selection of carrier proteins, and the optimal formulation of these biomolecules are pivotal parameters for determining whether a biological preparation qualifies as a vaccine candidate. Creating appropriate quality control analytical tools for a complex biological formulation is challenging. A scoping review aims to identify the main challenges and gaps in analyzing multivalent vaccines, especially in the case of novel serogroups, such as X, as the limited literature addresses these analytical challenges. In summary, the similarities in polysaccharide backbones between meningococcal serogroups (C, Y, W sharing a sialic acid backbone and A, X sharing a phosphorous backbone) along with various conjugation chemistries (such as CNBr activation, reductive amination, CDAP, CPIP, thioether bond formation, N-hydroxy succinimide activation, and carbodiimide-mediated coupling) resulting into a wide variety of polysaccharide -protein conjugates. The challenge in analyzing carrier proteins used in conjugation (such as diphtheria toxoid, tetanus toxoid, CRM diphtheria protein, and recombinant CRM) is assessing their purity (whether they are monomeric or polymeric in nature as well as their polydispersity). Additional analytical challenges include the impact of excipients, potential interference from serogroups, selection and establishment of standards, age-dependent behavior of biomolecules indicated by molecular size distributions, and process-driven variations. This article explains the analytical insights gained (polysaccharide content, free saccharide, free proteins, MSD) during the development of the MenFive vaccine and highlights the crucial gaps and challenges in testing.
Collapse
Affiliation(s)
| | | | | | | | - Sunil Gairola
- Serum Institute of India Pvt Ltd., Pune 411 028, India; (P.S.); (S.K.); (S.P.); (S.K.G.)
| |
Collapse
|
2
|
Bolling JW, Holley AD, Rogers C. A Presentation of Neisseria meningitidis in a Patient Taking Adalimumab as Immunosuppressive Therapy for Hidradenitis Suppurativa. Cureus 2024; 16:e68628. [PMID: 39371773 PMCID: PMC11451091 DOI: 10.7759/cureus.68628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Neisseria meningitidis is common within the human population. Most patients with N. meningitidis colonization are asymptomatic, but invasive disease can result in meningitis, fulminant septicemia, and disseminated intravascular coagulation. This case report describes a patient who presented with symptoms of sepsis and was later diagnosed with N. meningitidis. The cause of her infection was believed to be immunosuppression from adalimumab, which she was taking for systemic hidradenitis suppurativa.
Collapse
Affiliation(s)
- Jacob W Bolling
- Medicine, Christ Health Center, Edward Via College of Osteopathic Medicine, Birmingham, USA
| | - Aaron D Holley
- Medicine, Christ Health Center, Edward Via College of Osteopathic Medicine, Birmingham, USA
| | - Cleon Rogers
- Internal Medicine, Christ Health Center, Birmingham, USA
| |
Collapse
|
3
|
Balde A, Ramya CS, Nazeer RA. A review on current advancement in zebrafish models to study chronic inflammatory diseases and their therapeutic targets. Heliyon 2024; 10:e31862. [PMID: 38867970 PMCID: PMC11167310 DOI: 10.1016/j.heliyon.2024.e31862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/02/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
Chronic inflammatory diseases are caused due to prolonged inflammation at a specific site of the body. Among other inflammatory diseases, bacterial meningitis, chronic obstructive pulmonary disease (COPD), atherosclerosis and inflammatory bowel diseases (IBD) are primarily focused on because of their adverse effects and fatality rates around the globe in recent times. In order to come up with novel strategies to eradicate these diseases, a clear understanding of the mechanisms of the diseases is needed. Similarly, detailed insight into the mechanisms of commercially available drugs and potent lead compounds from natural sources are also important to establish efficient therapeutic effects. Zebrafish is widely accepted as a model to study drug toxicity and the pharmacokinetic effects of the drug. Moreover, researchers use various inducers to trigger inflammatory cascades and stimulate physiological changes in zebrafish. The effect of these inducers contrasts with the type of zebrafish used in the investigation. Hence, a thorough analysis is required to study the current advancements in the zebrafish model for chronic inflammatory disease suppression. This review presents the most common inflammatory diseases, commercially available drugs, novel therapeutics, and their mechanisms of action for disease suppression. The review also provides a detailed description of various zebrafish models for these diseases. Finally, the future prospects and challenges for the same are described, which can help the researchers understand the potency of the zebrafish model and its further exploration for disease attenuation.
Collapse
Affiliation(s)
- Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Cunnathur Saravanan Ramya
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| |
Collapse
|
4
|
Peters S, Mohort K, Claus H, Stigloher C, Schubert-Unkmeir A. Interaction of Neisseria meningitidis carrier and disease isolates of MenB cc32 and MenW cc22 with epithelial cells of the nasopharyngeal barrier. Front Cell Infect Microbiol 2024; 14:1389527. [PMID: 38756230 PMCID: PMC11096551 DOI: 10.3389/fcimb.2024.1389527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Neisseria meningitidis (Nm, the meningococcus) is considered an asymptomatic colonizer of the upper respiratory tract and a transient member of its microbiome. It is assumed that the spread of N. meningitidis into the bloodstream occurs via transcytosis of the nasopharyngeal epithelial barrier without destroying the barrier layer. Here, we used Calu-3 respiratory epithelial cells that were grown under air-liquid-interface conditions to induce formation of pseudostratified layers and mucus production. The number of bacterial localizations in the outer mucus, as well as cellular adhesion, invasion and transmigration of different carrier and disease N. meningitidis isolates belonging to MenB:cc32 and MenW:cc22 lineages was assessed. In addition, the effect on barrier integrity and cytokine release was determined. Our findings showed that all strains tested resided primarily in the outer mucus layer after 24 h of infection (>80%). Nonetheless, both MenB:cc32 and MenW:cc22 carrier and disease isolates reached the surface of the epithelial cells and overcame the barrier. Interestingly, we observed a significant difference in the number of bacteria transmigrating the epithelial cell barrier, with the representative disease isolates being more efficient to transmigrate compared to carrier isolates. This could be attributed to the capacity of the disease isolates to invade, however could not be assigned to expression of the outer membrane protein Opc. Moreover, we found that the representative meningococcal isolates tested in this study did not damage the epithelial barrier, as shown by TEER measurement, FITC-dextran permeability assays, and expression of cell-junction components.
Collapse
Affiliation(s)
- Simon Peters
- Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Katherina Mohort
- Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Heike Claus
- Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Christian Stigloher
- Imaging Core Facility, Biocenter, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|
5
|
Borrow R, Findlow J. The important lessons lurking in the history of meningococcal epidemiology. Expert Rev Vaccines 2024; 23:445-462. [PMID: 38517733 DOI: 10.1080/14760584.2024.2329618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/08/2024] [Indexed: 03/24/2024]
Abstract
INTRODUCTION The epidemiology of invasive meningococcal disease (IMD), a rare but potentially fatal illness, is typically described as unpredictable and subject to sporadic outbreaks. AREAS COVERED Meningococcal epidemiology and vaccine use during the last ~ 200 years are examined within the context of meningococcal characterization and classification to guide future IMD prevention efforts. EXPERT OPINION Historical and contemporary data highlight the dynamic nature of meningococcal epidemiology, with continued emergence of hyperinvasive clones and affected regions. Recent shifts include global increases in serogroup W disease, meningococcal antimicrobial resistance (AMR), and meningococcal urethritis; additionally, unvaccinated populations have experienced disease resurgences following lifting of COVID-19 restrictions. Despite these changes, a close analysis of meningococcal epidemiology indicates consistent dominance of serogroups A, B, C, W, and Y and elevated IMD rates among infants and young children, adolescents/young adults, and older adults. Demonstrably effective vaccines against all 5 major disease-causing serogroups are available, and their prophylactic use represents a powerful weapon against IMD, including AMR. The World Health Organization's goal of defeating meningitis by the year 2030 demands broad protection against IMD, which in turn indicates an urgent need to expand meningococcal vaccination programs across major disease-causing serogroups and age-related risk groups.
Collapse
Affiliation(s)
- Ray Borrow
- Meningococcal Reference Unit, UKHSA, Manchester Royal Infirmary, Manchester, UK
| | - Jamie Findlow
- Global Medical Affairs, Vaccines and Antivirals, Pfizer Ltd, Tadworth, UK
| |
Collapse
|
6
|
Wang J, An H, Ding M, Liu Y, Wang S, Jin Q, Wu Q, Dong H, Guo Q, Tian X, Liu J, Zhang J, Zhu T, Li J, Shao Z, Briles DE, Veening JW, Zheng H, Zhang L, Zhang JR. Liver macrophages and sinusoidal endothelial cells execute vaccine-elicited capture of invasive bacteria. Sci Transl Med 2023; 15:eade0054. [PMID: 38117903 DOI: 10.1126/scitranslmed.ade0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
Vaccination has substantially reduced the morbidity and mortality of bacterial diseases, but mechanisms of vaccine-elicited pathogen clearance remain largely undefined. We report that vaccine-elicited immunity against invasive bacteria mainly operates in the liver. In contrast to the current paradigm that migrating phagocytes execute vaccine-elicited immunity against blood-borne pathogens, we found that invasive bacteria are captured and killed in the liver of vaccinated host via various immune mechanisms that depend on the protective potency of the vaccine. Vaccines with relatively lower degrees of protection only activated liver-resident macrophage Kupffer cells (KCs) by inducing pathogen-binding immunoglobulin M (IgM) or low amounts of IgG. IgG-coated pathogens were directly captured by KCs via multiple IgG receptors FcγRs, whereas IgM-opsonized bacteria were indirectly bound to KCs via complement receptors of immunoglobulin superfamily (CRIg) and complement receptor 3 (CR3) after complement C3 activation at the bacterial surface. Conversely, the more potent vaccines engaged both KCs and liver sinusoidal endothelial cells by inducing higher titers of functional IgG antibodies. Endothelial cells (ECs) captured densely IgG-opsonized pathogens by the low-affinity IgG receptor FcγRIIB in a "zipper-like" manner and achieved bacterial killing predominantly in the extracellular milieu via an undefined mechanism. KC- and endothelial cell-based capture of antibody-opsonized bacteria also occurred in FcγR-humanized mice. These vaccine protection mechanisms in the liver not only provide a comprehensive explanation for vaccine-/antibody-boosted immunity against invasive bacteria but also may serve as in vivo functional readouts of vaccine efficacy.
Collapse
Affiliation(s)
- Juanjuan Wang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haoran An
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ming Ding
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yanhong Liu
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shaomeng Wang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qian Jin
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qi Wu
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Haodi Dong
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qile Guo
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xianbin Tian
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | | - Tao Zhu
- Cansino Biologics, Tianjin 300301, China
| | | | - Zhujun Shao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102299, China
| | - David E Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne 1015, Switzerland
| | | | - Linqi Zhang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Wu S, Coureuil M, Nassif X, Tautz L. Enzyme mechanistic studies of NMA1982, a protein tyrosine phosphatase and potential virulence factor in Neisseria meningitidis. Sci Rep 2023; 13:22015. [PMID: 38086986 PMCID: PMC10716126 DOI: 10.1038/s41598-023-49561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/09/2023] [Indexed: 12/18/2023] Open
Abstract
Protein phosphorylation is an integral part of many cellular processes, not only in eukaryotes but also in bacteria. The discovery of both prokaryotic protein kinases and phosphatases has created interest in generating antibacterial therapeutics that target these enzymes. NMA1982 is a putative phosphatase from Neisseria meningitidis, the causative agent of meningitis and meningococcal septicemia. The overall fold of NMA1982 closely resembles that of protein tyrosine phosphatases (PTPs). However, the hallmark C(X)5R PTP signature motif, containing the catalytic cysteine and invariant arginine, is shorter by one amino acid in NMA1982. This has cast doubt about the catalytic mechanism of NMA1982 and its assignment to the PTP superfamily. Here, we demonstrate that NMA1982 indeed employs a catalytic mechanism that is specific to PTPs. Mutagenesis experiments, transition state inhibition, pH-dependence activity, and oxidative inactivation experiments all support that NMA1982 is a genuine PTP. Importantly, we show that NMA1982 is secreted by N. meningitidis, suggesting that this protein is a potential virulence factor. Future studies will need to address whether NMA1982 is indeed essential for N. meningitidis survival and virulence. Based on its unique active site conformation, NMA1982 may become a suitable target for developing selective antibacterial drugs.
Collapse
Affiliation(s)
- Shuangding Wu
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Mathieu Coureuil
- Université Paris CitéUFR de Médecine, 15 Rue de l'École de Médecine, 75006, Paris, France
- Institut Necker Enfants-MaladesInserm U1151, CNRS UMR 8253, 160 Rue de Vaugirard, 75015, Paris, France
| | - Xavier Nassif
- Université Paris CitéUFR de Médecine, 15 Rue de l'École de Médecine, 75006, Paris, France
- Institut Necker Enfants-MaladesInserm U1151, CNRS UMR 8253, 160 Rue de Vaugirard, 75015, Paris, France
| | - Lutz Tautz
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
8
|
Takahashi H, Morita M, Yasuda M, Ohama Y, Kobori Y, Kojima M, Shimuta K, Akeda Y, Ohnishi M. Detection of Novel US Neisseria meningitidis Urethritis Clade Subtypes in Japan. Emerg Infect Dis 2023; 29:2210-2217. [PMID: 37877502 PMCID: PMC10617353 DOI: 10.3201/eid2911.231082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Neisseria meningitidis causes invasive meningococcal diseases and has also been identified as a causative agent of sexually transmitted infections, including urethritis. Unencapsulated sequence type 11 meningococci containing the gonococcal aniA-norB locus and belonging to the United States N. meningitidis urethritis clade (US_NmUC) are causative agents of urethral infections in the United States, predominantly among men who have sex with men. We identified 2 subtypes of unencapsulated sequence type 11 meningococci in Japan that were phylogenetically close to US_NmUC, designated as the Japan N. meningitidis urethritis clade (J_NmUC). The subtypes were characterized by PCR, serologic testing, and whole-genome sequencing. Our study suggests that an ancestor of US_NmUC and J_NmUS urethritis-associated meningococci is disseminated worldwide. Global monitoring of urethritis-associated N. meningitidis isolates should be performed to further characterize microbiologic and epidemiologic characteristics of urethritis clade meningococci.
Collapse
|
9
|
Wu S, Coureuil M, Nassif X, Tautz L. Enzyme Mechanistic Studies of NMA1982, a Protein Tyrosine Phosphatase and Potential Virulence Factor in Neisseria meningitidis. RESEARCH SQUARE 2023:rs.3.rs-3098138. [PMID: 37693380 PMCID: PMC10491346 DOI: 10.21203/rs.3.rs-3098138/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Protein phosphorylation is an integral part of many cellular processes, not only in eukaryotes but also in bacteria. The discovery of both prokaryotic protein kinases and phosphatases has created interest in generating antibacterial therapeutics that target these enzymes. NMA1982 is a putative phosphatase from Neisseria meningitidis, the causative agent of meningitis and meningococcal septicemia. The overall fold of NMA1982 closely resembles that of protein tyrosine phosphatases (PTPs). However, the hallmark C(X)5R PTP signature motif, containing the catalytic cysteine and invariant arginine, is shorter by one amino acid in NMA1982. This has cast doubt about the catalytic mechanism of NMA1982 and its assignment to the PTP superfamily. Here, we demonstrate that NMA1982 indeed employs a catalytic mechanism that is specific to PTPs. Mutagenesis experiments, transition state inhibition, pH-dependence activity, and oxidative inactivation experiments all support that NMA1982 is a genuine PTP. Importantly, we show that NMA1982 is secreted by N. meningitidis, suggesting that this protein is a potential virulence factor. Future studies will need to address whether NMA1982 is indeed essential for N. meningitidis survival and virulence. Based on its unique active site conformation, NMA1982 may become a suitable target for developing selective antibacterial drugs.
Collapse
Affiliation(s)
| | | | | | - Lutz Tautz
- Sanford Burnham Prebys Medical Discovery Institute
| |
Collapse
|
10
|
Wu S, Coureuil M, Nassif X, Tautz L. NMA1982 is a Novel Phosphatase and Potential Virulence Factor in Neisseria meningitidis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541968. [PMID: 37292688 PMCID: PMC10245925 DOI: 10.1101/2023.05.23.541968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protein phosphorylation is an integral part of many cellular processes, not only in eukaryotes but also in bacteria. The discovery of both prokaryotic protein kinases and phosphatases has created interest in generating antibacterial therapeutics that target these enzymes. NMA1982 is a putative phosphatase from Neisseria meningitidis, the causative agent of meningitis and meningococcal septicemia. The overall fold of NMA1982 closely resembles that of protein tyrosine phosphatases (PTPs). However, the hallmark C(X)5R PTP signature motif, containing the catalytic cysteine and invariant arginine, is shorter by one amino acid in NMA1982. This has cast doubt about the catalytic mechanism of NMA1982 and its assignment to the PTP superfamily. Here, we demonstrate that NMA1982 indeed employs a catalytic mechanism that is specific to PTPs. Mutagenesis experiments, transition state inhibition, pH-dependence activity, and oxidative inactivation experiments all support that NMA1982 is a genuine phosphatase. Importantly, we show that NMA1982 is secreted by N. meningitidis, suggesting that this protein is a potential virulence factor. Future studies will need to address whether NMA1982 is indeed essential for N. meningitidis survival and virulence. Based on its unique active site conformation, NMA1982 may become a suitable target for developing selective antibacterial drugs.
Collapse
Affiliation(s)
- Shuangding Wu
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Mathieu Coureuil
- Université Paris Cité, UFR de Médecine, 15 Rue de l’École de Médecine, 75006 Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, 160 Rue de Vaugirard, 75015 Paris, France
| | - Xavier Nassif
- Université Paris Cité, UFR de Médecine, 15 Rue de l’École de Médecine, 75006 Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, 160 Rue de Vaugirard, 75015 Paris, France
| | - Lutz Tautz
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
11
|
Meningococcal carriage in men who have sex with men presenting at a sexual health unit in Spain. Eur J Clin Microbiol Infect Dis 2023; 42:287-296. [PMID: 36692604 DOI: 10.1007/s10096-023-04550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/15/2023] [Indexed: 01/25/2023]
Abstract
Neisseria meningitidis (Nm) is asymptomatically carried in the nasopharynx of 5-10% adults, although certain populations, such as men who have sex with men (MSM), exhibit a higher colonisation rate. Interest in Nm carriage has been renewed, owed to meningitis outbreaks within populations of MSM. The aim of this study was to characterise Nm isolates and risk factors for its carriage among MSM attending a sexual health unit. A retrospective cross-sectional study was undertaken between June 2018 and December 2021. We took anal, oropharyngeal, urethral, and blood samples as part of the sexually transmitted infection screening procedures routinely implemented. Nm isolates were subjected to antimicrobial susceptibility testing; the serogroup and genogroup were determined by multi-locus sequence typing. A total of 399 subjects were recruited, and the Nm oropharyngeal carriage rate was 29%, similar among both people living with HIV (PLWH) and uninfected individuals. Nm carriage was less common in vaccinated individuals, especially those who had received the tetravalent vaccine (2.6% vs. 10.6%, p = 0.008). The most frequent serogroups were B (40%) and non-groupable (45%). Most of the isolates were susceptible to ciprofloxacin (96%) and ceftriaxone (100%). However, we identified 21 strains (20%) belonging to hyperinvasive lineages (CC11, CC4821, CC32, CC41/44, CC213, and CC269), most of which belonged to serogroup B. Given that vaccination with MenACWY was associated with a low Nm carriage, we encourage routine vaccination of all MSM. Moreover, the administration of the meningitis B vaccine should also be assessed considering that several invasive lines included in serogroup B are circulating among MSM.
Collapse
|
12
|
Dave N, Albiheyri RS, Wanford JJ, Green LR, Oldfield NJ, Turner DPJ, Martinez-Pomares L, Bayliss CD. Variable disruption of epithelial monolayers by Neisseria meningitidis carriage isolates of the hypervirulent MenW cc11 and MenY cc23 lineages. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36821361 DOI: 10.1099/mic.0.001305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Colonization of mucosal tissues by Neisseria meningitidis requires adhesion mediated by the type IV pilus and multiple outer-membrane proteins. Penetration of the mucosa and invasion of epithelial cells are thought to contribute to host persistence and invasive disease. Using Calu-3 cell monolayers grown at an air-liquid interface, we examined adhesion, invasion and monolayer disruption by carriage isolates of two clonal complexes of N. meningitidis. Carriage isolates of both the serogroup Y cc23 and the hypervirulent serogroup W cc11 lineages exhibited high levels of cellular adhesion, and a variable disruption phenotype across independent isolates. Inactivation of the gene encoding the main pilus sub-unit in multiple cc11 isolates abrogated both adhesive capacity and ability to disrupt epithelial monolayers. Contrastingly, inactivation of the phase-variable opa or nadA genes reduced adhesion and invasion, but not disruption of monolayer integrity. Adherence of tissue-disruptive meningococci correlated with loss of staining for the tight junction protein, occludin. Intriguingly, in a pilus-negative strain background, we observed compensatory ON switching of opa genes, which facilitated continued adhesion. We conclude that disruption of epithelial monolayers occurs in multiple meningococcal lineages but can vary during carriage and is intimately linked to pilus-mediated adhesion.
Collapse
Affiliation(s)
- Neelam Dave
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Raed S Albiheyri
- School of Life Sciences, University of Nottingham, Nottingham, UK.,Present address: Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Joseph J Wanford
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.,Present address: Department of Infectious Disease, King's College, London, UK
| | - Luke R Green
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.,Present address: Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Neil J Oldfield
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - David P J Turner
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
13
|
Chen H, Li M, Tu S, Zhang X, Wang X, Zhang Y, Zhao C, Guo Y, Wang H. Metagenomic data from cerebrospinal fluid permits tracing the origin and spread of Neisseria meningitidis CC4821 in China. Commun Biol 2022; 5:839. [PMID: 35982241 PMCID: PMC9388655 DOI: 10.1038/s42003-022-03792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/03/2022] [Indexed: 12/04/2022] Open
Abstract
Metagenomic next-generation sequencing (mNGS) is useful for difficult to cultivate pathogens. Here, we use cerebrospinal fluid mNGS to diagnose invasive meningococcal disease. The complete genome sequences of Neisseria meningitidis were assembled using N. meningitidis of ST4821-serotype C isolated from four patients. To investigate the phylogeny, 165 CC4821 N. meningitidis genomes from 1972 to 2017 were also included. The core genome accumulated variation at a rate of 4.84×10−8 substitutions/nucleotide site/year. CC4821 differentiated into four sub-lineages during evolution (A, B, C, and D). While evolving from sub-lineage A (early stage) to sub-lineage D (late stage), the ST and CC4821 serotype converged into the ST4821-serotype C clone. Most strains of sub-lineage D were isolated from invasive meningococcal disease, with increasing resistance to quinolones. Phylogeographic analysis suggests that CC4821 has spread across 14 countries. Thus, the selective pressure of quinolones may cause CC4821 to converge evolutionarily, making it more invasive and facilitating its spread. Metagenomic data from cerebrospinal fluid was used to genotype Neisseria meningitidis in patients with invasive meningococcal disease and trace the origin of the pathobiont, providing a phylogeographic analysis of the strain’s evolution in China and its global spread.
Collapse
Affiliation(s)
- Hongbin Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| | - Mei Li
- Department of Clinical Laboratory, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Shangyu Tu
- Department of Clinical Medicine, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Xiaoyang Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xiaojuan Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yawei Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Chunjiang Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yinghui Guo
- Department of Clinical Laboratory, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, China.
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
14
|
Talà A, Guerra F, Calcagnile M, Romano R, Resta SC, Paiano A, Chiariello M, Pizzolante G, Bucci C, Alifano P. HrpA anchors meningococci to the dynein motor and affects the balance between apoptosis and pyroptosis. J Biomed Sci 2022; 29:45. [PMID: 35765029 PMCID: PMC9241232 DOI: 10.1186/s12929-022-00829-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Neisseria meningitidis the HrpA/HrpB two-partner secretion system (TPS) was implicated in diverse functions including meningococcal competition, biofilm formation, adherence to epithelial cells, intracellular survival and vacuolar escape. These diverse functions could be attributed to distinct domains of secreted HrpA. METHODS A yeast two-hybrid screening, in vitro pull-down assay and immunofluorescence microscopy experiments were used to investigate the interaction between HrpA and the dynein light-chain, Tctex-type 1 (DYNLT1). In silico modeling was used to analyze HrpA structure. Western blot analysis was used to investigate apoptotic and pyroptotic markers. RESULTS The HrpA carboxy-terminal region acts as a manganese-dependent cell lysin, while the results of a yeast two-hybrid screening demonstrated that the HrpA middle region has the ability to bind the dynein light-chain, Tctex-type 1 (DYNLT1). This interaction was confirmed by in vitro pull-down assay and immunofluorescence microscopy experiments showing co-localization of N. meningitidis with DYNLT1 in infected epithelial cells. In silico modeling revealed that the HrpA-M interface interacting with the DYNLT1 has similarity with capsid proteins of neurotropic viruses that interact with the DYNLT1. Indeed, we found that HrpA plays a key role in infection of and meningococcal trafficking within neuronal cells, and is implicated in the modulation of the balance between apoptosis and pyroptosis. CONCLUSIONS Our findings revealed that N. meningitidis is able to effectively infect and survive in neuronal cells, and that this ability is dependent on HrpA, which establishes a direct protein-protein interaction with DYNLTI in these cells, suggesting that the HrpA interaction with dynein could be fundamental for N. meningitidis spreading inside the neurons. Moreover, we found that the balance between apoptotic and pyroptotic pathways is heavily affected by HrpA.
Collapse
Affiliation(s)
- Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Roberta Romano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Silvia Caterina Resta
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Aurora Paiano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Mario Chiariello
- Core Research Laboratory-Siena, Institute for Cancer Research and Prevention (ISPRO), 53100, Siena, Italy.,Institute of Clinical Physiology (IFC), National Research Council (CNR), 53100, Siena, Italy
| | - Graziano Pizzolante
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy.
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy.
| |
Collapse
|
15
|
The source of carbon and nitrogen differentially affects the survival of Neisseria meningitidis in macrophages and epithelial cells. Arch Microbiol 2022; 204:404. [PMID: 35723778 DOI: 10.1007/s00203-022-03037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Neisseria meningitidis is a commensal of human nasopharynx which under certain unidentified conditions could lead to fulminant meningitis or sepsis. Availability of nutrients is essential for bacterial growth and virulence. The metabolic adaptations allow N. meningitidis to utilize host resources, colonize and cause virulence functions which are a crucial for the invasive infection. During colonization meningococci encounters a range of microenvironments involving fluctuations in the availability of carbon and nitrogen source. Therefore, the characterization of virulence factors of N. meningitidis under different microenvironmental conditions is a prime requisite to understand pathogenesis; however, the role of nutrients is not well understood. Here, we explore the expression of virulence phenotype leading to symptomatic behaviour as affected by available carbon and nitrogen sources. We evaluate the effect of carbon or nitrogen source on growth, adhesion to epithelial cells, macrophage infectivity, capsule formation and virulence gene expression of N. meningitidis. It was found that lactate, pyruvate, and acetate facilitate survival of N. meningitidis in macrophages. While in epithelial cells, the survival of N. meningitidis is negatively affected by the presence of lactate and pyruvate.
Collapse
|
16
|
Xu J, Chen Y, Yue M, Yu J, Han F, Xu L, Shao Z. Prevalence of Neisseria meningitidis serogroups in invasive meningococcal disease in China, 2010 - 2020: a systematic review and meta-analysis. Hum Vaccin Immunother 2022; 18:2071077. [PMID: 35687866 PMCID: PMC9302495 DOI: 10.1080/21645515.2022.2071077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Invasive meningococcal disease (IMD) caused by Neisseria meningitidis (Nm) continues to be a global public health concern. Understanding the prevalence of Nm serogroups in IMD is critical for developing strategies for meningococcal vaccination. We used the keywords “cerebrospinal meningitis”, “meningococcal”, “Neisseria meningitidis’’, “meningococcal meningitis”, “serogroup’’ and “China’’ to search five databases, including PubMed, CNKI, CBM (Chinese BioMedical Literature Database), WanFang and VIP from 2010 to 2020. The age distributions, proportions of Nm serogroups and serogroup changes in IMD were analyzed. A total of 14 studies were included according to PRISMA guidelines. In China, from 2010 to 2020, the highest proportion of Nm in IMD was NmC, with 49.7% (95% CI: 35.8%–63.5%), followed by NmB with 30.2% (95%CI:17.3%–43.0%) and NmW with 23.8% (95%CI: 7.0–40.7%). Before 2014, NmC was the major circulating serogroup, with 59.6% (95% CI: 43.8%-75.4%), followed by NmW with 24.4% (95% CI: 5.9%–42.9%). After 2015, IMD cases caused by NmB were increasing, the proportion of NmB reached to 52.4% (95% CI: 31.8%–73.1%). The age groups of children from 0 to 5 years and from 6 to 10 years represented, respectively, 29.6% (95% CI: 16.8%–42.4%) and 28.9% (95% CI: 12.1%–45.8%) of all IMD cases were reported. In China, NmB, NmC and NmW were the major serogroups causing IMD between 2010 and 2020. Since 2015, the proportion of NmB increased rapidly. The current serogroup distribution in China highlights the need of replacing the meningococcal polysaccharide vaccines that are being used in the National Immunization Program with more appropriate vaccines.
Collapse
Affiliation(s)
- Juan Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuquan Chen
- Institute of Medical Information/Library, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengmeng Yue
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jianxing Yu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fuyi Han
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhujun Shao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
17
|
Mikucki A, McCluskey NR, Kahler CM. The Host-Pathogen Interactions and Epicellular Lifestyle of Neisseria meningitidis. Front Cell Infect Microbiol 2022; 12:862935. [PMID: 35531336 PMCID: PMC9072670 DOI: 10.3389/fcimb.2022.862935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/28/2022] [Indexed: 01/17/2023] Open
Abstract
Neisseria meningitidis is a gram-negative diplococcus and a transient commensal of the human nasopharynx. It shares and competes for this niche with a number of other Neisseria species including N. lactamica, N. cinerea and N. mucosa. Unlike these other members of the genus, N. meningitidis may become invasive, crossing the epithelium of the nasopharynx and entering the bloodstream, where it rapidly proliferates causing a syndrome known as Invasive Meningococcal Disease (IMD). IMD progresses rapidly to cause septic shock and meningitis and is often fatal despite aggressive antibiotic therapy. While many of the ways in which meningococci survive in the host environment have been well studied, recent insights into the interactions between N. meningitidis and the epithelial, serum, and endothelial environments have expanded our understanding of how IMD develops. This review seeks to incorporate recent work into the established model of pathogenesis. In particular, we focus on the competition that N. meningitidis faces in the nasopharynx from other Neisseria species, and how the genetic diversity of the meningococcus contributes to the wide range of inflammatory and pathogenic potentials observed among different lineages.
Collapse
Affiliation(s)
- August Mikucki
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Nicolie R. McCluskey
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- College of Science, Health, Engineering and Education, Telethon Kids Institute, Murdoch University, Perth, WA, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- *Correspondence: Charlene M. Kahler,
| |
Collapse
|
18
|
Borghi S, Antunes A, Haag AF, Spinsanti M, Brignoli T, Ndoni E, Scarlato V, Delany I. Multilayer Regulation of Neisseria meningitidis NHBA at Physiologically Relevant Temperatures. Microorganisms 2022; 10:microorganisms10040834. [PMID: 35456883 PMCID: PMC9031163 DOI: 10.3390/microorganisms10040834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/03/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Neisseria meningitidis colonizes the nasopharynx of humans, and pathogenic strains can disseminate into the bloodstream, causing septicemia and meningitis. NHBA is a surface-exposed lipoprotein expressed by all N. meningitidis strains in different isoforms. Diverse roles have been reported for NHBA in heparin-mediated serum resistance, biofilm formation, and adherence to host tissues. We determined that temperature controls the expression of NHBA in all strains tested, with increased levels at 30−32 °C compared to 37 °C. Higher NHBA expression at lower temperatures was measurable both at mRNA and protein levels, resulting in higher surface exposure. Detailed molecular analysis indicated that multiple molecular mechanisms are responsible for the thermoregulated NHBA expression. The comparison of mRNA steady-state levels and half-lives at 30 °C and 37 °C demonstrated an increased mRNA stability/translatability at lower temperatures. Protein stability was also impacted, resulting in higher NHBA stability at lower temperatures. Ultimately, increased NHBA expression resulted in higher susceptibility to complement-mediated killing. We propose that NHBA regulation in response to temperature downshift might be physiologically relevant during transmission and the initial step(s) of interaction within the host nasopharynx. Together these data describe the importance of NHBA both as a virulence factor and as a vaccine antigen during neisserial colonization and invasion.
Collapse
Affiliation(s)
- Sara Borghi
- Immune Monitoring Laboratory, NYU Langone Health, 550 First Avenue, New York, NY 10016, USA;
- Department of Pathology, NYU Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
- GlaxoSmithKline (GSK) Vaccines, 53100 Siena, Italy;
| | - Ana Antunes
- MabDesign, 69007 Lyon, France;
- GlaxoSmithKline (GSK) Vaccines, 53100 Siena, Italy;
| | - Andreas F. Haag
- School of Medicine, University of St Andrews, North-Haugh, St Andrews KY16 9TF, UK;
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
- GlaxoSmithKline (GSK) Vaccines, 53100 Siena, Italy;
| | | | - Tarcisio Brignoli
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TH, UK;
- GlaxoSmithKline (GSK) Vaccines, 53100 Siena, Italy;
| | - Enea Ndoni
- Lonza Group AG, 4057 Basel, Switzerland;
- GlaxoSmithKline (GSK) Vaccines, 53100 Siena, Italy;
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy;
| | - Isabel Delany
- GlaxoSmithKline (GSK) Vaccines, 53100 Siena, Italy;
- Correspondence:
| |
Collapse
|
19
|
Neri A, Palmieri A, Prignano G, Giuliani M, Latini A, Fazio C, Vacca P, Ambrosio L, Ciammaruconi A, Fillo S, Anselmo A, Fortunato A, Lista R, Stefanelli P. Molecular characterisation and antibiotic susceptibility of meningococcal isolates from healthy men who have sex with men. Sex Transm Infect 2021; 98:420-426. [PMID: 34789510 PMCID: PMC9411889 DOI: 10.1136/sextrans-2021-055173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/31/2021] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES To evaluate and characterise meningococcal carriage among healthy men who have sex with men (MSM) within a screening programme for Neisseria gonorrhoeae infection at the San Gallicano Dermatological Institute, Italy. METHODS A total of 441 MSM attending the STI/HIV Centre of the San Gallicano Institute, Rome, Italy, in 2016 were routinely screened for N. gonorrhoeae infection by pharyngeal and rectal swabs. N. meningitidis isolates were evaluated for antibiotic susceptibility and characterised by whole genome sequencing. Genetic relationships among the meningococcal carriage isolates were determined using core genome multilocus sequence typing analysis. The soluble domain of AniA (sAniA) protein expression by western blotting was also evaluated. RESULTS A total of 62 (14.1%, 95% CI 11.1 to 17.6) carriage meningococci were found among 441 MSM. Forty-three viable N. meningitidis isolates were cultivated (42 from pharyngeal and 1 from rectal swabs). All the viable isolates were susceptible to cefotaxime, ceftriaxone, ciprofloxacin and rifampicin. Four isolates were penicillin G-resistant and 73% of those penicillin G-susceptible showed a minimum inhibitory concentration from 0.064 μg/mL to 0.25 μg/mL. Serogroup B was the most frequent (44.2%), followed by Z (16.3%), E (9.3%), and Y and W (2.3%), respectively. Multilocus sequence typing analysis identified 29 sequence types belonging to 12 clonal complexes. The sAniA protein was expressed in 8 out of 28 (29%) screened meningococcal carriage isolates. CONCLUSIONS Serogroup B meningococcal carriage identified from oral and anal specimens among healthy MSM was the most frequent serogroup identified in this study. Molecular evaluation revealed a degree of similarity among strains belonging to the same clonal complex.
Collapse
Affiliation(s)
- Arianna Neri
- Department of Infectious Diseases, Istituto Superiore di Sanità, Roma, Italy
| | - Annapina Palmieri
- Department of Infectious Diseases, Istituto Superiore di Sanità, Roma, Italy
| | - Grazia Prignano
- Clinical Pathology and Microbiology Unit, IRCC San Gallicano Institute, Rome, Italy
| | - Massimo Giuliani
- STI/HIV Unit, San Gallicano Dermatological Institute IRCCS, Istituto Dermatologico San Gallicano, Roma, Italy
| | - Alessandra Latini
- STI/HIV Unit, San Gallicano Dermatological Institute IRCCS, Istituto Dermatologico San Gallicano, Roma, Italy
| | - Cecilia Fazio
- Department of Infectious Diseases, Istituto Superiore di Sanità, Roma, Italy
| | - Paola Vacca
- Department of Infectious Diseases, Istituto Superiore di Sanità, Roma, Italy
| | - Luigina Ambrosio
- Department of Infectious Diseases, Istituto Superiore di Sanità, Roma, Italy
| | - Andrea Ciammaruconi
- Scientific Department, Army Medical Center, Centro Studi e Ricerche di Sanita' e Veterinaria dell' Esercito, Roma, Italy
| | - Silvia Fillo
- Scientific Department, Army Medical Center, Centro Studi e Ricerche di Sanita' e Veterinaria dell' Esercito, Roma, Italy
| | - Anna Anselmo
- Scientific Department, Army Medical Center, Centro Studi e Ricerche di Sanita' e Veterinaria dell' Esercito, Roma, Italy
| | - Antonella Fortunato
- Scientific Department, Army Medical Center, Centro Studi e Ricerche di Sanita' e Veterinaria dell' Esercito, Roma, Italy
| | - Romano Lista
- Scientific Department, Army Medical Center, Centro Studi e Ricerche di Sanita' e Veterinaria dell' Esercito, Roma, Italy
| | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Roma, Italy
| |
Collapse
|
20
|
Ispasanie E, Muri L, Schubart A, Thorburn C, Zamurovic N, Holbro T, Kammüller M, Pluschke G. Alternative Complement Pathway Inhibition Does Not Abrogate Meningococcal Killing by Serum of Vaccinated Individuals. Front Immunol 2021; 12:747594. [PMID: 34691058 PMCID: PMC8531814 DOI: 10.3389/fimmu.2021.747594] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Dysregulation of complement activation causes a number of diseases, including paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome. These conditions can be treated with monoclonal antibodies (mAbs) that bind to the complement component C5 and prevent formation of the membrane attack complex (MAC). While MAC is involved in uncontrolled lysis of erythrocytes in these patients, it is also required for serum bactericidal activity (SBA), i.e. clearance of encapsulated bacteria. Therefore, terminal complement blockage in these patients increases the risk of invasive disease by Neisseria meningitidis more than 1000-fold compared to the general population, despite obligatory vaccination. It is assumed that alternative instead of terminal pathway inhibition reduces the risk of meningococcal disease in vaccinated individuals. To address this, we investigated the SBA with alternative pathway inhibitors. Serum was collected from adults before and after vaccination with a meningococcal serogroup A, C, W, Y capsule conjugate vaccine and tested for meningococcal killing in the presence of factor B and D, C3, C5 and MASP-2 inhibitors. B meningococci were not included in this study since the immune response against protein-based vaccines is more complex. Unsurprisingly, inhibition of C5 abrogated killing of meningococci by all sera. In contrast, both factor B and D inhibitors affected meningococcal killing in sera from individuals with low, but not with high bactericidal anti-capsular titers. While the anti-MASP-2 mAb did not impair SBA, inhibition of C3 impeded meningococcal killing in most, but not in all sera. These data provide evidence that vaccination can provide protection against invasive meningococcal disease in patients treated with alternative pathway inhibitors.
Collapse
Affiliation(s)
- Emma Ispasanie
- Molecular Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Lukas Muri
- Molecular Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Anna Schubart
- Translational Medicine-Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Natasa Zamurovic
- Translational Medicine-Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Thomas Holbro
- Global Drug Development, Novartis Pharma AG, Basel, Switzerland
| | - Michael Kammüller
- Translational Medicine-Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Gerd Pluschke
- Molecular Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
21
|
Surface architecture of Neisseria meningitidis capsule and outer membrane as revealed by Atomic Force Microscopy. Res Microbiol 2021; 172:103865. [PMID: 34284091 DOI: 10.1016/j.resmic.2021.103865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 11/21/2022]
Abstract
An extensive morphological analysis of the Neisseria meningitidis cell envelope, including serogroup B capsule and outer membrane, based on atomic force microscopy (AFM) together with mechanical characterization by force spectroscopic measurements, has been carried out. Three meningococcal strains were used: the encapsulated serogroup B strain B1940, and the isogenic mutants B1940 siaD(+C) (lacking capsule), and B1940 cps (lacking both capsule and lipooligosaccharide outer core). regularly structured AFM experiments with the encapsulated strain B1940 provided unprecedented images of the meningococcal capsule, which seems to be characterized by protrusions ("bumps") with the lateral dimensions of about 30 nm. Measurement of the Young's modulus provided quantitative assessment of the property of the capsule to confer resistance to mechanical stress. Moreover, Raman spectroscopy gave a fingerprint by which it was possible to identify the specific molecular species of the three strains analyzed, and to highlight major differences between them.
Collapse
|
22
|
BOCCALINI SARA, PANATTO DONATELLA, MENNINI FRANCESCOSAVERIO, MARCELLUSI ANDREA, BINI CHIARA, AMICIZIA DANIELA, LAI PIEROLUIGI, MICALE ROSANNATINDARA, FRUMENTO DAVIDE, AZZARI CHIARA, RICCI SILVIA, BONITO BENEDETTA, DI PISA GIULIA, IOVINE MARIASILVIA, LODI LORENZO, GIOVANNINI MATTIA, MOSCADELLI ANDREA, PAOLI SONIA, PENNATI BEATRICEMARINA, PISANO LAURA, BECHINI ANGELA, BONANNI PAOLO. [ Health Technology Assessment (HTA) of the introduction of additional cohorts for anti-meningococcal vaccination with quadrivalent conjugate vaccines in Italy]. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2021; 62:E1-E128. [PMID: 34622076 PMCID: PMC8452280 DOI: 10.15167/2421-4248/jpmh2021.62.1s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- SARA BOCCALINI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze
- Autore corrispondente: Sara Boccalini, Dipartimento di Scienze della Salute, Università degli Studi di Firenze, 50134 Firenze, Italia - Tel.: 055-2751084 E-mail:
| | - DONATELLA PANATTO
- Dipartimento di Scienze della Salute, Università degli Studi di Genova
| | - FRANCESCO SAVERIO MENNINI
- Economic Evaluation and HTA - CEIS (EEHTA - CEIS), Facoltà di Economia, Università di Roma "Tor Vergata"
- Institute for Leadership and Management in Health, Kingston University, London, UK
| | - ANDREA MARCELLUSI
- Economic Evaluation and HTA - CEIS (EEHTA - CEIS), Facoltà di Economia, Università di Roma "Tor Vergata"
| | - CHIARA BINI
- Economic Evaluation and HTA - CEIS (EEHTA - CEIS), Facoltà di Economia, Università di Roma "Tor Vergata"
| | - DANIELA AMICIZIA
- Dipartimento di Scienze della Salute, Università degli Studi di Genova
| | - PIERO LUIGI LAI
- Dipartimento di Scienze della Salute, Università degli Studi di Genova
| | | | - DAVIDE FRUMENTO
- Dipartimento di Scienze della Salute, Università degli Studi di Genova
| | - CHIARA AZZARI
- Immunologia, Clinica Pediatrica II, AOU Meyer, Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - SILVIA RICCI
- Immunologia, Clinica Pediatrica II, AOU Meyer, Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - BENEDETTA BONITO
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - GIULIA DI PISA
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | | | - LORENZO LODI
- Immunologia, Clinica Pediatrica II, AOU Meyer, Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - MATTIA GIOVANNINI
- Immunologia, Clinica Pediatrica II, AOU Meyer, Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - ANDREA MOSCADELLI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - SONIA PAOLI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | | | - LAURA PISANO
- Immunologia, Clinica Pediatrica II, AOU Meyer, Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - ANGELA BECHINI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - PAOLO BONANNI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| |
Collapse
|
23
|
Spinsanti M, Brignoli T, Bodini M, Fontana LE, De Chiara M, Biolchi A, Muzzi A, Scarlato V, Delany I. Deconvolution of intergenic polymorphisms determining high expression of Factor H binding protein in meningococcus and their association with invasive disease. PLoS Pathog 2021; 17:e1009461. [PMID: 33770146 PMCID: PMC8026042 DOI: 10.1371/journal.ppat.1009461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/07/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Neisseria meningitidis is a strictly human pathogen and is the major cause of septicemia and meningitis worldwide. Factor H binding protein (fHbp) is a meningococcal surface-exposed lipoprotein that binds the human Complement factor H allowing the bacterium to evade the host innate immune response. FHbp is also a key antigen in two vaccines against N. meningitidis serogroup B. Although the fHbp gene is present in most circulating meningococcal strains, level of fHbp expression varies among isolates and has been correlated to differences in promoter sequences upstream of the gene. Here we elucidated the sequence determinants that control fHbp expression in globally circulating strains. We analyzed the upstream fHbpintergenic region (fIR) of more than 5800 strains representative of the UK circulating isolates and we identified eleven fIR sequence alleles which represent 88% of meningococcal strains. By engineering isogenic recombinant strains where fHbp expression was under the control of each of the eleven fIR alleles, we confirmed that the fIR sequence determines a specific and distinct level of expression. Moreover, we identified the molecular basis for variation in expression through polymorphisms within key regulatory regions that are known to affect fHbp expression. We experimentally established three expression groups, high–medium–low, that correlated directly with the susceptibility to killing mediated by anti-fHbp antibodies and the ability of the meningococcal strain to survive within human serum. By using this sequence classification and information about the variant, we predicted fHbp expression in the panel of UK strains and we observed that strains with higher expressing fIR alleles are more likely associated with invasive disease. Overall, our findings can contribute to understand and predict vaccine coverage mediated by fHbp as well as to shed light on the role of this virulence factor in determining an invasive phenotype. Complement plays a key role in the immunity against Neisseria meningitidis. The meningococcus uses the Factor H binding protein (fHbp), to bind a negative regulator of the alternative complement pathway, factor H, to its surface thus preventing complement deposition and lysis. The use of fHbp as an antigen in two licensed vaccines highlights its public health relevance. Therefore the levels of this antigen produced by the bacterium are pivotal on the one hand for the survival of N. meningitidis in blood and on the other hand for the susceptibility to vaccine-induced killing antibodies. Here, we identify the predominant nucleotide sequences that drive distinct levels of the fHbp antigen in circulating meningococcal strains. We cluster them into distinct groups with increasing levels and observe that strains expressing higher fHbp amounts are associated with invasive disease. Our findings show that the nucleotide sequence of the fHbp promoter can be used for the prediction of antigen levels of any given strain and consequently for both the assessment of its sensitivity to killing by fHbp antibodies and its likelihood to cause invasive disease.
Collapse
Affiliation(s)
| | - Tarcisio Brignoli
- GSK, Siena, Italy
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | | | | | | | | | | | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | | |
Collapse
|
24
|
Nwogu IB, Jones M, Langley T. Economic evaluation of meningococcal serogroup B (MenB) vaccines: A systematic review. Vaccine 2021; 39:2201-2213. [PMID: 33744052 DOI: 10.1016/j.vaccine.2021.02.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Meningococcal serogroup B (MenB) has emerged as the leading cause of invasive meningococcal disease (IMD) in several countries following the release of effective vaccines against serogroups A, C, W, and Y. In 2013, however, the first multicomponent MenB vaccine (Bexsero®) was licensed in Europe. AIM To review the evidence on the cost-effectiveness of vaccination against MenB. METHODS Searches were performed in MEDLINE, EMBASE, Web of Science, NHS EED, Econlit, Tufts CEA registry, and HTA. Three reviewers independently screened and selected studies. Using a narrative synthesis, studies were categorized by vaccination strategies. The quality of included studies was assessed using the Comparative Health Economics Evaluation Reporting Standards (CHEERS) checklist. RESULTS 13 studies were included. Ten studies were conducted in the European region and three in the Americas. None of the vaccination strategies were considered cost-effective. Including herd effects improved value for money for MenB vaccines. Routine infant vaccination was the most effective short-term strategy, however, adolescent strategies offered the best value for money. Without herd immunity, routine infant vaccination had the lowest incremental cost-effectiveness ratio estimates. CONCLUSION Routine MenB vaccination does not offer substantial value for money, mainly due to high vaccine costs and low disease incidence.
Collapse
Affiliation(s)
- Ifechukwu B Nwogu
- Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, UK.
| | - Matthew Jones
- Division of Primary Care, School of Medicine, University of Nottingham, UK
| | - Tessa Langley
- Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, UK
| |
Collapse
|
25
|
Interactions and Signal Transduction Pathways Involved during Central Nervous System Entry by Neisseria meningitidis across the Blood-Brain Barriers. Int J Mol Sci 2020; 21:ijms21228788. [PMID: 33233688 PMCID: PMC7699760 DOI: 10.3390/ijms21228788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative diplococcus Neisseria meningitidis, also called meningococcus, exclusively infects humans and can cause meningitis, a severe disease that can lead to the death of the afflicted individuals. To cause meningitis, the bacteria have to enter the central nervous system (CNS) by crossing one of the barriers protecting the CNS from entry by pathogens. These barriers are represented by the blood–brain barrier separating the blood from the brain parenchyma and the blood–cerebrospinal fluid (CSF) barriers at the choroid plexus and the meninges. During the course of meningococcal disease resulting in meningitis, the bacteria undergo several interactions with host cells, including the pharyngeal epithelium and the cells constituting the barriers between the blood and the CSF. These interactions are required to initiate signal transduction pathways that are involved during the crossing of the meningococci into the blood stream and CNS entry, as well as in the host cell response to infection. In this review we summarize the interactions and pathways involved in these processes, whose understanding could help to better understand the pathogenesis of meningococcal meningitis.
Collapse
|
26
|
Azimi S, Wheldon LM, Oldfield NJ, Ala'Aldeen DAA, Wooldridge KG. A role for fibroblast growth factor receptor 1 in the pathogenesis of Neisseria meningitidis. Microb Pathog 2020; 149:104534. [PMID: 33045339 DOI: 10.1016/j.micpath.2020.104534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/13/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022]
Abstract
Neisseria meningitidis (the meningococcus) remains an important cause of human disease, including meningitis and sepsis. Adaptation to the host environment includes many interactions with specific cell surface receptors, resulting in intracellular signalling and cytoskeletal rearrangements that contribute to pathogenesis. Here, we assessed the interactions between meningococci and Fibroblast Growth Factor Receptor 1-IIIc (FGFR1-IIIc): a receptor specific to endothelial cells of the microvasculature, including that of the blood-brain barrier. We show that the meningococcus recruits FGFR1-IIIc onto the surface of human blood microvascular endothelial cells (HBMECs). Furthermore, we demonstrate that expression of FGFR1-IIIc is required for optimal invasion of HBMECs by meningococci. We show that the ability of N. meningitidis to interact with the ligand-binding domain of FGFR1-IIIc is shared with the other pathogenic Neisseria species, N. gonorrhoeae, but not with commensal bacteria including non-pathogenic Neisseria species.
Collapse
Affiliation(s)
- Sheyda Azimi
- Molecular Bacteriology and Immunology Group, School of Life Sciences, University of Nottingham, UK
| | - Lee M Wheldon
- Molecular Bacteriology and Immunology Group, School of Life Sciences, University of Nottingham, UK
| | - Neil J Oldfield
- Molecular Bacteriology and Immunology Group, School of Life Sciences, University of Nottingham, UK
| | - Dlawer A A Ala'Aldeen
- Molecular Bacteriology and Immunology Group, School of Life Sciences, University of Nottingham, UK
| | - Karl G Wooldridge
- Molecular Bacteriology and Immunology Group, School of Life Sciences, University of Nottingham, UK.
| |
Collapse
|
27
|
Takahashi H, Dohmae N, Kim KS, Shimuta K, Ohnishi M, Yokoyama S, Yanagisawa T. Genetic incorporation of non-canonical amino acid photocrosslinkers in Neisseria meningitidis: New method provides insights into the physiological function of the function-unknown NMB1345 protein. PLoS One 2020; 15:e0237883. [PMID: 32866169 PMCID: PMC7458321 DOI: 10.1371/journal.pone.0237883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/04/2020] [Indexed: 02/01/2023] Open
Abstract
Although whole-genome sequencing has provided novel insights into Neisseria meningitidis, many open reading frames have only been annotated as hypothetical proteins with unknown biological functions. Our previous genetic analyses revealed that the hypothetical protein, NMB1345, plays a crucial role in meningococcal infection in human brain microvascular endothelial cells; however, NMB1345 has no homology to any identified protein in databases and its physiological function could not be elucidated using pre-existing methods. Among the many biological technologies to examine transient protein-protein interaction in vivo, one of the developed methods is genetic code expansion with non-canonical amino acids (ncAAs) utilizing a pyrrolysyl-tRNA synthetase/tRNAPyl pair from Methanosarcina species: However, this method has never been applied to assign function-unknown proteins in pathogenic bacteria. In the present study, we developed a new method to genetically incorporate ncAAs-encoded photocrosslinking probes into N. meningitidis by utilizing a pyrrolysyl-tRNA synthetase/tRNAPyl pair and elucidated the biological function(s) of the NMB1345 protein. The results revealed that the NMB1345 protein directly interacts with PilE, a major component of meningococcal pili, and further physicochemical and genetic analyses showed that the interaction between the NMB1345 protein and PilE was important for both functional pilus formation and meningococcal infectious ability in N. meningitidis. The present study using this new methodology for N. meningitidis provides novel insights into meningococcal pathogenesis by assigning the function of a hypothetical protein.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- National Institute of Infectious Diseases, Department of Bacteriology I, Shinjuku-ku, Japan
- * E-mail:
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ken Shimuta
- National Institute of Infectious Diseases, Department of Bacteriology I, Shinjuku-ku, Japan
| | - Makoto Ohnishi
- National Institute of Infectious Diseases, Department of Bacteriology I, Shinjuku-ku, Japan
| | - Shigeyuki Yokoyama
- RIKEN Structural Biology Laboratory, Yokohama, Japan
- RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan
| | - Tatsuo Yanagisawa
- RIKEN Structural Biology Laboratory, Yokohama, Japan
- RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan
| |
Collapse
|
28
|
Custodio R, Johnson E, Liu G, Tang CM, Exley RM. Commensal Neisseria cinerea impairs Neisseria meningitidis microcolony development and reduces pathogen colonisation of epithelial cells. PLoS Pathog 2020; 16:e1008372. [PMID: 32208456 PMCID: PMC7092958 DOI: 10.1371/journal.ppat.1008372] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/31/2020] [Indexed: 12/16/2022] Open
Abstract
It is increasingly being recognised that the interplay between commensal and pathogenic bacteria can dictate the outcome of infection. Consequently, there is a need to understand how commensals interact with their human host and influence pathogen behaviour at epithelial surfaces. Neisseria meningitidis, a leading cause of sepsis and meningitis, exclusively colonises the human nasopharynx and shares this niche with several other Neisseria species, including the commensal Neisseria cinerea. Here, we demonstrate that during adhesion to human epithelial cells N. cinerea co-localises with molecules that are also recruited by the meningococcus, and show that, similar to N. meningitidis, N. cinerea forms dynamic microcolonies on the cell surface in a Type four pilus (Tfp) dependent manner. Finally, we demonstrate that N. cinerea colocalises with N. meningitidis on the epithelial cell surface, limits the size and motility of meningococcal microcolonies, and impairs the effective colonisation of epithelial cells by the pathogen. Our data establish that commensal Neisseria can mimic and affect the behaviour of a pathogen on epithelial cell surfaces.
Collapse
Affiliation(s)
- Rafael Custodio
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Guangyu Liu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Christoph M. Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Rachel M. Exley
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
Humbert MV, Christodoulides M. Atypical, Yet Not Infrequent, Infections with Neisseria Species. Pathogens 2019; 9:E10. [PMID: 31861867 PMCID: PMC7168603 DOI: 10.3390/pathogens9010010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/24/2022] Open
Abstract
Neisseria species are extremely well-adapted to their mammalian hosts and they display unique phenotypes that account for their ability to thrive within niche-specific conditions. The closely related species N. gonorrhoeae and N. meningitidis are the only two species of the genus recognized as strict human pathogens, causing the sexually transmitted disease gonorrhea and meningitis and sepsis, respectively. Gonococci colonize the mucosal epithelium of the male urethra and female endo/ectocervix, whereas meningococci colonize the mucosal epithelium of the human nasopharynx. The pathophysiological host responses to gonococcal and meningococcal infection are distinct. However, medical evidence dating back to the early 1900s demonstrates that these two species can cross-colonize anatomical niches, with patients often presenting with clinically-indistinguishable infections. The remaining Neisseria species are not commonly associated with disease and are considered as commensals within the normal microbiota of the human and animal nasopharynx. Nonetheless, clinical case reports suggest that they can behave as opportunistic pathogens. In this review, we describe the diversity of the genus Neisseria in the clinical context and raise the attention of microbiologists and clinicians for more cautious approaches in the diagnosis and treatment of the many pathologies these species may cause.
Collapse
Affiliation(s)
- Maria Victoria Humbert
- Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK;
| | | |
Collapse
|
30
|
Caugant DA, Brynildsrud OB. Neisseria meningitidis: using genomics to understand diversity, evolution and pathogenesis. Nat Rev Microbiol 2019; 18:84-96. [PMID: 31705134 DOI: 10.1038/s41579-019-0282-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2019] [Indexed: 01/30/2023]
Abstract
Meningococcal disease remains an important cause of morbidity and death worldwide despite the development and increasing implementation of effective vaccines. Elimination of the disease is hampered by the enormous diversity and antigenic variability of the causative agent, Neisseria meningitidis, one of the most variable bacteria in nature. These features are attained mainly through high rates of horizontal gene transfer and alteration of protein expression through phase variation. The recent availability of whole-genome sequencing (WGS) of large-scale collections of N. meningitidis isolates from various origins, databases to facilitate storage and sharing of WGS data and the concomitant development of effective bioinformatics tools have led to a much more thorough understanding of the diversity of the species, its evolution and population structure and how virulent traits may emerge. Implementation of WGS is already contributing to enhanced epidemiological surveillance and is essential to ascertain the impact of vaccination strategies. This Review summarizes the recent advances provided by WGS studies in our understanding of the biology of N. meningitidis and the epidemiology of meningococcal disease.
Collapse
Affiliation(s)
- Dominique A Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway. .,Department of Community Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Ola B Brynildsrud
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.,Department of Food Safety and Infection Biology, Faculty of Veterinary Science, Norwegian University of Life Science, Oslo, Norway
| |
Collapse
|
31
|
Rostamtabar M, Rahmani A, Baee M, Karkhah A, Prajapati VK, Ebrahimpour S, Nouri HR. Development a multi-epitope driven subunit vaccine for immune response reinforcement against Serogroup B of Neisseria meningitidis using comprehensive immunoinformatics approaches. INFECTION GENETICS AND EVOLUTION 2019; 75:103992. [PMID: 31394292 DOI: 10.1016/j.meegid.2019.103992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/22/2019] [Accepted: 08/02/2019] [Indexed: 11/28/2022]
Abstract
Serogroup B of Neisseria meningitidis is the main cause of mortality due to meningococcal meningitis. Despite of many investigations, there is still no effective vaccine to prevent this serious infection. Therefore, this study was conducted to design a multi-epitope based vaccine through immunoinformatics approaches. The T CD4+ and TCD8+ cells along with IFN-γ inducing epitopes were selected from TspA, FHbp, NspA, TbpB, PilQ and NspA antigens form serogroup B of Neisseria meningitidis. Furthermore, to induce strong helper T lymphocytes (HTLs) responses, Pan HLA DR-binding epitope (PADRE) was used. In addition, loop 5 and 7 of the PorB as a TLR2 agonist were added to the vaccine construct. Physico-chemical properties, secondary and tertiary structures of the proposed construct were assessed. Finally, homology modeling, refinement and molecular docking were carried out to evaluated the construct tertiary structure and protein-protein interaction, respectively. By fusing the CTL, HTL and IFN-γ predicted epitopes along with suitable adjuvant and linkers, a multi-epitope vaccine was constructed with a TAT sequence of HIV at the N-terminal. Immunoinformatics analyses confirmed a soluble and non-allergic protein with a molecular weight of 62.5 kDa and high antigenicity. Furthermore, the stability of the multi-epitope construct was established and showed strong potential to generate humoral and cell-mediated immune responses. In addition, through molecular docking and dynamic simulation, the microscopic interaction between the vaccine construct and TLR-2 were verified. In summary, immunoinformatics analysis demonstrated that the constructed multi-epitope vaccine had a strong potential of T and B-cell stimulation and it could possibly be used for prophylactic or therapeutic aims to protect against serogroup B of N. meningitidis.
Collapse
Affiliation(s)
- Maryam Rostamtabar
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Abolfazl Rahmani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Masoud Baee
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ahmad Karkhah
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India
| | - Soheil Ebrahimpour
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Reza Nouri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
32
|
Purmohamad A, Abasi E, Azimi T, Hosseini S, Safari H, Nasiri MJ, Imani Fooladi AA. Global estimate of Neisseria meningitidis serogroups proportion in invasive meningococcal disease: A systematic review and meta-analysis. Microb Pathog 2019; 134:103571. [PMID: 31163252 DOI: 10.1016/j.micpath.2019.103571] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 11/19/2022]
Abstract
Using the PRISMA guideline, 102 studies were included in this study. The highest and the lowest proportion of N. meningitidis serogroups in invasive meningococcal disease (IMD) was for NmB with 48.5% (95% CI: 45-52) and NmX with 0.7% (95% CI: 0.3-1.7). Among the WHO regional offices, serogroup NmW with 57.5% (95% CI: 35-77.5) in Eastern Mediterranean, and NmZ with 0.1% (95% CI: 0-0.9) in America had the highest and the lowest proportion of N. meningitidis serogroups in IMD. NmC with 9.7% (95% CI: 5.6-16.2) and NmB with 9.5% (95% CI: 0.2-3.8) had the highest proportion in 1-4 and <1 year age groups, respectively. Our analysis showed that NmB had the highest proportion of N. meningitidis serogroups in IMD worldwide. However, proportion of N. meningitidis serogroups in IMD varied noticeably across countries and age groups. Therefore, establishing appropriate control guidelines depending on the geographical regions and age groups is essential for prevention of IMD.
Collapse
Affiliation(s)
- Ali Purmohamad
- Student Research Committee, Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elham Abasi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Taher Azimi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sareh Hosseini
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hossein Safari
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Neisseria meningitidis-Induced Caspase-1 Activation in Human Innate Immune Cells Is LOS-Dependent. J Immunol Res 2019; 2019:6193186. [PMID: 31198794 PMCID: PMC6526529 DOI: 10.1155/2019/6193186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/31/2019] [Indexed: 12/21/2022] Open
Abstract
Meningococcal disease such as sepsis and meningitidis is hallmarked by an excessive inflammatory response. The causative agent, Neisseria meningitidis, expresses the endotoxin lipooligosaccharide (LOS) that is responsible for activation of immune cells and the release of proinflammatory cytokines. One of the most potent proinflammatory cytokines, interleukin-1β (IL-1β), is activated following caspase-1 activity in the intracellular multiprotein complex called inflammasome. Inflammasomes are activated by a number of microbial factors as well as danger molecules by a two-step mechanism-priming and licensing of inflammasome activation-but there are no data available regarding a role for inflammasome activation in meningococcal disease. The aim of this study was to investigate if N. meningitidis activates the inflammasome and, if so, the role of bacterial LOS in this activation. Cells were subjected to N. meningitidis, both wild-type (FAM20) and its LOS-deficient mutant (lpxA), and priming as well as licensing of inflammasome activation was investigated. The wild-type LOS-expressing parental FAM20 serogroup C N. meningitidis (FAM20) strain significantly enhanced the caspase-1 activity in human neutrophils and monocytes, whereas lpxA was unable to induce caspase-1 activity as well as to induce IL-1β release. While the lpxA mutant induced a priming response, measured as increased expression of NLRP3 and IL1B, the LOS-expressing FAM20 further increased this priming. We conclude that although non-LOS components of N. meningitidis contribute to the priming of the inflammasome activity, LOS per se is to be considered as the central component of N. meningitidis virulence, responsible for both priming and licensing of inflammasome activation.
Collapse
|
34
|
Mihret W, Sletbakk Brusletto B, Øvstebø R, Siebke Troseid AM, Norheim G, Merid Y, Kassu A, Abebe W, Ayele S, Silamsaw Asres M, Yamuah L, Aseffa A, Petros B, Caugant DA, Brandtzaeg P. Molecular studies of meningococcal and pneumococcal meningitis patients in Ethiopia. Innate Immun 2019; 25:158-167. [PMID: 30894090 PMCID: PMC6830936 DOI: 10.1177/1753425918806363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 02/05/2023] Open
Abstract
Neisseria meningitidis infections in sub-Saharan Africa usually present with distinct symptoms of meningitis but very rarely as fulminant septicemia when reaching hospitals. In Europe, development of persistent meningococcal shock and multiple organ failure occurs in up to 30% of patients and is associated with a bacterial load of >106/ml plasma or serum. We have prospectively studied 27 Ethiopian patients with meningococcal infection as diagnosed and quantified with real-time PCR in the cerebrospinal fluid (CSF) and serum. All presented with symptoms of meningitis and none with fulminant septicemia. The median N. meningitidis copy number (NmDNA) in serum was < 3.5 × 103/ml, never exceeded 1.8 × 105/ml, and was always 10-1000 times higher in CSF than in serum. The levels of LPS in CSF as determined by the limulus amebocyte lysate assay were positively correlated to NmDNA copy number ( r = 0.45, P = 0.030), levels of IL-1 receptor antagonist, ( r = 0.46, P = 0.017), and matrix metallopeptidase-9 (MMP-9; r = 0.009). We also compared the inflammatory profiles of 19 mediators in CSF of the 26 meningococcal patients (2 died and 2 had immediate severe sequelae) with 16 patients with Streptococcus pneumoniae meningitis (3 died and 3 with immediate severe sequelae). Of 19 inflammatory mediators tested, 9 were significantly higher in patients with pneumococcal meningitis and possibly linked to worse outcome.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Child
- Child, Preschool
- Cytokines/genetics
- Cytokines/metabolism
- DNA, Bacterial/blood
- DNA, Bacterial/cerebrospinal fluid
- Epidemics
- Ethiopia/epidemiology
- Female
- Humans
- Infant
- Inflammation Mediators/metabolism
- Male
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Meningitis, Meningococcal/epidemiology
- Meningitis, Meningococcal/immunology
- Meningitis, Meningococcal/mortality
- Meningitis, Pneumococcal/epidemiology
- Meningitis, Pneumococcal/immunology
- Meningitis, Pneumococcal/mortality
- Middle Aged
- Neisseria meningitidis/physiology
- Pathology, Molecular
- Prospective Studies
- Sepsis
- Streptococcus pneumoniae/physiology
- Survival Analysis
- Young Adult
Collapse
Affiliation(s)
- Wude Mihret
- Department of Microbial and Cellular Molecular Biology, Addis
Ababa University, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Reidun Øvstebø
- Department of Clinical Chemistry, Oslo University Hospital,
Norway
| | | | | | | | | | | | - Samuel Ayele
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | | | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Dominique A. Caugant
- Institute of Public Health, Oslo, Norway
- Institute of Public Health and Society, University of Oslo,
Norway
| | - Petter Brandtzaeg
- Department of Clinical Chemistry, Oslo University Hospital,
Norway
- Department of Pediatrics, Oslo University Hospital, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University
of Oslo, Norway
| |
Collapse
|
35
|
Colicchio R, Pagliuca C, Ricci S, Scaglione E, Grandgirard D, Masouris I, Farina F, Pagliarulo C, Mantova G, Paragliola L, Leib SL, Koedel U, Pozzi G, Alifano P, Salvatore P. Virulence Traits of a Serogroup C Meningococcus and Isogenic cssA Mutant, Defective in Surface-Exposed Sialic Acid, in a Murine Model of Meningitis. Infect Immun 2019; 87:e00688-18. [PMID: 30718288 PMCID: PMC6434112 DOI: 10.1128/iai.00688-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/29/2019] [Indexed: 12/17/2022] Open
Abstract
In serogroup C Neisseria meningitidis, the cssA (siaA) gene codes for an UDP-N-acetylglucosamine 2-epimerase that catalyzes the conversion of UDP-N-acetyl-α-d-glucosamine into N-acetyl-d-mannosamine and UDP in the first step in sialic acid biosynthesis. This enzyme is required for the biosynthesis of the (α2→9)-linked polysialic acid capsule and for lipooligosaccharide (LOS) sialylation. In this study, we have used a reference serogroup C meningococcal strain and an isogenic cssA knockout mutant to investigate the pathogenetic role of surface-exposed sialic acids in a model of meningitis based on intracisternal inoculation of BALB/c mice. Results confirmed the key role of surface-exposed sialic acids in meningococcal pathogenesis. The 50% lethal dose (LD50) of the wild-type strain 93/4286 was about four orders of magnitude lower than that of the cssA mutant. Compared to the wild-type strain, the ability of this mutant to replicate in brain and spread systemically was severely impaired. Evaluation of brain damage evidenced a significant reduction in cerebral hemorrhages in mice infected with the mutant in comparison with the levels in those challenged with the wild-type strain. Histological analysis showed the typical features of bacterial meningitis, including inflammatory cells in the subarachnoid, perivascular, and ventricular spaces especially in animals infected with the wild type. Noticeably, 80% of mice infected with the wild-type strain presented with massive bacterial localization and accompanying inflammatory infiltrate in the corpus callosum, indicating high tropism of meningococci exposing sialic acids toward this brain structure and a specific involvement of the corpus callosum in the mouse model of meningococcal meningitis.
Collapse
Affiliation(s)
- Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Susanna Ricci
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elena Scaglione
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Denis Grandgirard
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Ilias Masouris
- Department of Neurology, Ludwig Maximilians University of Munich, Munich, Germany
| | - Fabrizio Farina
- Department of Law, Economics, Management and Quantitative Methods, University of Sannio, Benevento, Italy
| | | | - Giuseppe Mantova
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Laura Paragliola
- Department of Integrated Activity of Laboratory Medicine and Transfusion, Complex Operative Unit of Clinical Microbiology, University Hospital Federico II, Naples, Italy
| | - Stephen L Leib
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Uwe Koedel
- Department of Neurology, Ludwig Maximilians University of Munich, Munich, Germany
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
- Department of Integrated Activity of Laboratory Medicine and Transfusion, Complex Operative Unit of Clinical Microbiology, University Hospital Federico II, Naples, Italy
- CEINGE, Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| |
Collapse
|
36
|
Kato K, Gleeson TA. Splenic necrosis requiring ultrasound-guided drainage following meningococcal septicaemia. Oxf Med Case Reports 2019; 2019:omz020. [PMID: 30949357 PMCID: PMC6440269 DOI: 10.1093/omcr/omz020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/14/2019] [Accepted: 02/23/2019] [Indexed: 01/20/2023] Open
Abstract
Splenic necrosis is an extremely rare complication in the context of meningococcal septicaemia and disseminated intravascular coagulopathy. We present the case of a previously healthy 22-year-old male who was diagnosed and treated for meningococcal septicaemia. He represented 4 days following discharge with significant splenic necrosis and associated abscess formation despite previously unremarkable imaging on his first admission. The splenic collection was successfully treated with ultrasound-guided percutaneous drainage. We discuss the leading causes of atraumatic splenic infarction and the recent shift towards treating splenic necrosis with minimally invasive procedure.
Collapse
Affiliation(s)
- Kosuke Kato
- Department of Emergency Medicine, St George Hospital, St George QLD, Australia
| | - Thomas A Gleeson
- Department of Emergency Medicine, St George Hospital, St George QLD, Australia
| |
Collapse
|
37
|
Brewer ML, Dymock D, Brady RL, Singer BB, Virji M, Hill DJ. Fusobacterium spp. target human CEACAM1 via the trimeric autotransporter adhesin CbpF. J Oral Microbiol 2019; 11:1565043. [PMID: 30719234 PMCID: PMC6346709 DOI: 10.1080/20002297.2018.1565043] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/24/2018] [Accepted: 12/28/2018] [Indexed: 12/20/2022] Open
Abstract
Neisseria meningitidis, Haemophilus influenzae, and Moraxella catarrhalis are pathogenic bacteria adapted to reside on human respiratory mucosal epithelia. One common feature of these species is their ability to target members of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family, especially CEACAM1, which is achieved via structurally distinct ligands expressed by each species. Beside respiratory epithelial cells, cells at the dentogingival junction express high levels of CEACAM1. It is possible that bacterial species resident within the oral cavity also utilise CEACAM1 for colonisation and invasion of gingival tissues. From a screen of 59 isolates from the human oral cavity representing 49 bacterial species, we identified strains from Fusobacterium bound to CEACAM1. Of the Fusobacterium species tested, the CEACAM1-binding property was exhibited by F. nucleatum (Fn) and F. vincentii (Fv) but not F. polymorphum (Fp) or F. animalis (Fa) strains tested. These studies identified that CEACAM adhesion was mediated using a trimeric autotransporter adhesin (TAA) for which no function has thus far been defined. We therefore propose the name CEACAM binding protein of Fusobacterium (CbpF). CbpF was identified to be present in the majority of unspeciated Fusobacterium isolates confirming a subset of Fusobacterium spp. are able to target human CEACAM1.
Collapse
Affiliation(s)
| | - David Dymock
- School of Oral and Dental Sciences, University of Bristol, UK
| | - R Leo Brady
- School of Biochemistry, University of Bristol, UK
| | | | - Mumtaz Virji
- School of Cellular & Molecular Medicine, University of Bristol, UK
| | - Darryl J Hill
- School of Cellular & Molecular Medicine, University of Bristol, UK
| |
Collapse
|
38
|
Kesanopoulos K, Bratcher HB, Hong E, Xirogianni A, Papandreou A, Taha MK, Maiden MCJ, Tzanakaki G. Characterization of meningococcal carriage isolates from Greece by whole genome sequencing: Implications for 4CMenB vaccine implementation. PLoS One 2018; 13:e0209919. [PMID: 30592763 PMCID: PMC6310245 DOI: 10.1371/journal.pone.0209919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022] Open
Abstract
Herd protection, resulting from the interruption of transmission and asymptomatic carriage, is an important element of the effectiveness of vaccines against the meningococcus. Whilst this has been well established for conjugate polysaccharide vaccines directed against the meningococcal capsule, two uncertainties surround the potential herd protection provided by the novel protein-based vaccines that are used in place of serogroup B (MenB) polysaccharide vaccines (i) the strain coverage of such vaccines against carried meningococci, which are highly diverse; and (ii) the generation of a protective immune response in the mucosa. These considerations are essential for realistic estimates of cost-effectiveness of new MenB vaccines. Here the first of these questions is addressed by the whole genome sequence (WGS) analysis of meningococci isolated from healthy military recruits and university students in Greece. The study included a total of 71 MenB isolates obtained from 1420 oropharyngeal single swab samples collected from military recruits and university students on voluntary basis, aged 18-26 years. In addition to WGS analysis to identify genetic lineage and vaccine antigen genes, including the Bexsero Antigen Sequence Type (BAST), the isolates were examined with the serological Meningococcal antigen Typing System (MATS) assay. Comparison of these data demonstrated that the carried meningococcal population was highly diverse with 38% of the carriage isolates showed expression of antigens matching those included in the 4CMenB vaccine. Our data may suggest a limited potential herd immunity to be expected and be driven by an impact on a subset of carriage isolates.
Collapse
Affiliation(s)
- Konstantinos Kesanopoulos
- National Meningitis Reference Laboratory (NMRL), Dept of Public Health, National School of Public Health, Athens, Greece
| | - Holly B. Bratcher
- Department of Zoology, Peter Medawar Building, University of Oxford, Oxford, United Kingdom
| | - Eva Hong
- Institute Pasteur, Invasive Bacterial Infections Unit, Paris, France
| | - Athanasia Xirogianni
- National Meningitis Reference Laboratory (NMRL), Dept of Public Health, National School of Public Health, Athens, Greece
| | - Anastasia Papandreou
- National Meningitis Reference Laboratory (NMRL), Dept of Public Health, National School of Public Health, Athens, Greece
| | | | - Martin C. J. Maiden
- Department of Zoology, Peter Medawar Building, University of Oxford, Oxford, United Kingdom
| | - Georgina Tzanakaki
- National Meningitis Reference Laboratory (NMRL), Dept of Public Health, National School of Public Health, Athens, Greece
| |
Collapse
|
39
|
The Meningococcal Cysteine Transport System Plays a Crucial Role in Neisseria meningitidis Survival in Human Brain Microvascular Endothelial Cells. mBio 2018; 9:mBio.02332-18. [PMID: 30538184 PMCID: PMC6299482 DOI: 10.1128/mbio.02332-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Neisseria meningitidis colonizes at a nasopharynx of human as a unique host and has many strains that are auxotrophs for amino acids for their growth. To cause invasive meningococcal diseases (IMD) such as sepsis and meningitis, N. meningitidis passes through epithelial and endothelial barriers and infiltrates into blood and cerebrospinal fluid as well as epithelial and endothelial cells. However, meningococcal nutrients, including cysteine, become less abundant when it more deeply infiltrates the human body even during inflammation, such that N. meningitidis has to acquire nutrients in order to survive/persist, disseminate, and proliferate in humans. This was the first study to examine the relationship between meningococcal cysteine acquisition and the pathogenesis of meningococcal infections. The results of the present study provide insights into the mechanisms by which pathogens with auxotrophs acquire nutrients in hosts and may also contribute to the development of treatments and prevention strategies for IMD. While Neisseria meningitidis typically exists in an asymptomatic nasopharyngeal carriage state, it may cause potentially lethal diseases in humans, such as septicemia or meningitis, by invading deeper sites in the body. Since the nutrient compositions of human cells are not always conducive to meningococci, N. meningitidis needs to exploit nutrients from host environments. In the present study, the utilization of cysteine by the meningococcal cysteine transport system (CTS) was analyzed for the pathogenesis of meningococcal infections. A N. meningitidis strain deficient in one of the three cts genes annotated as encoding cysteine-binding protein (cbp) exhibited approximately 100-fold less internalization into human brain microvascular endothelial cells (HBMEC) than the wild-type strain. This deficiency was restored by complementation with the three cts genes together, and the infectious phenotype of HBMEC internalization correlated with cysteine uptake activity. However, efficient accumulation of ezrin was observed beneath the cbp mutant. The intracellular survival of the cbp mutant in HBMEC was markedly reduced, whereas equivalent reductions of glutathione concentrations and of resistance to reactive oxygens species in the cbp mutant were not found. The cbp mutant grew well in complete medium but not in synthetic medium supplemented with less than 300 μM cysteine. Taking cysteine concentrations in human cells and other body fluids, including blood and cerebrospinal fluid, into consideration, the present results collectively suggest that the meningococcal CTS is crucial for the acquisition of cysteine from human cells and participates in meningococcal nutrient virulence.
Collapse
|
40
|
Kánová E, Jiménez-Munguía I, Majerová P, Tkáčová Z, Bhide K, Mertinková P, Pulzová L, Kováč A, Bhide M. Deciphering the Interactome of Neisseria meningitidis With Human Brain Microvascular Endothelial Cells. Front Microbiol 2018; 9:2294. [PMID: 30319591 PMCID: PMC6168680 DOI: 10.3389/fmicb.2018.02294] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/07/2018] [Indexed: 11/16/2022] Open
Abstract
Neisseria meningitidis is able to translocate the blood-brain barrier and cause meningitis. Bacterial translocation is a crucial step in the onset of neuroinvasion that involves interactions between pathogen surface proteins and host cells receptors. In this study, we applied a systematic workflow to recover and identify proteins of N. meningitidis that may interact with human brain microvascular endothelial cells (hBMECs). Biotinylated proteome of N. meningitidis was incubated with hBMECs, interacting proteins were recovered by affinity purification and identified by SWATH-MS. Interactome of N. meningitidis comprised of 41 potentially surface exposed proteins. These were assigned into groups based on their probability to interact with hBMECs: high priority candidates (21 outer membrane proteins), medium priority candidates (14 inner membrane proteins) and low priority candidates (six secretory proteins). Ontology analysis provided information for 17 out of 41 surface proteins. Based on the series of bioinformatic analyses and literature review, five surface proteins (adhesin MafA1, major outer membrane protein P.IB, putative adhesin/invasion, putative lipoprotein and membrane lipoprotein) were selected and their recombinant forms were produced for experimental validation of interaction with hBMECs by ELISA and immunocytochemistry. All candidates showed interaction with hBMECs. In this study, we present a high-throughput approach to generate a dataset of plausible meningococcal ligands followed by systematic bioinformatic pipeline to categorize the proteins for experimental validation.
Collapse
Affiliation(s)
- Evelína Kánová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Irene Jiménez-Munguía
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Petra Majerová
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Tkáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Patrícia Mertinková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Lucia Pulzová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Andrej Kováč
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia.,Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
41
|
Meningococcal Pneumonia in a Young Healthy Male. Case Rep Infect Dis 2018; 2018:2179097. [PMID: 30225154 PMCID: PMC6129844 DOI: 10.1155/2018/2179097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/22/2018] [Accepted: 07/29/2018] [Indexed: 12/17/2022] Open
Abstract
A 23-year-old male presented to the emergency department with one-day history of right-sided pleuritic chest pain, haemoptysis, and fever. In the emergency department, the blood pressure was 140/60 mmHg, heart rate 89/min, body temperature 40°C, respiratory rates 20 breaths/min, and oxygen saturation 98% in room air. Physical examination revealed rales and bronchial breathing in the right infrascapular region. Laboratory analysis showed raised white blood cell counts and elevated inflammation markers. Chest X-ray showed right lower lobe consolidation. Intravenous(IV) ceftriaxone and doxycycline were started for the management of community-acquired pneumonia as per the local guideline. Later, on admission, blood culture was positive for Neisseria meningitidis (N. meningitidis). Ceftriaxone was continued for 4 days, and the patient was discharged while being on oral amoxicillin (1 gm TDS) for another 3 days. He remained well during the outpatient follow-up.
Collapse
|
42
|
Wanford JJ, Green LR, Aidley J, Bayliss CD. Phasome analysis of pathogenic and commensal Neisseria species expands the known repertoire of phase variable genes, and highlights common adaptive strategies. PLoS One 2018; 13:e0196675. [PMID: 29763438 PMCID: PMC5953494 DOI: 10.1371/journal.pone.0196675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/17/2018] [Indexed: 12/02/2022] Open
Abstract
Pathogenic Neisseria are responsible for significantly higher levels of morbidity and mortality than their commensal relatives despite having similar genetic contents. Neisseria possess a disparate arsenal of surface determinants that facilitate host colonisation and evasion of the immune response during persistent carriage. Adaptation to rapid changes in these hostile host environments is enabled by phase variation (PV) involving high frequency, stochastic switches in expression of surface determinants. In this study, we analysed 89 complete and 79 partial genomes, from the NCBI and Neisseria PubMLST databases, representative of multiple pathogenic and commensal species of Neisseria using PhasomeIt, a new program that identifies putatively phase-variable genes and homology groups by the presence of simple sequence repeats (SSR). We detected a repertoire of 884 putative PV loci with maxima of 54 and 47 per genome in gonococcal and meningococcal isolates, respectively. Most commensal species encoded a lower number of PV genes (between 5 and 30) except N. lactamica wherein the potential for PV (36–82 loci) was higher, implying that PV is an adaptive mechanism for persistence in this species. We also characterised the repeat types and numbers in both pathogenic and commensal species. Conservation of SSR-mediated PV was frequently observed in outer membrane proteins or modifiers of outer membrane determinants. Intermittent and weak selection for evolution of SSR-mediated PV was suggested by poor conservation of tracts with novel PV genes often occurring in only one isolate. Finally, we describe core phasomes—the conserved repertoires of phase-variable genes—for each species that identify overlapping but distinctive adaptive strategies for the pathogenic and commensal members of the Neisseria genus.
Collapse
Affiliation(s)
- Joseph J. Wanford
- Department of Genetics and Genome Biology, University of Leicester, Leicestershire, United Kingdom
- * E-mail:
| | - Luke R. Green
- Department of Genetics and Genome Biology, University of Leicester, Leicestershire, United Kingdom
| | - Jack Aidley
- Department of Genetics and Genome Biology, University of Leicester, Leicestershire, United Kingdom
| | - Christopher D. Bayliss
- Department of Genetics and Genome Biology, University of Leicester, Leicestershire, United Kingdom
| |
Collapse
|
43
|
Hao L, Holden MTG, Wang X, Andrew L, Wellnitz S, Hu F, Whaley M, Sammons S, Knipe K, Frace M, McNamara LA, Liberator P, Anderson AS. Distinct evolutionary patterns of Neisseria meningitidis serogroup B disease outbreaks at two universities in the USA. Microb Genom 2018; 4. [PMID: 29616896 PMCID: PMC5989579 DOI: 10.1099/mgen.0.000155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neisseria meningitidis serogroup B (MnB) was responsible for two independent meningococcal disease outbreaks at universities in the USA during 2013. The first at University A in New Jersey included nine confirmed cases reported between March 2013 and March 2014. The second outbreak occurred at University B in California, with four confirmed cases during November 2013. The public health response to these outbreaks included the approval and deployment of a serogroup B meningococcal vaccine that was not yet licensed in the USA. This study investigated the use of whole-genome sequencing(WGS) to examine the genetic profile of the disease-causing outbreak isolates at each university. Comparative WGS revealed differences in evolutionary patterns between the two disease outbreaks. The University A outbreak isolates were very closely related, with differences primarily attributed to single nucleotide polymorphisms/insertion-deletion (SNP/indel) events. In contrast, the University B outbreak isolates segregated into two phylogenetic clades, differing in large part due to recombination events covering extensive regions (>30 kb) of the genome including virulence factors. This high-resolution comparison of two meningococcal disease outbreaks further demonstrates the genetic complexity of meningococcal bacteria as related to evolution and disease virulence.
Collapse
Affiliation(s)
- Li Hao
- 1Vaccine Research & Development, Pfizer Inc, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | | | - Xin Wang
- 3Division of Bacterial Diseases, Centers for Diseases Control and Prevention, Atlanta, Georgia, USA
| | - Lubomira Andrew
- 1Vaccine Research & Development, Pfizer Inc, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Sabine Wellnitz
- 1Vaccine Research & Development, Pfizer Inc, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Fang Hu
- 3Division of Bacterial Diseases, Centers for Diseases Control and Prevention, Atlanta, Georgia, USA
| | - Melissa Whaley
- 3Division of Bacterial Diseases, Centers for Diseases Control and Prevention, Atlanta, Georgia, USA
| | - Scott Sammons
- 3Division of Bacterial Diseases, Centers for Diseases Control and Prevention, Atlanta, Georgia, USA
| | - Kristen Knipe
- 3Division of Bacterial Diseases, Centers for Diseases Control and Prevention, Atlanta, Georgia, USA
| | - Mike Frace
- 3Division of Bacterial Diseases, Centers for Diseases Control and Prevention, Atlanta, Georgia, USA
| | - Lucy A McNamara
- 3Division of Bacterial Diseases, Centers for Diseases Control and Prevention, Atlanta, Georgia, USA
| | - Paul Liberator
- 1Vaccine Research & Development, Pfizer Inc, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Annaliesa S Anderson
- 1Vaccine Research & Development, Pfizer Inc, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| |
Collapse
|
44
|
Andreae CA, Sessions RB, Virji M, Hill DJ. Bioinformatic analysis of meningococcal Msf and Opc to inform vaccine antigen design. PLoS One 2018; 13:e0193940. [PMID: 29547646 PMCID: PMC5856348 DOI: 10.1371/journal.pone.0193940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/21/2018] [Indexed: 11/19/2022] Open
Abstract
Neisseria meningitidis is an antigenically and genetically variable Gram-negative bacterium and a causative agent of meningococcal meningitis and septicaemia. Meningococci encode many outer membrane proteins, including Opa, Opc, Msf, fHbp and NadA, identified as being involved in colonisation of the host and evasion of the immune response. Although vaccines are available for the prevention of some types of meningococcal disease, none currently offer universal protection. We have used sequences within the Neisseria PubMLST database to determine the variability of msf and opc in 6,500 isolates. In-silico analysis revealed that although opc is highly conserved, it is not present in all isolates, with most isolates in clonal complex ST-11 lacking a functional opc. In comparison, msf is found in all meningococcal isolates, and displays diversity in the N-terminal domain. We identified 20 distinct Msf sequence variants (Msf SV), associated with differences in number of residues within the putative Vn binding motifs. Moreover, we showed distinct correlations with certain Msf SVs and isolates associated with either hyperinvasive lineages or those clonal complexes associated with a carriage state. We have demonstrated differences in Vn binding between three Msf SVs and generated a cross reactive Msf polyclonal antibody. Our study has highlighted the importance of using large datasets to inform vaccine development and provide further information on the antigenic diversity exhibited by N. meningitidis.
Collapse
Affiliation(s)
- Clio A. Andreae
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | - Mumtaz Virji
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Darryl. J. Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Weller RO, Sharp MM, Christodoulides M, Carare RO, Møllgård K. The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS. Acta Neuropathol 2018; 135:363-385. [PMID: 29368214 DOI: 10.1007/s00401-018-1809-z] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/02/2018] [Accepted: 01/15/2018] [Indexed: 12/16/2022]
Abstract
Meninges that surround the CNS consist of an outer fibrous sheet of dura mater (pachymeninx) that is also the inner periosteum of the skull. Underlying the dura are the arachnoid and pia mater (leptomeninges) that form the boundaries of the subarachnoid space. In this review we (1) examine the development of leptomeninges and their role as barriers and facilitators in the foetal CNS. There are two separate CSF systems during early foetal life, inner CSF in the ventricles and outer CSF in the subarachnoid space. As the foramina of Magendi and Luschka develop, one continuous CSF system evolves. Due to the lack of arachnoid granulations during foetal life, it is most likely that CSF is eliminated by lymphatic drainage pathways passing through the cribriform plate and nasal submucosa. (2) We then review the fine structure of the adult human and rodent leptomeninges to establish their roles as barriers and facilitators for the movement of fluid, cells and pathogens. Leptomeningeal cells line CSF spaces, including arachnoid granulations and lymphatic drainage pathways, and separate elements of extracellular matrix from the CSF. The leptomeningeal lining facilitates the traffic of inflammatory cells within CSF but also allows attachment of bacteria such as Neisseria meningitidis and of tumour cells as CSF metastases. Single layers of leptomeningeal cells extend into the brain closely associated with the walls of arteries so that there are no perivascular spaces around arteries in the cerebral cortex. Perivascular spaces surrounding arteries in the white matter and basal ganglia relate to their two encompassing layers of leptomeninges. (3) Finally we examine the roles of ligands expressed by leptomeningeal cells for the attachment of inflammatory cells, bacteria and tumour cells as understanding these roles may aid the design of therapeutic strategies to manage developmental, autoimmune, infectious and neoplastic diseases relating to the CSF, the leptomeninges and the associated CNS.
Collapse
|
46
|
Seib KL, Jennings MP, Day CJ. Characterizing the meningococcal glycointeractome: what is new? Future Microbiol 2018; 13:279-282. [PMID: 29441801 DOI: 10.2217/fmb-2017-0222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Christopher J Day
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
47
|
Shahsavani N, Sheikhha MH, Yousefi H, Sefid F. In silico Homology Modeling and Epitope Prediction of NadA as a Potential Vaccine Candidate in Neisseria meningitidis. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2018; 7:53-68. [PMID: 30234073 PMCID: PMC6134420 DOI: 10.22088/ijmcm.bums.7.1.53] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/24/2018] [Indexed: 12/30/2022]
Abstract
Neisseria meningitidis is a facultative pathogen bacterium which is well founded with a number of adhesion molecules to facilitate its colonization in human nasopharynx track. Neisseria meningitidis is a major cause of mortality from severe meningococcal disease and septicemia. Neisseria meningitidis adhesion, NadA, is a trimeric autotransporter adhesion molecule which is involved in cell adhesion, invasion, and antibody induction. It is identified in approximately 50% of N. meningitidis isolates, and is established as a vaccine candidate due to its antigenic effects. In the present study, we exploited bioinformatics tools to better understand and determine the 3D structure of NadA and its functional residues to select B cell epitopes, and provide information for elucidating the biological function and vaccine efficacy of NadA. Therefore, this study provided essential data to close gaps existing in biological areas. The most appropriate model of NadA was designed by SWISS MODEL software and important residues were determined using the subsequent epitope mapping procedures. Locations of important linear and conformational epitopes were determined and conserved residues were identified to broaden our knowledge of efficient vaccine design to reduce meningococcal infectioun in population. These data now provide a theme to design more broadly cross-protective antigens.
Collapse
Affiliation(s)
- Narjes Shahsavani
- Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | | | - Hassan Yousefi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sefid
- Department of Biology, Science and Arts University, Yazd, Iran
| |
Collapse
|
48
|
A phylogenetic method to perform genome-wide association studies in microbes that accounts for population structure and recombination. PLoS Comput Biol 2018; 14:e1005958. [PMID: 29401456 PMCID: PMC5814097 DOI: 10.1371/journal.pcbi.1005958] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 02/15/2018] [Accepted: 12/30/2017] [Indexed: 11/28/2022] Open
Abstract
Genome-Wide Association Studies (GWAS) in microbial organisms have the potential to vastly improve the way we understand, manage, and treat infectious diseases. Yet, microbial GWAS methods established thus far remain insufficiently able to capitalise on the growing wealth of bacterial and viral genetic sequence data. Facing clonal population structure and homologous recombination, existing GWAS methods struggle to achieve both the precision necessary to reject spurious findings and the power required to detect associations in microbes. In this paper, we introduce a novel phylogenetic approach that has been tailor-made for microbial GWAS, which is applicable to organisms ranging from purely clonal to frequently recombining, and to both binary and continuous phenotypes. Our approach is robust to the confounding effects of both population structure and recombination, while maintaining high statistical power to detect associations. Thorough testing via application to simulated data provides strong support for the power and specificity of our approach and demonstrates the advantages offered over alternative cluster-based and dimension-reduction methods. Two applications to Neisseria meningitidis illustrate the versatility and potential of our method, confirming previously-identified penicillin resistance loci and resulting in the identification of both well-characterised and novel drivers of invasive disease. Our method is implemented as an open-source R package called treeWAS which is freely available at https://github.com/caitiecollins/treeWAS. Measurable differences often exist within a microbial population, with important ecological or epidemiological consequences. Examples include differences in growth rates, host range, transmissibility, antimicrobial resistance, virulence, etc. Understanding the genetic factors involved in these phenotypic properties is a crucial aim in microbial genomics. A fundamental approach for doing so is to perform a Genome-Wide Association Study (GWAS), where genomes are compared to search for genetic markers systematically correlated with the property of interest. If this strategy were implemented naively in microbes, it could lead to spurious results due to the confounding effects of population structure and recombination. Here we present treeWAS, a new phylogenetic method to perform microbial GWAS that avoids these pitfalls. We show, using simulated datasets, that treeWAS is able to distinguish between genetic markers that are truly associated with the property of interest and those that are not. Furthermore, we demonstrate that treeWAS offers advantages in both sensitivity and specificity over alternative cluster-based and dimension-reduction techniques. We also showcase treeWAS in two applications to real datasets from N. meningitidis. We have developed an easy-to-use implementation of treeWAS in the R environment, which should be useful to a wide range of researchers in microbial genomics.
Collapse
|
49
|
Sigurlásdóttir S, Saroj SD, Eriksson OS, Eriksson J, Jonsson AB. Quantification of Neisseria meningitidis Adherence to Human Epithelial Cells by Colony Counting. Bio Protoc 2018; 8:e2709. [PMID: 34179252 DOI: 10.21769/bioprotoc.2709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 11/02/2022] Open
Abstract
To cause an infection, the human specific pathogen Neisseria meningitides must first colonize the nasopharynx. Upon tight interaction with the mucosal epithelium, N. meningitidis may cross the epithelial cellular barrier, reach the bloodstream and cause sepsis and/or meningitis. Since N. meningitidis niche is restricted to humans the availability of relevant animal models to study host-pathogen interactions are limiting. Therefore, most findings that involve N. meningitidis colonization derive from studies using cultured human cell lines. Human epithelial cells have been successfully used to examine and identify molecular effectors involved in initial adherence of the pathogen. Here, we describe a standard protocol to quantify the adherence of N. meningitidis to epithelial pharyngeal FaDu cells. Colony counts of cell lysates collected after infection are used to quantify adherence to the epithelial cells.
Collapse
Affiliation(s)
- Sara Sigurlásdóttir
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sunil D Saroj
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Olaspers Sara Eriksson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jens Eriksson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ann-Beth Jonsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
50
|
Complement C5a Receptor 1 Exacerbates the Pathophysiology of N. meningitidis Sepsis and Is a Potential Target for Disease Treatment. mBio 2018; 9:mBio.01755-17. [PMID: 29362231 PMCID: PMC5784250 DOI: 10.1128/mbio.01755-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sepsis caused by Neisseria meningitidis (meningococcus) is a rapidly progressing, life-threatening disease. Because its initial symptoms are rather unspecific, medical attention is often sought too late, i.e., when the systemic inflammatory response is already unleashed. This in turn limits the success of antibiotic treatment. The complement system is generally accepted as the most important innate immune determinant against invasive meningococcal disease since it protects the host through the bactericidal membrane attack complex. However, complement activation concomitantly liberates the C5a peptide, and it remains unclear whether this potent anaphylatoxin contributes to protection and/or drives the rapidly progressing immunopathogenesis associated with meningococcal disease. Here, we dissected the specific contribution of C5a receptor 1 (C5aR1), the canonical receptor for C5a, using a mouse model of meningococcal sepsis. Mice lacking C3 or C5 displayed susceptibility that was enhanced by >1,000-fold or 100-fold, respectively, consistent with the contribution of these components to protection. In clear contrast, C5ar1−/− mice resisted invasive meningococcal infection and cleared N. meningitidis more rapidly than wild-type (WT) animals. This favorable outcome stemmed from an ameliorated inflammatory cytokine response to N. meningitidis in C5ar1−/− mice in both in vivo and ex vivo whole-blood infections. In addition, inhibition of C5aR1 signaling without interference with the complement bactericidal activity reduced the inflammatory response also in human whole blood. Enticingly, pharmacologic C5aR1 blockade enhanced mouse survival and lowered meningococcal burden even when the treatment was administered after sepsis induction. Together, our findings demonstrate that C5aR1 drives the pathophysiology associated with meningococcal sepsis and provides a promising target for adjunctive therapy. The devastating consequences of N. meningitidis sepsis arise due to the rapidly arising and self-propagating inflammatory response that mobilizes antibacterial defenses but also drives the immunopathology associated with meningococcemia. The complement cascade provides innate broad-spectrum protection against infection by directly damaging the envelope of pathogenic microbes through the membrane attack complex and triggers an inflammatory response via the C5a peptide and its receptor C5aR1 aimed at mobilizing cellular effectors of immunity. Here, we consider the potential of separating the bactericidal activities of the complement cascade from its immune activating function to improve outcome of N. meningitidis sepsis. Our findings demonstrate that the specific genetic or pharmacological disruption of C5aR1 rapidly ameliorates disease by suppressing the pathogenic inflammatory response and, surprisingly, allows faster clearance of the bacterial infection. This outcome provides a clear demonstration of the therapeutic benefit of the use of C5aR1-specific inhibitors to improve the outcome of invasive meningococcal disease.
Collapse
|