1
|
Ram CVS. A New Class of Drugs Approved in the United States for Hypertension: Endothelin Antagonists. Am J Med 2024; 137:795-798. [PMID: 38750711 DOI: 10.1016/j.amjmed.2024.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024]
Affiliation(s)
- C Venkata S Ram
- Apollo Group of Hospitals, Hyderabad, India; University of Texas Southwestern Medical Center, Dallas.
| |
Collapse
|
2
|
Brussee JM, Sidharta PN, Dingemanse J, Krause A. Population pharmacokinetics of the dual endothelin receptor antagonist aprocitentan in subjects with or without essential or resistant hypertension. J Pharmacokinet Pharmacodyn 2024; 51:243-252. [PMID: 38332190 DOI: 10.1007/s10928-024-09902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Aprocitentan is a novel, potent, dual endothelin receptor antagonist that recently demonstrated efficacy in the treatment of difficult-to-treat (resistant) hypertension. The aim of this study was to develop a population pharmacokinetic (PK) model describing aprocitentan plasma concentration over time, to investigate relationships between subject-specific factors (covariates) and model parameters, and to quantify the influence of the identified covariates on the exposure to aprocitentan via model-based simulations, enabling judgment about the clinical relevance of the covariates.PK data from 902 subjects in ten Phase 1, one Phase 2, and one Phase 3 study were pooled to develop a joint population PK model. The concentration-time course of aprocitentan was described by a two-compartment model with absorption lag time, first-order absorption and elimination, and reduced relative bioavailability following very high doses of 300 and 600 mg.The population PK model described the observed data well. Volume and clearance parameters were associated with body weight. Renal function as reflected by estimated glomerular filtration rate (eGFR), hepatic impairment, and sex were identified as relevant covariates on clearance.The subject-specific characteristics of body weight, eGFR, hepatic impairment, and sex were shown to influence exposure parameters area under the concentration-time curve and maximum concentration in steady state to a limited extent, i.e., not more than 25% different from a reference subject, and therefore do not warrant dose adjustments.
Collapse
Affiliation(s)
- Janneke M Brussee
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil, 4123, Switzerland
| | - Patricia N Sidharta
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil, 4123, Switzerland
| | - Jasper Dingemanse
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil, 4123, Switzerland
| | - Andreas Krause
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil, 4123, Switzerland.
| |
Collapse
|
3
|
Kashiwada T, Tanaka Y, Tanaka T, Okano T, Saito Y, Seike M, Hino M, Kimura H, Gemma A. Clinical course of COPD patients with exercise-induced elevation of pulmonary artery pressure or less severe pulmonary hypertension presenting with respiratory symptoms and the impact of bosentan intervention-prospective, single-center, randomized, parallel-group study. BMC Pulm Med 2024; 24:90. [PMID: 38368315 PMCID: PMC10873998 DOI: 10.1186/s12890-024-02895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 02/03/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND The data on bosentan were lacking for the treatment of exercise-induced elevation of pulmonary artery pressure (eePAP) or less severe PH in COPD. This study was conducted to investigate long-term efficacy and safety of bosentan for the treatment of eePAP or less severe PH in COPD. METHODS COPD patients diagnosed at this hospital as having COPD (WHO functional class II, III or IV) with eePAP or less severe PH whose respiratory symptoms were stable but remained and gradually progressed even after COPD therapy were randomly assigned in a 1:1 ratio to receive either bosentan or no PH treatment for two years and assessed at baseline and every 6 months for respiratory failure, activities of daily living (ADL), lung and heart functions by right heart catheterization (RHC), and other parameters. RESULTS A total of 29 patients who underwent RHC for detail examination were enrolled in the current study between August 2010 and October 2018.No death occurred in drug-treated group (n = 14) for 2 years; 5 patients died in untreated group (n = 15). Significant differences were noted between the 2 group in hospital-free survival (686.00 ± 55.87 days vs. 499.94 ± 53.27 days; hazard ratio [HR], 0.18; P = 0.026) and overall survival (727 days vs. 516.36 ± 55.38 days; HR, 0.095; P = 0.030) in all causes of death analysis, but not in overall survival in analysis of respiratory-related death. Bosentan was not associated with increased adverse events including requiring O2 inhalation. CONCLUSIONS This study suggested that the prognosis for COPD patients with eePAP or less severe PH presenting with respiratory symptoms was very poor and that bosentan tended to improve their prognosis and suppress ADL deterioration without worsening respiratory failure. TRIAL REGISTRATION This study was registered with UMIN-CTR Clinical Trial as UMIN000004749 . First trial registration at 18/12/2010.
Collapse
Affiliation(s)
- Takeru Kashiwada
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo, 113-8603, Japan
| | - Yosuke Tanaka
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo, 113-8603, Japan.
- Department of Respiratory Medicine, Nippon Medical School, Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba, 270-1694, Japan.
| | - Toru Tanaka
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo, 113-8603, Japan
| | - Tetsuya Okano
- Department of Respiratory Medicine, Nippon Medical School, Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba, 270-1694, Japan
| | - Yoshinobu Saito
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo, 113-8603, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo, 113-8603, Japan
| | - Mitsunori Hino
- Department of Respiratory Medicine, Nippon Medical School, Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba, 270-1694, Japan
| | - Hiroshi Kimura
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo, 113-8603, Japan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo, 113-8603, Japan
| |
Collapse
|
4
|
Single-dose pharmacokinetics, safety, and tolerability of the dual endothelin receptor antagonist aprocitentan in subjects with moderate hepatic impairment. Sci Rep 2022; 12:19067. [PMID: 36352054 PMCID: PMC9645340 DOI: 10.1038/s41598-022-22470-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022] Open
Abstract
The effect of moderate hepatic impairment on the pharmacokinetics (PK), safety, and tolerability of the dual endothelin receptor antagonist aprocitentan was clinically investigated as 25% of aprocitentan is cleared through the liver. Aprocitentan is in clinical development for the treatment of resistant hypertension. This was an open-label, Phase 1 study. Subjects were recruited in two groups (i.e., moderate hepatic impairment (Child-Pugh B; n = 8) and matched healthy subjects (n = 9) and received a single oral dose of 25 mg aprocitentan. Thereafter, they were observed for 14 days. Due to personal reasons one healthy subject discontinued the study. The PK of aprocitentan were similar between subjects with moderate hepatic impairment and healthy subjects, with maximum plasma concentrations (Cmax) reached at 4.0 h. There was no difference in Cmax, indicated by the geometric means ratio (90% confidence interval) of 1.03 (0.86-1.24). There was a lower apparent clearance, a similar apparent volume of distribution, a longer terminal half-life (56.4 h vs 48.3 h in healthy subjects), and an increase in area under the curve from zero to infinity of 23% in moderate hepatically impaired subjects compared to healthy subjects. There were no differences observed in plasma protein binding (range 98.7-99.0%). Aprocitentan was well tolerated, and headache was the only adverse event reported by one subject. In conclusion, there were no clinically relevant differences in PK between subjects with moderate hepatic impairment and healthy subjects. Based on these results, aprocitentan can be administered in subjects with mild and moderate hepatic impairment and dose adjustment is not required.Clinical Trial Registration ClinicalTrials.gov NCT04252495.
Collapse
|
5
|
Anti-inflammatory effects of endothelin receptor blockade in left atrial tissue of spontaneously hypertensive rats. IJC HEART & VASCULATURE 2022; 42:101088. [PMID: 35879971 PMCID: PMC9307454 DOI: 10.1016/j.ijcha.2022.101088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/22/2022]
|
6
|
Salvador VD, Bakris GL. Novel antihypertensive agents for resistant hypertension: what does the future hold? Hypertens Res 2022; 45:1918-1928. [PMID: 36167808 DOI: 10.1038/s41440-022-01025-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022]
Abstract
Finding complementary compelling novel therapeutic agents for better control of blood pressure in people with resistant hypertension is moving into unchartered territory. The latest therapeutic developments explore approaches in the clinical arena that were either not examined or could only be examined in animal models two decades ago. Four main mechanisms have now been explored and operationalized in drug development: (a) mineralocorticoid receptor blockade using a nonsteroidal structure with many fewer side effects, (b) an aminopeptidase A inhibitor that has central effects on vasopressin, (c) a combined endothelin A and B receptor blocker and (d) an aldosterone synthase inhibitor devoid of glucocorticoid activity. All these agents are either completing Phase II development and starting Phase III or are involved in the ongoing recruitment of Phase III trials. Additionally, novel agents use antisense inhibition to block angiotensinogen development in the liver. These agents are discussed only for completeness, as they are still in Phase II trial development. Last, another agent that was initially being developed as an antihypertensive and once the data were reviewed by the company clearly showed efficacy as a heart failure agent was sacubitril/valsartan, which was ultimately approved. However, there are some discussions about reinvigorating the quest for an indication for hypertension, although no such steps have been formally initiated.
Collapse
Affiliation(s)
- Vincent D Salvador
- Department of Medicine, Am Heart Assoc. Comprehensive Hypertension Center, University of Chicago Medicine, Chicago, IL, USA
| | - George L Bakris
- Department of Medicine, Am Heart Assoc. Comprehensive Hypertension Center, University of Chicago Medicine, Chicago, IL, USA.
| |
Collapse
|
7
|
Höcht C, Allo MA, Polizio AH, Morettón MA, Carranza A, Chiappetta DA, Choi MR. New and developing pharmacotherapies for hypertension. Expert Rev Cardiovasc Ther 2022; 20:647-666. [PMID: 35880547 DOI: 10.1080/14779072.2022.2105204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
INTRODUCTION Despite the significant contribution of hypertension to the global burden of disease, disease control remains poor worldwide. Considering this unmet clinical need, several new antihypertensive drugs with novel mechanisms of action are under development. AREAS COVERED The present review summarizes the recent advances in the development of emerging pharmacological agents for the management of hypertension. The latest technological innovations in the design of optimized formulations of available antihypertensive drugs and the potential role of the modification of intestinal microbiota to improve blood pressure (BP) control are also covered. EXPERT OPINION Significant efforts have been made to develop new antihypertensive agents with novel actions that target the main mechanisms involved in resistant hypertension. Sacubitril/valsartan may emerge as a potential first-line drug due to its superiority over renin angiotensin system inhibitors, and SGLT2 inhibitors can reduce BP in difficult-to-control hypertensive patients with type 2 diabetes. In addition, firibastat and aprocitentan may expand the therapeutic options for resistant hypertension by novel mechanism of actions. Since gut dysbiosis not only leads to hypertension but also causes direct target organ damage, prebiotics and probiotics could represent a potential strategy to prevent or reduce the development of hypertension and to contribute to BP control.
Collapse
Affiliation(s)
- Christian Höcht
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentinaa.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentinab
| | - Miguel A Allo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentinaa.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentinab
| | - Ariel Héctor Polizio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentinaa.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentinab
| | - Marcela A Morettón
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentinab.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires, Argentinac.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Andrea Carranza
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentinaa.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentinae
| | - Diego A Chiappetta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentinab.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires, Argentinac.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Marcelo Roberto Choi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentinae.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Buenos Aires, Argentina f
| |
Collapse
|
8
|
Clozel M. Aprocitentan and the endothelin system in resistant hypertension. Can J Physiol Pharmacol 2022; 100:573-583. [PMID: 35245103 DOI: 10.1139/cjpp-2022-0010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelin has emerged as a target for therapeutic intervention in systemic hypertension. As a vasoconstrictor, co-mitogenic agent, linking pulse pressure and vascular remodeling, and mediator of aldosterone and catecholamine release, endothelin is a key player in hypertension and end-organ damage. In 10-20% of the hypertensive population, the high blood pressure is resistant to administration of antihypertensive drugs of different classes in combination. Because endothelin is not targeted by the current antihypertensive drugs this may suggest that this resistance is due, in part at least, to a dependence on endothelin. This hypothesis is supported by the observation that this form of hypertension is often salt-sensitive, and that the endothelin system is stimulated by salt. In addition, the endothelin system is activated in subjects at risk of developing resistant hypertension, such as African-Americans or patients with obesity or obstructive sleep apnea. Aprocitentan is a novel, potent, dual endothelin receptor antagonist (ERA) currently in phase 3 development for the treatment of difficult-to-treat hypertension. This article discusses the research which underpinned the discovery of this ERA and the choice of its first clinical indication for patients with forms of hypertension which cannot be well controlled with classical antihypertensive drugs.
Collapse
Affiliation(s)
- Martine Clozel
- Idorsia Pharmaceuticals Ltd, 510456, Allschwil, Basel-Landschaft, Switzerland;
| |
Collapse
|
9
|
Angeli F, Verdecchia P, Reboldi G. Aprocitentan, A Dual Endothelin Receptor Antagonist Under Development for the Treatment of Resistant Hypertension. Cardiol Ther 2021; 10:397-406. [PMID: 34251649 PMCID: PMC8555037 DOI: 10.1007/s40119-021-00233-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 12/19/2022] Open
Abstract
Aprocitentan (ACT-132577) is an orally active, dual endothelin-1 (ET-1) receptor antagonist that prevents the binding of ET-1 to both ETA/ETB receptors. It is an active metabolite of macitentan (obtained by oxidative depropylation), an orphan drug used for the treatment of pulmonary arterial hypertension. Aprocitentan is highly bound to plasma proteins and is eliminated in both urine and feces. It is well tolerated across all doses (up to 600 mg with single dose and 100 mg once a day at multiple doses). Its pharmacokinetic profile shows a half-life of 44 h, fitting a once-daily dosing regimen with plasma ET-1 concentrations (reflecting ET receptor antagonism), significantly increasing with doses ≥ 25 mg. Only minor differences in exposure between healthy females and males, healthy elderly and adult subjects, fed and fasted conditions, and renal function have been observed. Aprocitentan in patients with resistant hypertension is currently under investigation in the PRECISION phase III trial (ClinicalTrials identifier: NCT03541174). Nonetheless, results of pre-clinical data and studies in humans support the potential role of aprocitentan in this clinical setting. The absolute blood pressure (BP) reductions with aprocitentan are in the ranges established as a surrogate for reduction in cardiovascular morbidity in hypertension. Significant changes in BP with aprocitentan are observed within 14 days, and its BP-lowering effects have also been documented with ambulatory BP monitoring. Finally, aprocitentan enhances the BP-lowering effects of other antihypertensive drugs, including renin-angiotensin-system blockers. In conclusion, aprocitentan ameliorates the effects of ET-1 and could potentially reduce BP and provide broader cardiovascular protection in patients with resistant hypertension. Available data support the hypothesis that this new agent could expand our antihypertensive arsenal in resistant hypertension, making aprocitentan an attractive candidate for further large-scale trials.
Collapse
Affiliation(s)
- Fabio Angeli
- Department of Medicine and Surgery, University of Insubria, Varese, Italy. .,Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institutes, IRCCS Tradate, Varese, Italy.
| | - Paolo Verdecchia
- Fondazione Umbra Cuore e Ipertensione-ONLUS and Division of Cardiology, Hospital S. Maria della Misericordia, Perugia, Italy
| | - Gianpaolo Reboldi
- Department of Medicine and Centro di Ricerca Clinica e Traslazionale (CERICLET), University of Perugia, Perugia, Italy
| |
Collapse
|
10
|
Van Guilder GP, Preston CC, Munce TA, Faustino RS. Impacts of circulating microRNAs in exercise-induced vascular remodeling. Am J Physiol Heart Circ Physiol 2021; 320:H2401-H2415. [PMID: 33989080 DOI: 10.1152/ajpheart.00894.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cardiovascular adaptation underlies all athletic training modalities, with a variety of factors contributing to overall response during exercise-induced stimulation. In this regard the role of circulating biomarkers is a well-established and invaluable tool for monitoring cardiovascular function. Specifically, novel biomarkers such as circulating cell free DNA and RNA are now becoming attractive tools for monitoring cardiovascular function with the advent of next generation technologies that can provide unprecedented precision and resolution of these molecular signatures, paving the way for novel diagnostic and prognostic avenues to better understand physiological remodeling that occurs in trained versus untrained states. In particular, microRNAs are a species of regulatory RNAs with pleiotropic effects on multiple pathways in tissue-specific manners. Furthermore, the identification of cell free microRNAs within peripheral circulation represents a distal signaling mechanism that is just beginning to be explored via a diversity of molecular and bioinformatic approaches. This article provides an overview of the emerging field of sports/performance genomics with a focus on the role of microRNAs as novel functional diagnostic and prognostic tools, and discusses present knowledge in the context of athletic vascular remodeling. This review concludes with current advantages and limitations, touching upon future directions and implications for applying contemporary systems biology knowledge of exercise-induced physiology to better understand how disruption can lead to pathology.
Collapse
Affiliation(s)
- Gary P Van Guilder
- Vascular Protection Research Laboratory, Exercise & Sport Science Department, Western Colorado University, Gunnison, Colorado
| | - Claudia C Preston
- Genetics and Genomics Group, Sanford Research, Sioux Falls, South Dakota
| | - Thayne A Munce
- Environmental Influences on Health & Disease Group, Sanford Research, Sioux Falls, South Dakota.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota
| | - Randolph S Faustino
- Genetics and Genomics Group, Sanford Research, Sioux Falls, South Dakota.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota
| |
Collapse
|
11
|
Inagaki T, Pearson JT, Tsuchimochi H, Schwenke DO, Saito S, Higuchi T, Masaki T, Umetani K, Shirai M, Nakaoka Y. Evaluation of right coronary vascular dysfunction in severe pulmonary hypertensive rats using synchrotron radiation microangiography. Am J Physiol Heart Circ Physiol 2021; 320:H1021-H1036. [PMID: 33481696 DOI: 10.1152/ajpheart.00327.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 11/22/2022]
Abstract
Pulmonary hypertension (PH) causes cardiac hypertrophy in the right ventricle (RV) and eventually leads to RV failure due to persistently elevated ventricular afterload. We hypothesized that the mechanical stress on the RV associated with increased afterload impairs vasodilator function of the right coronary artery (RCA) in PH. Coronary vascular response was assessed using microangiography with synchrotron radiation (SR) in two well-established PH rat models, monocrotaline injection or the combined exposure to chronic hypoxia and vascular endothelial growth factor receptor blockade with Su5416 (SuHx model). In the SuHx model, the effect of the treatment with the nonselective endothelin-1 receptor antagonist (ERA), macitentan, was also examined. Myocardial viability was determined in SuHx model rats, using 18F-FDG Positron emission tomography (PET) and magnetic resonance imaging (MRI). Endothelium-dependent and endothelium-independent vasodilator responses were significantly attenuated in the medium and small arteries of severe PH rats. ERA treatment significantly improved RCA vascular function compared with the untreated group. ERA treatment improved both the decrease in ejection fraction and the increased glucose uptake, and reduced RV remodeling. In addition, the upregulation of inflammatory genes in the RV was almost suppressed by ERA treatment. We found impairment of vasodilator responses in the RCA of severe PH rat models. Endothelin-1 activation in the RCA plays a major role in impaired vascular function in PH rats and is partially restored by ERA treatment. Treatment of PH with ERA may improve RV function in part by indirectly attenuating right heart afterload and in part by associated improvements in right coronary endothelial function.NEW & NOTEWORTHY We demonstrated for the first time the impairment of vascular responses in the right coronary artery (RCA) of the dysfunctional right heart in pulmonary hypertensive rats in vivo. Treatment with an endothelin-1 receptor antagonist ameliorated vascular dysfunction in the RCA, enabled tissue remodeling of the right heart, and improved cardiac function. Our results suggest that impaired RCA function might also contribute to the early progression to heart failure in patients with severe pulmonary arterial hypertension (PAH). The endothelium of the coronary vasculature might be considered as a potential target in treatments to prevent heart failure in severe patients with PAH.
Collapse
MESH Headings
- Animals
- Antihypertensive Agents/pharmacology
- Coronary Angiography
- Coronary Vessels/diagnostic imaging
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Coronary Vessels/physiopathology
- Disease Models, Animal
- Endothelin Receptor Antagonists/pharmacology
- Endothelin-1/genetics
- Endothelin-1/metabolism
- Hypertrophy, Right Ventricular/diagnostic imaging
- Hypertrophy, Right Ventricular/drug therapy
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/physiopathology
- Hypoxia/complications
- Indoles
- Monocrotaline
- Predictive Value of Tests
- Pulmonary Arterial Hypertension/diagnostic imaging
- Pulmonary Arterial Hypertension/drug therapy
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/physiopathology
- Pyrimidines/pharmacology
- Pyrroles
- Rats, Sprague-Dawley
- Severity of Illness Index
- Sulfonamides/pharmacology
- Synchrotrons
- Vasodilation/drug effects
- Ventricular Dysfunction, Right/diagnostic imaging
- Ventricular Dysfunction, Right/drug therapy
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Function, Right
- Ventricular Remodeling
- Rats
Collapse
Affiliation(s)
- Tadakatsu Inagaki
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - James T Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| | - Hirotsugu Tsuchimochi
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Daryl O Schwenke
- Department of Physiology Heart-Otago, University of Otago, Dunedin, New Zealand
| | - Shigeyoshi Saito
- Department of Bio_Medical Imaging, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Takahiro Higuchi
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Takeshi Masaki
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiji Umetani
- Japan Synchrotron Radiation Research Institute, Harima, Japan
| | - Mikiyasu Shirai
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
- Department of Advanced Medical Research for Pulmonary Hypertension, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Yoshikazu Nakaoka
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
12
|
Chen YL, Rosa RH, Kuo L, Hein TW. Hyperglycemia Augments Endothelin-1-Induced Constriction of Human Retinal Venules. Transl Vis Sci Technol 2020; 9:1. [PMID: 32879758 PMCID: PMC7442874 DOI: 10.1167/tvst.9.9.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose Endothelin-1 (ET-1) is a potent vasoactive factor implicated in development of diabetic retinopathy, which is commonly associated with retinal edema and hyperglycemia. Although the vasomotor activity of venules contributes to the regulation of tissue fluid homeostasis, responses of human retinal venules to ET-1 under euglycemia and hyperglycemia remain unknown and the ET-1 receptor subtype corresponding to vasomotor function has not been determined. Herein, we addressed these issues by examining the reactivity of isolated human retinal venules to ET-1, and results from porcine retinal venules were compared. Methods Retinal tissues were obtained from patients undergoing enucleation. Human and porcine retinal venules were isolated and pressurized to assess diameter changes in response to ET-1 after exposure to 5 mM control glucose or 25 mM high glucose for 2 hours. Results Both human and porcine retinal venules exposed to control glucose developed similar basal tone and constricted comparably to ET-1 in a concentration-dependent manner. ET-1–induced constrictions of human and porcine retinal venules were abolished by ETA receptor antagonist BQ123. During high glucose exposure, basal tone of human and porcine retinal venules was unaltered but ET-1–induced vasoconstrictions were enhanced. Conclusions ET-1 elicits comparable constriction of human and porcine retinal venules by activation of ETA receptors. In vitro hyperglycemia augments human and porcine retinal venular responses to ET-1. Translational Relevance Similarities in vasoconstriction to ET-1 between human and porcine retinal venules support the latter as an effective model of the human retinal microcirculation to help identify vascular targets for the treatment of retinal complications in patients with diabetes.
Collapse
Affiliation(s)
- Yen-Lin Chen
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Robert H Rosa
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA.,Department of Ophthalmology, Baylor Scott & White Eye Institute, Temple, TX, USA
| | - Lih Kuo
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Travis W Hein
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| |
Collapse
|
13
|
Plasma big endothelin-1 is an effective predictor for ventricular arrythmias and end-stage events in primary prevention implantable cardioverter- defibrillator indication patients. J Geriatr Cardiol 2020; 17:427-433. [PMID: 32863825 PMCID: PMC7416061 DOI: 10.11909/j.issn.1671-5411.2020.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To investigate whether plasma big endothelin-1 (ET-1) predicts ventricular arrythmias (VAs) and end-stage events in primary prevention implantable cardioverter-defibrillator (ICD) indication patigents. METHODS In total, 207 patients fulfilling the inclusion criteria from Fuwai Hospital between January 2013 and December 2015 were retrospectively analyzed. The cohort was divided into three groups according to baseline plasma big ET-1 tertiles: tertile 1 (< 0.38 pmol/L, n = 68), tertile 2 (0.38-0.7 pmol/L, n = 69), and tertile 3 (> 0.7 pmol/L, n = 70). The primary endpoints were VAs. The secondary endpoints were end-stage events comprising all-cause mortality and heart transplantation. RESULTS During a mean follow-up period of 25.6 ± 13.9 months, 38 (18.4%) VAs and 78 (37.7%) end-stage events occurred. Big ET-1 was positively correlated with NYHA class (r = 0.165, P = 0.018), serum creatinine concentration (Scr; r = 0.147, P = 0.034), high-sensitivity C-reactive protein (hs-CRP; r = 0.217, P = 0.002), Lg NT-pro BNP (r = 0.463, P < 0.001), left ventricular end diastolic diameter (LVEDD; r = 0.234, P = 0.039) and negatively correlated with left ventricular ejection fraction (LVEF; r = -0.181, P = 0.032). Kaplan-Meier analysis showed that elevated big ET-1 was associated with increased risk of VAs and end-stage events (P < 0.05). In multivariate Cox regression models, big ET-1 was an independent risk factor for VAs (hazard ratio (HR) = 3.477, 95% confidence interval (CI): 1.352-8.940, P = 0.010, tertile 2 vs. tertile 1; HR = 4.112, 95% CI: 1.604-10.540, P = 0.003, tertile 3 vs. tertile 1) and end-stage events (HR = 2.804, 95% CI: 1.354-5.806, P = 0.005, tertile 2 vs. tertile 1; HR = 4.652, 95% CI: 2.288-9.459, P < 0.001, tertile 3 vs. tertile 1). CONCLUSIONS In primary prevention ICD indication patients, plasma big ET-1 levels can predict VAs and end-stage events and may facilitate ICD-implantation risk stratification.
Collapse
|
14
|
Verweij P, Danaietash P, Flamion B, Ménard J, Bellet M. Randomized Dose-Response Study of the New Dual Endothelin Receptor Antagonist Aprocitentan in Hypertension. Hypertension 2020; 75:956-965. [PMID: 32063059 PMCID: PMC7098434 DOI: 10.1161/hypertensionaha.119.14504] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supplemental Digital Content is available in the text. This study examined the dose-response characteristics of aprocitentan, a dual endothelin A/endothelin B receptor antagonist, in patients with essential hypertension. In a randomized, double-blind, parallel study design, eligible patients with a sitting diastolic blood pressure (BP) of 90–109 mm Hg received aprocitentan 5, 10, 25, or 50 mg, placebo, or lisinopril 20 mg as a positive control once daily for 8 weeks. Multiple automated office BP readings were obtained with patients resting unattended (unattended automated office BP) at baseline, weeks 2, 4, and 8. Ambulatory BP was monitored for 24 hours at baseline and week 8. After a single-blind placebo run-in period, 490 eligible patients were randomized to the double-blind phase, with 409 patients completing 8 weeks of therapy per protocol. Aprocitentan 10, 25, and 50 mg decreased sitting systolic/diastolic unattended automated office BP from baseline to week 8 (placebo-corrected decreases: 7.05/4.93, 9.90/6.99, and 7.58/4.95 mm Hg, respectively, P≤0.014 versus placebo), compared with an unattended automated office BP reduction of 4.84/3.81 mm Hg with lisinopril 20 mg. For patients with valid ambulatory BP, aprocitentan 10, 25, and 50 mg significantly decreased placebo-corrected 24-hour BP by 3.99/4.04, 4.83/5.89, and 3.67/4.45 mm Hg, respectively. Incidence of adverse events was similar in the aprocitentan groups (22.0%–40.2%) and the placebo group (36.6%). Aprocitentan produced dose-dependent decreases in hemoglobin, hematocrit, albumin, and uric acid, an increase in estimated plasma volume, but no change in weight versus placebo. These findings support further investigation of aprocitentan at doses of 10 to 25 mg in hypertension.
Collapse
Affiliation(s)
- Pierre Verweij
- From Idorsia Pharmaceuticals, Ltd, Allschwil, Switzerland (P.V., P.D., B.F., M.B.)
| | - Parisa Danaietash
- From Idorsia Pharmaceuticals, Ltd, Allschwil, Switzerland (P.V., P.D., B.F., M.B.)
| | - Bruno Flamion
- From Idorsia Pharmaceuticals, Ltd, Allschwil, Switzerland (P.V., P.D., B.F., M.B.)
| | - Joël Ménard
- Clinical Investigation Centre, Inserm /Assistance Publique, Hôpitaux de Paris, Hôpital Européen Georges Pompidou (HEGP), Paris and Université Paris-Descartes, France (J.M.)
| | - Marc Bellet
- From Idorsia Pharmaceuticals, Ltd, Allschwil, Switzerland (P.V., P.D., B.F., M.B.)
| |
Collapse
|
15
|
Belge C, Delcroix M. Treatment of pulmonary arterial hypertension with the dual endothelin receptor antagonist macitentan: clinical evidence and experience. Ther Adv Respir Dis 2019; 13:1753466618823440. [PMID: 30736726 PMCID: PMC6376529 DOI: 10.1177/1753466618823440] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Macitentan (10 mg once daily orally), a dual endothelin receptor antagonist (ERA) developed by modifying the structure of bosentan to increase the efficacity and safety, is approved for the treatment of pulmonary arterial hypertension (PAH). The pivotal SERAPHIN trial, (a landmark trial in the history of PAH trials because of the large number of included patients, the long-term follow up and the first trial with morbidity/mortality as the primary endpoint) showed a reduction of the risk of a morbidity or mortality event by 45% over the treatment time compared with placebo. The positive effect on the primary endpoint was observed whether or not the patient was already on PAH therapy. There has been no direct comparison between macitentan and other ERAs, which were approved based on improved exercise capacity, but preclinical and clinical data suggest better pharmacological and safety profiles. Further analyses of the SERAPHIN trial investigated the predictive value of different indices and events on long-term outcome and mortality. The efficacy in children, the long-term effects and safety of macitentan and its place in combination therapy compared with other ERAs are still under investigation. This review presents the preclinical evidence of superiority of macitentan compared with other ERAs, and the available clinical trial data. The place of macitentan in the therapeutic algorithm for PAH treatment, post-marketing experience and future perspectives are discussed.
Collapse
Affiliation(s)
- Catharina Belge
- Department of respiratory diseases, University Hospitals Leuven, Herestraat 49, B3000 Leuven, Leuven, Belgium
| | | |
Collapse
|
16
|
Mihanfar A, Sadigh AR, Fattahi A, Latifi Z, Hasanzadeh-Moghadam M, Samadi M, Farzadi L, Hamdi K, Ghasemzadeh A, Nejabati HR, Nouri M. Endothelins and their receptors in embryo implantation. J Cell Biochem 2019; 120:14274-14284. [PMID: 31106465 DOI: 10.1002/jcb.28983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/31/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
As a critical stage of pregnancy, the implantation of blastocysts into the endometrium is a progressive, excessively regulated local tissue remodeling step involving a complex sequence of genetic and cellular interplay executed within an optimal time frame. For better understanding the causes of infertility and, more importantly, for developing powerful strategies for successful implantations and combating infertility, an increasing number of recent studies have been focused on the identification and study of newly described substances in the reproductive tree. The endothelins (ET), a 21-aminoacidic family of genes, have been reported to be responsible for the contraction of vascular and nonvascular smooth muscles, including the smooth muscles of the uterus. Therefore, this review aims to comprehensively discuss the physiological role of endothelins and signaling through their receptors, as well as their probable involvement in the implantation process.
Collapse
Affiliation(s)
- Aynaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Aydin Raei Sadigh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Latifi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahrokh Samadi
- Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Laya Farzadi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Hamdi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliyeh Ghasemzadeh
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Chen YL, Ren Y, Xu W, Rosa RH, Kuo L, Hein TW. Constriction of Retinal Venules to Endothelin-1: Obligatory Roles of ETA Receptors, Extracellular Calcium Entry, and Rho Kinase. Invest Ophthalmol Vis Sci 2019; 59:5167-5175. [PMID: 30372743 PMCID: PMC6203175 DOI: 10.1167/iovs.18-25369] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Endothelin-1 (ET-1) is a potent vasoconstrictor peptide implicated in retinal venous pathologies such as diabetic retinopathy and retinal vein occlusion. However, underlying mechanisms contributing to venular constriction remain unknown. Thus, we examined the roles of ET-1 receptors, extracellular calcium (Ca2+), L-type voltage-operated calcium channels (L-VOCCs), Rho kinase (ROCK), and protein kinase C (PKC) in ET-1-induced constriction of retinal venules. Methods Porcine retinal venules were isolated and pressurized for vasoreactivity study using videomicroscopic techniques. Protein and mRNA were analyzed using molecular tools. Results Retinal venules developed basal tone and constricted concentration-dependently to ET-1. The ETA receptor (ETAR) antagonist BQ123 abolished venular constriction to ET-1, but ETB receptor (ETBR) antagonist BQ788 had no effect on vasoconstriction. The ETBR agonist sarafotoxin S6c did not elicit vasomotor activity. In the absence of extracellular Ca2+, venules lost basal tone and ET-1–induced constriction was nearly abolished. Although L-VOCC inhibitor nifedipine also reduced basal tone and blocked vasoconstriction to L-VOCC activator Bay K8644, constriction of venules to ET-1 remained. The ROCK inhibitor H-1152 but not PKC inhibitor Gö 6983 prevented ET-1-induced vasoconstriction. Protein and mRNA expressions of ETARs and ETBRs, along with ROCK1 and ROCK2 isoforms, were detected in retinal venules. Conclusions Extracellular Ca2+ entry via L-VOCCs is essential for developing and maintaining basal tone of porcine retinal venules. ET-1 causes significant constriction of retinal venules by activating ETARs and extracellular Ca2+ entry independent of L-VOCCs. Activation of ROCK signaling, without involvement of PKC, appears to mediate venular constriction to ET-1 in the porcine retina.
Collapse
Affiliation(s)
- Yen-Lin Chen
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas, United States
| | - Yi Ren
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas, United States
| | - Wenjuan Xu
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas, United States
| | - Robert H Rosa
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas, United States.,Ophthalmic Vascular Research Program, Department of Ophthalmology, Scott & White Eye Institute, Baylor Scott & White Health, Temple, Texas, United States
| | - Lih Kuo
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas, United States.,Ophthalmic Vascular Research Program, Department of Ophthalmology, Scott & White Eye Institute, Baylor Scott & White Health, Temple, Texas, United States
| | - Travis W Hein
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas, United States.,Ophthalmic Vascular Research Program, Department of Ophthalmology, Scott & White Eye Institute, Baylor Scott & White Health, Temple, Texas, United States
| |
Collapse
|
18
|
Skovsted GF, Tveden-Nyborg P, Lykkesfeldt J. Expression of endothelin type B receptors in uterine artery smooth muscle cells from pregnant Guinea pigs. Placenta 2019; 77:8-15. [PMID: 30827357 DOI: 10.1016/j.placenta.2019.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 10/27/2022]
Abstract
INTRODUCTION It is well established that upregulation of endothelin type B (ETB) receptors in vascular smooth muscle cells plays a role in pathophysiological artery remodeling as response to ischemia and atherosclerosis. This study aimed to investigate the ETB receptors function and localization under normal physiological remodeling. Specifically, in the guinea pig uterine arteries during pregnancy. METHODS Uterine artery contractility was assessed with sarafotoxin 6c and endothelin-1 in wire-myography in uterine arteries from non-pregnant and pregnant guinea pigs at gestational day 37 ± 5. Localization of ETB receptors, proliferation marker Ki-67, and SMC differentiation marker SM22α in uterine arteries were investigated with immunohistochemistry. RESULTS Uterine arteries from pregnant guinea pigs showed significantly increased ETB receptor-mediated vasoconstriction compared to uterine arteries from non-pregnant and to coronary arteries from pregnant guinea pigs (p < 0.001), suggesting that ETB-receptor upregulation in uterine artery SMCs is a normal physiological mechanism taking place during remodeling. Furthermore, uterine arteries from pregnant guinea pigs showed enhanced expression of ETB receptors, high density of Ki-67 positive SMCs and sparse SM22α staining in SMCs localized in the outer layer of the vessel wall. DISCUSSION Our results suggest that ETB receptors are expressed in dedifferentiated proliferating SMCs of uterine arteries in pregnant guinea pigs. This study provides novel insight into the function and expression of ETB receptors in uterine vascular remodeling during pregnancy.
Collapse
Affiliation(s)
- Gry Freja Skovsted
- University of Copenhagen, Faculty of Health & Medical Sciences, Experimental Pharmacology and Toxicology, Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Ridebanevej 9 - 1st Floor, DK-1870, Frederiksberg C, Denmark.
| | - Pernille Tveden-Nyborg
- University of Copenhagen, Faculty of Health & Medical Sciences, Experimental Pharmacology and Toxicology, Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Ridebanevej 9 - 1st Floor, DK-1870, Frederiksberg C, Denmark
| | - Jens Lykkesfeldt
- University of Copenhagen, Faculty of Health & Medical Sciences, Experimental Pharmacology and Toxicology, Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Ridebanevej 9 - 1st Floor, DK-1870, Frederiksberg C, Denmark
| |
Collapse
|
19
|
Trensz F, Bortolamiol C, Kramberg M, Wanner D, Hadana H, Rey M, Strasser DS, Delahaye S, Hess P, Vezzali E, Mentzel U, Ménard J, Clozel M, Iglarz M. Pharmacological Characterization of Aprocitentan, a Dual Endothelin Receptor Antagonist, Alone and in Combination with Blockers of the Renin Angiotensin System, in Two Models of Experimental Hypertension. J Pharmacol Exp Ther 2019; 368:462-473. [DOI: 10.1124/jpet.118.253864] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/27/2018] [Indexed: 01/27/2023] Open
|
20
|
Wu Q, Zheng R, Wang J, Wang J, Li S. CT perfusion imaging of cerebral microcirculatory changes following subarachnoid hemorrhage in rabbits: Specific role of endothelin-1 receptor antagonist. Brain Res 2018; 1701:196-203. [PMID: 30244111 DOI: 10.1016/j.brainres.2018.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cerebral vasospasm may lead to delayed ischemic neurological deficits following subarachnoid hemorrhage (SAH). Endothelin (ET-1) is an important factor participating in cerebral vasospasm underlying SAH. We used a specific endothelin receptor antagonist, BQ123 to assess the specific role of endothelin-1 receptor antagonist in cerebral vasospasm in a rabbit model of SAH by examining plasma ET-1 levels and the principal CT perfusion (CTP) parameters pertinent to the hemodynamic status of microcirculation following SAH. METHODS 102 male New Zealand white rabbits were divided into control, SAH and SAH + BQ123 intervention group (BQ123 group). Rabbit SAH model was established by double hemorrhage injection of autologous blood into the cisterna magna; Aquilion ONE was used to collect cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) which were used to evaluate cerebral microcirculation hemodynamics; Elisa was used to assess plasma ET-1 levels. Data were collected on days 1, 4, 7 and 14 following SAH, respectively. RESULTS Compared with the control group, the CBF in the SAH group was significantly lower, while the MTT was significantly higher. The CBF decreased on the 4th day and reached the lowest on the 7th day. The MTT began to rise on the 4th day and peaked on the 7th day. While in the BQ123 intervention group, the CBF significantly increased while the MTT significantly decreased on the 1st and the 4th days, respectively. Compared with SAH group, plasma ET-1 levels in BQ123 group significantly increased on the earlier (1st and 4th days) but not later days (between the 7th and 14th days). In addition, the inflammatory infiltration of brain tissues in rabbits treated with BQ123 post-SAH was significantly reduced compared with SAH group. CONCLUSION CTP can quantify the therapeutic effect of BQ123 after SAH; Selective blockade of ET-1 endothelin receptor, BQ123 significantly improved microcirculatory perfusion along with a reduction in resultant vasogenic inflammatory responses. The effect of BQ123 on the cerebral microcirculation was lobe dependent.
Collapse
Affiliation(s)
- Quanyang Wu
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China
| | - Ruibin Zheng
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China
| | - Jiao Wang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China
| | - Jiaqi Wang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China
| | - Songbai Li
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China.
| |
Collapse
|
21
|
Petramala L, Olmati F, Mancone M, Concistré A, Galassi M, Marinelli C, Tonnarini G, Lucia P, Costi U, Iannucci G, Sardella G, Letizia C. Plasma endothelin-1 levels in patients with resistant hypertension: effects of renal sympathetic denervation. Ann Med 2017; 49:396-403. [PMID: 28084122 DOI: 10.1080/07853890.2017.1282623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Resistant arterial hypertension (RHT) is defined as poor controlled blood pressure (BP) despite optimal doses of three or more antihypertensive agents, including a diuretic. In the development of RHT, hyperactivity of sympathetic (SNS) and renin-angiotensin-aldosterone (SRAA) systems are involved, and SNS is a potent stimulator of vasoactive endothelin-1 (ET-1) peptide. Renal sympathetic denervation (RSD) through disrupting renal afferent and efferent nerves attenuates SNS activity. MATERIAL AND METHODS We carried out pilot study investigating the effect of RSD on BP and plasma ET-1 levels in consecutive 9 RHT patients (7 male and 2 female, mean age of 56 ± 13.3). RESULTS After 12 months of the RSD, we observed a significant reduction of BP office, 24-h ambulatory BP monitoring (ABPM) (p < 0.05, respectively), and "non-dipping" pattern (from 55% to 35%) (p < 0.05). Moreover, RSD significantly decreased plasma ET-1 levels in both renal artery (at right from 21.8 ± 4.1 to 16.8 ± 2.9 pg/ml; p = 0.004; at left from 22.1 ± 3.7 to 18.9 ± 3.3 pg/ml; p = 0.02). We observed positive correlations between plasma renal arteries ET-1 levels and systolic BP values at ABPM [Global-SBP (r = 0.58; p < 0.01), Diurnal-SBP (r = 0.51; p < 0.03) and Nocturnal-SBP (r = 0.58; p < 0.01), respectively]. DISCUSSION Our data confirmed the positive effects of RSD on BP values in patients with RHT, and showed a possible physio-pathological role of ET-1. KEY MESSAGES RSD is associated to a significant reduction of plasma ET-1 levels, representing an useful tool into reduction of BP in RHT patients.
Collapse
Affiliation(s)
- Luigi Petramala
- a Department of Internal Medicine and Medical Specialties , Specialized Center of Secondary Hypertension, University of Rome "Sapienza" , Rome , Italy
| | - Federica Olmati
- a Department of Internal Medicine and Medical Specialties , Specialized Center of Secondary Hypertension, University of Rome "Sapienza" , Rome , Italy
| | - Massimo Mancone
- b Department of Cardiovascular, Respiratory, Nephrology, Anestesiology and Geriatric Sciences , University of Rome "Sapienza" , Rome , Italy
| | - Antonio Concistré
- a Department of Internal Medicine and Medical Specialties , Specialized Center of Secondary Hypertension, University of Rome "Sapienza" , Rome , Italy
| | - Matteo Galassi
- a Department of Internal Medicine and Medical Specialties , Specialized Center of Secondary Hypertension, University of Rome "Sapienza" , Rome , Italy
| | - Cristiano Marinelli
- a Department of Internal Medicine and Medical Specialties , Specialized Center of Secondary Hypertension, University of Rome "Sapienza" , Rome , Italy
| | - Gianfranco Tonnarini
- a Department of Internal Medicine and Medical Specialties , Specialized Center of Secondary Hypertension, University of Rome "Sapienza" , Rome , Italy
| | - Piernatale Lucia
- a Department of Internal Medicine and Medical Specialties , Specialized Center of Secondary Hypertension, University of Rome "Sapienza" , Rome , Italy
| | - Umberto Costi
- c Department of Surgery "P. Valdoni", Policlinico "Umberto I" , University of Rome "Sapienza" , Rome , Italy
| | - Gino Iannucci
- a Department of Internal Medicine and Medical Specialties , Specialized Center of Secondary Hypertension, University of Rome "Sapienza" , Rome , Italy
| | - Gennaro Sardella
- b Department of Cardiovascular, Respiratory, Nephrology, Anestesiology and Geriatric Sciences , University of Rome "Sapienza" , Rome , Italy
| | - Claudio Letizia
- a Department of Internal Medicine and Medical Specialties , Specialized Center of Secondary Hypertension, University of Rome "Sapienza" , Rome , Italy
| |
Collapse
|
22
|
Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf) 2017; 219:22-96. [PMID: 26706498 DOI: 10.1111/apha.12646] [Citation(s) in RCA: 581] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/27/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023]
Abstract
The endothelium can evoke relaxations of the underlying vascular smooth muscle, by releasing vasodilator substances. The best-characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO) which activates soluble guanylyl cyclase in the vascular smooth muscle cells, with the production of cyclic guanosine monophosphate (cGMP) initiating relaxation. The endothelial cells also evoke hyperpolarization of the cell membrane of vascular smooth muscle (endothelium-dependent hyperpolarizations, EDH-mediated responses). As regards the latter, hydrogen peroxide (H2 O2 ) now appears to play a dominant role. Endothelium-dependent relaxations involve both pertussis toxin-sensitive Gi (e.g. responses to α2 -adrenergic agonists, serotonin, and thrombin) and pertussis toxin-insensitive Gq (e.g. adenosine diphosphate and bradykinin) coupling proteins. New stimulators (e.g. insulin, adiponectin) of the release of EDRFs have emerged. In recent years, evidence has also accumulated, confirming that the release of NO by the endothelial cell can chronically be upregulated (e.g. by oestrogens, exercise and dietary factors) and downregulated (e.g. oxidative stress, smoking, pollution and oxidized low-density lipoproteins) and that it is reduced with ageing and in the course of vascular disease (e.g. diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis toxin-sensitive pathway for NO release which favours vasospasm, thrombosis, penetration of macrophages, cellular growth and the inflammatory reaction leading to atherosclerosis. In addition to the release of NO (and EDH, in particular those due to H2 O2 ), endothelial cells also can evoke contraction of the underlying vascular smooth muscle cells by releasing endothelium-derived contracting factors. Recent evidence confirms that most endothelium-dependent acute increases in contractile force are due to the formation of vasoconstrictor prostanoids (endoperoxides and prostacyclin) which activate TP receptors of the vascular smooth muscle cells and that prostacyclin plays a key role in such responses. Endothelium-dependent contractions are exacerbated when the production of nitric oxide is impaired (e.g. by oxidative stress, ageing, spontaneous hypertension and diabetes). They contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive and diabetic patients. In addition, recent data confirm that the release of endothelin-1 can contribute to endothelial dysfunction and that the peptide appears to be an important contributor to vascular dysfunction. Finally, it has become clear that nitric oxide itself, under certain conditions (e.g. hypoxia), can cause biased activation of soluble guanylyl cyclase leading to the production of cyclic inosine monophosphate (cIMP) rather than cGMP and hence causes contraction rather than relaxation of the underlying vascular smooth muscle.
Collapse
Affiliation(s)
- P. M. Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| | - H. Shimokawa
- Department of Cardiovascular Medicine; Tohoku University; Sendai Japan
| | - M. Feletou
- Department of Cardiovascular Research; Institut de Recherches Servier; Suresnes France
| | - E. H. C. Tang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| |
Collapse
|
23
|
Ghosh RK, Ball S, Das A, Bandyopadhyay D, Mondal S, Saha D, Gupta A. Selexipag in Pulmonary Arterial Hypertension: Most Updated Evidence From Recent Preclinical and Clinical Studies. J Clin Pharmacol 2016; 57:547-557. [PMID: 27670133 DOI: 10.1002/jcph.834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/20/2016] [Indexed: 12/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a relatively rare disease that, due to its chronic nature, has always been difficult to treat effectively. Selexipag is an oral prostacyclin (PGI2 ) agonist that was approved by US Food and Drug Administration (US FDA) in December 2015 for the treatment of PAH. After its success in phase 1 and phase 2 clinical trials regarding the convenient oral twice-daily dosing and low side-effect profile, selexipag raised the hope of controlling the disease progression in PAH patients. In the recently completed multicentered phase 3 study (GRIPHON), selexipag has been shown to reduce death and hospitalization due to PAH significantly, an effect that was consistent across different ranges of maintenance dose. In the same study selexipag use was also associated with an increase in 6-minute walk distance (a measure of symptom severity) from baseline, but no significant improvement in all-cause mortality could be observed. The results of the ongoing phase 3 studies (TRITON and TRANSIT-1) are expected to throw some more light on the safety and efficacy of this novel molecule across various treatment scenarios. Hence, our article aims to summarize all the available information from preclinical and clinical studies published to date on the pharmacodynamics, pharmacokinetics, efficacy, safety (in general and in scenarios such as hepatic and renal function impairment), significant drug interactions (with warfarin and antiretroviral drugs), and clinical significance of oral selexipag in patients with PAH.
Collapse
Affiliation(s)
- Raktim K Ghosh
- Department of Cardiovascular Medicine, St. Vincent Charity Medical Center, A Teaching Hospital of Case Western Reserve University, Cleveland, OH, USA
| | - Somedeb Ball
- Department of Cardiology, Apollo Gleneagles Hospital Limited, Kolkata, India
| | - Avash Das
- Department of Cardiology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Samhati Mondal
- Department of Anaesthesia, MetroHealth, A Teaching Hospital of Case Western Reserve University, Cleveland, OH, USA
| | - Debjit Saha
- Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Anjan Gupta
- Department of Cardiovascular Medicine, St. Vincent Charity Medical Center, A Teaching Hospital of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
24
|
Clozel M. Endothelin research and the discovery of macitentan for the treatment of pulmonary arterial hypertension. Am J Physiol Regul Integr Comp Physiol 2016; 311:R721-R726. [DOI: 10.1152/ajpregu.00475.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 08/14/2016] [Indexed: 11/22/2022]
Abstract
Endothelin receptor antagonists (ERAs) are used for the treatment of pulmonary arterial hypertension (PAH). Macitentan, a dual (ETA+ETB) ERA approved for the long-term treatment of PAH, was discovered through a tailored research program aimed at improving efficacy and safety over the existing ERAs. The goal of improved efficacy was based on the understanding that not only the ETA receptor but also the ETB receptor contributed to the hemodynamic and structural changes induced by endothelin-1 (ET-1) in pathological conditions and on the predefined requirements for optimal tissue penetration and binding kinetics of the antagonist. The goal of improved safety was based on the discovery of the role of ETB receptors in vascular permeability and vasopressin release and on the elucidation of the mechanism by which bosentan (the first approved oral dual ETA/ETB ERA) caused liver enzyme changes. Our intention was to design a molecule that would block ETA and ETB receptors optimally and would not interfere with bile salt elimination. This review takes us through the drug discovery journey that led to the discovery, development, and registration of macitentan.
Collapse
Affiliation(s)
- Martine Clozel
- Drug Discovery Department, Actelion Pharmaceuticals, Allschwil, Switzerland
| |
Collapse
|
25
|
Comparison of Macitentan and Bosentan on Right Ventricular Remodeling in a Rat Model of Non-vasoreactive Pulmonary Hypertension. J Cardiovasc Pharmacol 2016; 66:457-67. [PMID: 26230396 PMCID: PMC4632117 DOI: 10.1097/fjc.0000000000000296] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Supplemental Digital Content Is Available in the Text. We compared the efficacy of macitentan, a novel dual endothelin A/endothelin B receptor antagonist, with that of another dual endothelin receptor antagonist, bosentan, in a rat model of non-vasoreactive pulmonary hypertension (PH) with particular emphasis on right ventricular (RV) remodeling.
Collapse
|
26
|
Vascular Effects of Endothelin Receptor Antagonists Depends on Their Selectivity for ETA Versus ETB Receptors and on the Functionality of Endothelial ETB Receptors. J Cardiovasc Pharmacol 2016; 66:332-7. [PMID: 25992919 PMCID: PMC4598072 DOI: 10.1097/fjc.0000000000000283] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The goal of this study was to characterize the role of Endothelin (ET) type B receptors (ETB) on vascular function in healthy and diseased conditions and demonstrate how it affects the pharmacological activity of ET receptor antagonists (ERAs).
Collapse
|
27
|
Truskey GA, Fernandez CE. Tissue-engineered blood vessels as promising tools for testing drug toxicity. Expert Opin Drug Metab Toxicol 2015; 11:1021-4. [PMID: 26028128 DOI: 10.1517/17425255.2015.1047342] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Drug-induced vascular injury (DIVI) is a serious problem in preclinical studies of vasoactive molecules and for survivors of pediatric cancers. DIVI is often observed in rodents and some larger animals, primarily with drugs affecting vascular tone, but not in humans; however, DIVI observed in animal studies often precludes a drug candidate from continuing along the development pipeline. Thus, there is great interest by the pharmaceutical industry to identify quantifiable human biomarkers of DIVI. Small-scale endothelialized tissue-engineered blood vessels using human cells represent a promising approach to screen drug candidates and develop alternatives to cancer therapeutics in vitro. We identify several technical challenges that remain to be addressed, including high-throughput systems to screen large numbers of candidates, identification of suitable cell sources and establishing and maintaining a differentiated state of the vessel wall cells. Adequately addressing these challenges should yield novel platforms to screen drugs and develop new therapeutics to treat cardiovascular disease.
Collapse
Affiliation(s)
- George A Truskey
- Duke University, Department of Biomedical Engineering , 136 Hudson Hall, CB 90281, Durham, NC 27708-0281 , USA +919 660 5147 ;
| | | |
Collapse
|
28
|
Vilahur G, Cubedo J, Padró T, Casaní L, Juan-Babot O, Crespo J, Bendjama K, Lawton M, Badimon L. Roflumilast-induced Local Vascular Injury Is Associated with a Coordinated Proteome and Microparticle Change in the Systemic Circulation in Pigs. Toxicol Pathol 2014; 43:569-80. [PMID: 25311372 DOI: 10.1177/0192623314551971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Drug-induced vascular injury (DIVI) is commonly associated with phosphodiesterase (PDE) inhibitors. Despite histological characterization, qualified biomarkers for DIVI detection are lacking. We investigated whether a single administration of roflumilast (PDE-IV inhibitor) induces vascular damage and identified novel surrogate biomarkers of acute vascular injury. Pigs received postoperative 250, 375, or 500 μg of roflumilast or placebo/control. After 1.5 hr, coronary reactivity was determined by catheter-based administration of acetylcholine and sodium nitroprusside (SNP) in the coronary sinus. Immunohistochemical analysis of vessel integrity (von Willebrand factor [vWF]) and fibrin(ogen) deposition was performed in the coronary artery and aorta. Peripheral blood was collected for differential proteomics and microparticles analysis. Circulating interleukin (IL)-6 was analyzed. Roflumilast-treated animals displayed higher vasodilation to acetylcholine and SNP versus controls (p < .05). Roflumilast-treated animals showed a dose-dependent (p < .05) decrease in vessel integrity and dose-dependent increase in fibrin deposition forming a continuous layer at roflumilast-500 μg. Peripheral blood of roflumilast-500-μg-treated animals showed increased levels of total and endothelial-derived microparticles and exhibited a coordinated change in proteins kininogen-1, endothelin-1, gelsolin, apolipoprotein A-I, and apolipoprotein-J associated with vascular injury (p < .05 vs. controls). IL-6 remained unaltered. Roflumilast-induced vascular injury can be detected by novel markers in peripheral blood. Validation of these surrogate markers in human samples seems required.
Collapse
Affiliation(s)
- Gemma Vilahur
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Judit Cubedo
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Laura Casaní
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Oriol Juan-Babot
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Javier Crespo
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | | | - Michael Lawton
- Pfizer Worldwide Research and Development, Groton, Connecticut, USA
| | - Lina Badimon
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain Cardiovascular Research Chair, UAB, Barcelona, Spain
| |
Collapse
|
29
|
Baldi F, Fuso L, Arrighi E, Valente S. Optimal management of pulmonary arterial hypertension: prognostic indicators to determine treatment course. Ther Clin Risk Manag 2014; 10:825-39. [PMID: 25328398 PMCID: PMC4199557 DOI: 10.2147/tcrm.s48920] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rapidly progressive pulmonary vascular disease with a multifactorial etiopathogenesis that can result in right-sided heart failure and death. A number of studies indicate that an early therapeutic intervention yields better results on disease progression as compared to delayed treatment. In this review, we will analyze treatment strategies that may be used for monitoring disease progression and for guiding treatment decisions. Several factors (ie, symptoms, functional class, exercise capacity as assessed by a walking test and cardiopulmonary stress testing, hemodynamic parameters, cardiac magnetic resonance imaging, and plasma levels of biochemical markers) have been prognostic of survival. These indicators may be used both at the time of diagnosis and during treatment follow-up. No resolutive therapy is currently available for PAH; however, in the last decade, the advent of specific pharmacological treatments has given new hope to patients suffering from this debilitating disease with a poor prognosis. Combination drug therapies offer increased benefits over monotherapy, and current guidelines recommend a sequential “add on” design approach for patients in functional class II–IV. The goal-oriented “treat to target” therapy sets the timing for treatment escalation in case of inadequate response to currently known prognostic indicators. To date, further longitudinal studies should be urgently conducted to identify new goals that may improve therapeutic strategies in order to optimize personalized treatment in PAH patients.
Collapse
Affiliation(s)
- Fabiana Baldi
- Pulmonary Medicine Unit, Catholic University, Rome, Italy
| | - Leonello Fuso
- Pulmonary Medicine Unit, Catholic University, Rome, Italy
| | | | | |
Collapse
|
30
|
Mulè G, Calcaterra I, Nardi E, Cerasola G, Cottone S. Metabolic syndrome in hypertensive patients: An unholy alliance. World J Cardiol 2014; 6:890-907. [PMID: 25276291 PMCID: PMC4176799 DOI: 10.4330/wjc.v6.i9.890] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 05/13/2014] [Accepted: 07/18/2014] [Indexed: 02/06/2023] Open
Abstract
For many years, it has been recognized that hypertension tends to cluster with various anthropometric and metabolic abnormalities including abdominal obesity, elevated triglycerides, reduced high-density lipoprotein cholesterol, glucose intolerance, insulin resistance and hyperuricemia. This constellation of various conditions has been transformed from a pathophysiological concept to a clinical entity, which has been defined metabolic syndrome (MetS). The consequences of the MetS have been difficult to assess without commonly accepted criteria to diagnose it. For this reason, on 2009 the International Diabetes Federation, the American Heart Association and other scientific organizations proposed a unified MetS definition. The incidence of the MetS has been increasing worldwide in parallel with an increase in overweight and obesity. The epidemic proportion reached by the MetS represents a major public health challenge, because several lines of evidence showed that the MetS, even without type 2 diabetes, confers an increased risk of cardiovascular morbidity and mortality in different populations including also hypertensive patients. It is likely that the enhanced cardiovascular risk associated with MetS in patients with high blood pressure may be largely mediated through an increased prevalence of preclinical cardiovascular and renal changes, such as left ventricular hypertrophy, early carotid atherosclerosis, impaired aortic elasticity, hypertensive retinopathy and microalbuminuria. Indeed, many reports support this notion, showing that hypertensive patients with MetS exhibit, more often than those without it, these early signs of end organ damage, most of which are recognized as significant independent predictors of adverse cardiovascular outcomes.
Collapse
|
31
|
Kapsokalyvas D, Schiffers PM, Maij N, Suylen DP, Hackeng TM, van Zandvoort MA, De Mey JG. Imaging evidence for endothelin ETA/ETB receptor heterodimers in isolated rat mesenteric resistance arteries. Life Sci 2014; 111:36-41. [DOI: 10.1016/j.lfs.2014.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/16/2014] [Accepted: 07/02/2014] [Indexed: 01/25/2023]
|
32
|
Rafikov R, Kumar S, Aggarwal S, Hou Y, Kangath A, Pardo D, Fineman JR, Black SM. Endothelin-1 stimulates catalase activity through the PKCδ-mediated phosphorylation of serine 167. Free Radic Biol Med 2014; 67:255-64. [PMID: 24211614 PMCID: PMC3945115 DOI: 10.1016/j.freeradbiomed.2013.10.814] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 01/03/2023]
Abstract
Our previous studies have shown that endothelin-1 (ET-1) stimulates catalase activity in endothelial cells and in lambs with acute increases in pulmonary blood flow (PBF), without altering gene expression. The purpose of this study was to investigate the molecular mechanism by which this occurs. Exposing pulmonary arterial endothelial cells to ET-1 increased catalase activity and decreased cellular hydrogen peroxide (H2O2) levels. These changes correlated with an increase in serine-phosphorylated catalase. Using the inhibitory peptide δV1.1, this phosphorylation was shown to be protein kinase Cδ (PKCδ) dependent. Mass spectrometry identified serine 167 as the phosphorylation site. Site-directed mutagenesis was used to generate a phospho-mimic (S167D) catalase. Activity assays using recombinant protein purified from Escherichia coli or transiently transfected COS-7 cells demonstrated that S167D catalase had an increased ability to degrade H2O2 compared to the wild-type enzyme. Using a phospho-specific antibody, we were able to verify that pS167 catalase levels are modulated in lambs with acute increases in PBF in the presence and absence of the ET receptor antagonist tezosentan. S167 is located on the dimeric interface, suggesting it could be involved in regulating the formation of catalase tetramers. To evaluate this possibility we utilized analytical gel filtration to examine the multimeric structure of recombinant wild-type and S167D catalase. We found that recombinant wild-type catalase was present as a mixture of monomers and dimers, whereas S167D catalase was primarily tetrameric. Further, the incubation of wild-type catalase with PKCδ was sufficient to convert wild-type catalase into a tetrameric structure. In conclusion, this is the first report indicating that the phosphorylation of catalase regulates its multimeric structure and activity.
Collapse
Affiliation(s)
- Ruslan Rafikov
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta GA 30912
- Please address correspondence and proofs to: Stephen M. Black, Ph.D., Vascular Biology Center, Georgia Regents University, 1459 Laney Walker Blvd, CB 3211-B, Augusta, GA-30912, Tel: 706-721-7860,
| | - Sanjiv Kumar
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta GA 30912
- Please address correspondence and proofs to: Stephen M. Black, Ph.D., Vascular Biology Center, Georgia Regents University, 1459 Laney Walker Blvd, CB 3211-B, Augusta, GA-30912, Tel: 706-721-7860,
| | - Saurabh Aggarwal
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta GA 30912
| | - Yali Hou
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta GA 30912
| | - Archana Kangath
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta GA 30912
| | - Daniel Pardo
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta GA 30912
| | - Jeffrey R. Fineman
- Department of Pediatrics University of California, San Francisco, CA, 94143
- Cardiovascular Research Institute, University of California, San Francisco, CA, 94143
| | - Stephen M. Black
- Pulmonary Disease Program, Vascular Biology Center, Georgia Regents University, Augusta GA 30912
| |
Collapse
|
33
|
Dingemanse J, Sidharta PN, Maddrey WC, Rubin LJ, Mickail H. Efficacy, safety and clinical pharmacology of macitentan in comparison to other endothelin receptor antagonists in the treatment of pulmonary arterial hypertension. Expert Opin Drug Saf 2013; 13:391-405. [PMID: 24261583 DOI: 10.1517/14740338.2014.859674] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Macitentan is a novel dual endothelin receptor antagonist (ERA) showing sustained receptor occupancy. In vitro and in vivo animal studies have demonstrated its potency in antagonizing endothelin-induced disorders. A large morbidity/mortality study in patients with pulmonary arterial hypertension (PAH) taking macitentan has been completed recently. AREAS COVERED This drug evaluation reviews the efficacy, safety and clinical pharmacology of macitentan in the treatment of PAH. EXPERT OPINION The large Phase III study (SERAPHIN) tested macitentan in more than 700 PAH patients and has provided unique long-term outcome data for this ERA, not available for other members of this class. The effect on a composite clinically relevant morbidity/mortality end point was highly significant at a 10 mg/day dose. The safety profile of macitentan appears to be superior with respect to hepatic safety and edema/fluid retention than bosentan and ambrisentan, respectively, and is similar when considering decrease in hemoglobin concentration. The drug has a low propensity for drug-drug interactions and has one circulating pharmacologically active metabolite. The pharmacokinetics of macitentan in patients with renal or hepatic impairment does not require dose adjustments. Based on its characteristics, macitentan is an important addition to the therapeutic armamentarium in the long-term treatment of PAH. Its potential use in other disorders is under investigation.
Collapse
Affiliation(s)
- Jasper Dingemanse
- Actelion Pharmaceuticals Ltd, Departments of Clinical Pharmacology and Global Drug Safety , Gewerbestrasse 16, 4123 Allschwil , Switzerland +41 61 565 6463 ; +41 61 565 6200 ;
| | | | | | | | | |
Collapse
|
34
|
Ardelt A. From bench-to-bedside in catastrophic cerebrovascular disease: development of drugs targeting the endothelin axis in subarachnoid hemorrhage-related vasospasm. Neurol Res 2013; 34:195-210. [DOI: 10.1179/1743132811y.0000000081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
35
|
Faraco G, Moraga A, Moore J, Anrather J, Pickel VM, Iadecola C. Circulating endothelin-1 alters critical mechanisms regulating cerebral microcirculation. Hypertension 2013; 62:759-66. [PMID: 23959559 DOI: 10.1161/hypertensionaha.113.01761] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Endothelin-1 (ET1) is a potent vasoconstrictor peptide implicated in the cerebrovascular alterations occurring in stroke, subarachnoid hemorrhage, and brain trauma. Brain or circulating levels of ET1 are elevated in these conditions and in risk factors for cerebrovascular diseases. Most studies on the cerebrovascular effects of ET1 have focused on vascular smooth muscle constriction, and little is known about the effect of the peptide on cerebrovascular regulation. We tested the hypothesis that ET1 increases cerebrovascular risk by disrupting critical mechanisms regulating cerebral blood flow. Male C57Bl6/J mice equipped with a cranial window were infused intravenously with vehicle or ET1, and somatosensory cortex blood flow was assessed by laser Doppler flowmetry. ET1 infusion increased mean arterial pressure and attenuated the blood flow increase produced by neural activity (whisker stimulation) or neocortical application of the endothelium-dependent vasodilator acetylcholine but not A23187. The cerebrovascular effects of ET1 were abrogated by the ET(A) receptor antagonist BQ123 and were not related to vascular oxidative stress. Rather, the dysfunction was dependent on Rho-associated protein kinase activity. Furthermore, in vitro studies demonstrated that ET1 suppresses endothelial nitric oxide (NO) production, assessed by its metabolite nitrite, an effect associated with Rho-associated protein kinase-dependent changes in the phosphorylation state of endothelial NO synthase. Collectively, these novel observations demonstrate that increased ET1 plasma levels alter key regulatory mechanisms of the cerebral circulation by modulating endothelial NO synthase phosphorylation and NO production through Rho-associated protein kinase. The ET1-induced cerebrovascular dysfunction may increase cerebrovascular risk by lowering cerebrovascular reserves and increasing the vulnerability of the brain to cerebral ischemia.
Collapse
Affiliation(s)
- Giuseppe Faraco
- Brain and Mind Research Institute, 407 E 61st St, Room 303, New York, NY 10065.
| | | | | | | | | | | |
Collapse
|
36
|
Shakespear MR, Hohenhaus DM, Kelly GM, Kamal NA, Gupta P, Labzin LI, Schroder K, Garceau V, Barbero S, Iyer A, Hume DA, Reid RC, Irvine KM, Fairlie DP, Sweet MJ. Histone deacetylase 7 promotes Toll-like receptor 4-dependent proinflammatory gene expression in macrophages. J Biol Chem 2013; 288:25362-25374. [PMID: 23853092 DOI: 10.1074/jbc.m113.496281] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Broad-spectrum inhibitors of histone deacetylases (HDACs) constrain Toll-like receptor (TLR)-inducible production of key proinflammatory mediators. Here we investigated HDAC-dependent inflammatory responses in mouse macrophages. Of the classical Hdacs, Hdac7 was expressed at elevated levels in inflammatory macrophages (thioglycollate-elicited peritoneal macrophages) as compared with bone marrow-derived macrophages and the RAW264 cell line. Overexpression of a specific, alternatively spliced isoform of Hdac7 lacking the N-terminal 22 amino acids (Hdac7-u), but not the Refseq Hdac7 (Hdac7-s), promoted LPS-inducible expression of Hdac-dependent genes (Edn1, Il-12p40, and Il-6) in RAW264 cells. A novel class IIa-selective HDAC inhibitor reduced recombinant human HDAC7 enzyme activity as well as TLR-induced production of inflammatory mediators in thioglycollate-elicited peritoneal macrophages. Both LPS and Hdac7-u up-regulated the activity of the Edn1 promoter in an HDAC-dependent fashion in RAW264 cells. A hypoxia-inducible factor (HIF) 1 binding site in this promoter was required for HDAC-dependent TLR-inducible promoter activity and for Hdac7- and HIF-1α-mediated trans-activation. Coimmunoprecipitation assays showed that both Hdac7-u and Hdac7-s interacted with HIF-1α, whereas only Hdac7-s interacted with the transcriptional repressor CtBP1. Thus, Hdac7-u positively regulates HIF-1α-dependent TLR signaling in macrophages, whereas an interaction with CtBP1 likely prevents Hdac7-s from exerting this effect. Hdac7 may represent a potential inflammatory disease target.
Collapse
Affiliation(s)
- Melanie R Shakespear
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Daniel M Hohenhaus
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Greg M Kelly
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Nabilah A Kamal
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Praveer Gupta
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Larisa I Labzin
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Kate Schroder
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Valerie Garceau
- the Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin EH25 9PS Scotland, United Kingdom
| | - Sheila Barbero
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Abishek Iyer
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - David A Hume
- the Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin EH25 9PS Scotland, United Kingdom
| | - Robert C Reid
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Katharine M Irvine
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - David P Fairlie
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Matthew J Sweet
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and.
| |
Collapse
|
37
|
Affiliation(s)
- Yohann Rautureau
- Yohann Rautureau is a Research Associate in the laboratory of Ernesto Schiffrin at the Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University (Montreal, Canada). His research deals with vascular remodeling, the role of endothelin, and the intracellular signaling of angiotensin II and aldosterone
| | - Ernesto L Schiffrin
- Ernesto L Schiffrin is Physician-in-Chief, Jewish General Hospital, Canada Research Chair in Hypertension and Vascular Research, Lady Davis Institute for Medical Research, and Professor and Vice-Chair (Research), Department of Medicine, McGill University. His research deals with vascular remodeling in hypertension, renal and cardiometabolic diseases, from mice to humans, and the influence of the renin–angiotensin–aldosterone and endothelin systems, nuclear receptors and immunity on blood vessels
| |
Collapse
|
38
|
Meyers KEC, Sethna C. Endothelin antagonists in hypertension and kidney disease. Pediatr Nephrol 2013; 28:711-20. [PMID: 23070275 DOI: 10.1007/s00467-012-2316-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 01/11/2023]
Abstract
The endothelin (ET) system seems to play a pivotal role in hypertension and in proteinuric kidney disease, including the micro- and macro-vascular complications of diabetes. Endothelin-1 (ET-1) is a multifunctional peptide that primarily acts as a potent vasoconstrictor with direct effects on systemic vasculature and the kidney. ET-1 and ET receptors are expressed in the vascular smooth muscle cells, endothelial cells, fibroblasts and macrophages in systemic vasculature and arterioles of the kidney, and are associated with collagen accumulation, inflammation, extracellular matrix remodeling, and renal fibrosis. Experimental evidence and recent clinical studies suggest that endothelin receptor blockade, in particular selective ETAR blockade, holds promise in the treatment of hypertension, proteinuria, and diabetes. Concomitant blockade of the ETB receptor is not usually beneficial and may lead to vasoconstriction and salt and water retention. The side-effect profile of ET receptor antagonists and relatively poor antagonist selectivity for ETA receptor are limitations that need to be addressed. This review will discuss what is currently known about the endothelin system, the role of ET-1 in the pathogenesis of hypertension and kidney disease, and summarize literature on the therapeutic potential of endothelin system antagonism.
Collapse
Affiliation(s)
- Kevin E C Meyers
- Nephrology Division, Department of Pediatrics, The Children's Hospital of Philadelphia, 34th and Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
39
|
Seeland U, Regitz-Zagrosek V. Sex and gender differences in cardiovascular drug therapy. Handb Exp Pharmacol 2013:211-36. [PMID: 23027453 DOI: 10.1007/978-3-642-30726-3_11] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This chapter outlines sex differences in pharmacokinetics and pharmacodynamics of the most frequently used drugs in cardiovascular diseases, e.g., coronary artery disease, hypertension, heart failure. Retrospective analysis of previously published drug trials revealed marked sex differences in efficacy and adverse effects in a number of cardiovascular drugs. This includes a higher mortality among women taking digoxin for heart failure, more torsade de pointes arrhythmia in QT prolonging drugs and more cough with ACE inhibitors. Trends towards a greater benefit for women and/or female animals have been observed in some studies for endothelin receptor antagonists, the calcium channel blocker amlodipine, the ACE-inhibitor ramipril and the aldosterone antagonist eplerenone. However, reproduction of these results in independent studies and solid statistical evidence is still lacking. Some drugs require a particularly careful dose adaptation in women: the beta-blocker metoprolol, the calcium channel blocker verapamil, loop-, and thiazide diuretics. In conclusion, sex differences in pharmacokinetics and pharmacodynamics have to be taken into account for cardiovascular drug therapy in women.
Collapse
Affiliation(s)
- Ute Seeland
- Institute of Gender in Medicine, Universitaetsmedizin Berlin Charité, Berlin, Germany
| | | |
Collapse
|
40
|
Bolli MH, Boss C, Binkert C, Buchmann S, Bur D, Hess P, Iglarz M, Meyer S, Rein J, Rey M, Treiber A, Clozel M, Fischli W, Weller T. The Discovery of N-[5-(4-Bromophenyl)-6-[2-[(5-bromo-2-pyrimidinyl)oxy]ethoxy]-4-pyrimidinyl]-N′-propylsulfamide (Macitentan), an Orally Active, Potent Dual Endothelin Receptor Antagonist. J Med Chem 2012; 55:7849-61. [DOI: 10.1021/jm3009103] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Martin H. Bolli
- Drug Discovery Chemistry, Actelion Pharmaceuticals
Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | - Christoph Boss
- Drug Discovery Chemistry, Actelion Pharmaceuticals
Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | - Christoph Binkert
- Drug Discovery Chemistry, Actelion Pharmaceuticals
Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | - Stephan Buchmann
- Drug Discovery Chemistry, Actelion Pharmaceuticals
Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | - Daniel Bur
- Drug Discovery Chemistry, Actelion Pharmaceuticals
Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | - Patrick Hess
- Drug Discovery Chemistry, Actelion Pharmaceuticals
Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | - Marc Iglarz
- Drug Discovery Chemistry, Actelion Pharmaceuticals
Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | - Solange Meyer
- Drug Discovery Chemistry, Actelion Pharmaceuticals
Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | - Josiane Rein
- Drug Discovery Chemistry, Actelion Pharmaceuticals
Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | - Markus Rey
- Drug Discovery Chemistry, Actelion Pharmaceuticals
Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | - Alexander Treiber
- Drug Discovery Chemistry, Actelion Pharmaceuticals
Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | - Martine Clozel
- Drug Discovery Chemistry, Actelion Pharmaceuticals
Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | - Walter Fischli
- Drug Discovery Chemistry, Actelion Pharmaceuticals
Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | - Thomas Weller
- Drug Discovery Chemistry, Actelion Pharmaceuticals
Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| |
Collapse
|
41
|
Ohkita M, Tawa M, Kitada K, Matsumura Y. Pathophysiological roles of endothelin receptors in cardiovascular diseases. J Pharmacol Sci 2012; 119:302-13. [PMID: 22863667 DOI: 10.1254/jphs.12r01cr] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Endothelin (ET)-1 derived from endothelial cells has a much more important role in cardiovascular system regulation than the ET-2 and ET-3 isoforms. Numerous lines of evidence indicate that ET-1 possesses a number of biological activities leading to cardiovascular diseases (CVD) including hypertension and atherosclerosis. Physiological and pathophysiological responses to ET-1 in various tissues are mediated by interactions with ET(A)- and ET(B)-receptor subtypes. Both subtypes on vascular smooth muscle cells mediate vasoconstriction, whereas the ET(B)-receptor subtype on endothelial cells contributes to vasodilatation and ET-1 clearance. Although selective ET(A)- or nonselective ET(A)/ET(B)-receptor antagonisms have been assumed as potential strategies for the treatment of several CVD based on clinical and animal experiments, it remains unclear which antagonisms are suitable for individuals with CVD because upregulation of the nitric oxide system via the ET(B) receptor is responsible for vasoprotective effects such as vasodilatation and anti-cell proliferation. In this review, we have summarized the current understanding regarding the role of ET receptors, especially the ET(B) receptor, in CVD.
Collapse
Affiliation(s)
- Mamoru Ohkita
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, Japan
| | | | | | | |
Collapse
|
42
|
|
43
|
Vanecková I, Kujal P, Husková Z, Vanourková Z, Vernerová Z, Certíková Chábová V, karoupková P, Kramer HJ, Tesar V, Cervenka L. Effects of Combined Endothelin A Receptor and Renin-Angiotensin System Blockade on the Course of End-Organ Damage in 5/6 Nephrectomized Ren-2 Hypertensive Rats. ACTA ACUST UNITED AC 2012; 35:382-92. [DOI: 10.1159/000336823] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 01/26/2012] [Indexed: 01/13/2023]
|
44
|
Current World Literature. Curr Opin Nephrol Hypertens 2012; 21:106-18. [DOI: 10.1097/mnh.0b013e32834ee42b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Weil BR, Westby CM, Van Guilder GP, Greiner JJ, Stauffer BL, DeSouza CA. Enhanced endothelin-1 system activity with overweight and obesity. Am J Physiol Heart Circ Physiol 2011; 301:H689-95. [PMID: 21666117 DOI: 10.1152/ajpheart.00206.2011] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Endothelin (ET)-1-mediated vasoconstrictor tone contributes to the development and progression of several adiposity-related conditions, including hypertension and atherosclerotic vascular disease. The aims of the present study were to determine 1) whether endogenous ET-1 vasoconstrictor activity is elevated in overweight and obese adults, and, if so, 2) whether increased ET-1-mediated vasoconstriction contributes to the adiposity-related impairment in endothelium-dependent vasodilation. Seventy-nine adults were studied: 34 normal weight [body mass index (BMI) < 25 kg/m(2)], 22 overweight (BMI ≥ 25 and < 30 kg/m(2)), and 23 obese (BMI ≥ 30 kg/m(2)). Forearm blood flow (FBF) responses to intra-arterial infusion of ET-1 (5 pmol/min for 20 min) and selective ET-1 receptor blockade (BQ-123, 100 nmol/min for 60 min) were determined. In a subset of the study population, FBF responses to ACh (4.0, 8.0, and 16.0 μg·100 ml tissue(-1)·min(-1)) were measured in the absence and presence of selective ET-1 receptor blockade. The vasoconstrictor response to ET-1 was significantly blunted in overweight and obese adults (∼ 70%) compared with normal weight adults. Selective ET-1 receptor blockade elicited a significant vasodilator response (∼ 20%) in overweight and obese adults but did not alter FBF in normal weight adults. Coinfusion of BQ-123 did not affect FBF responses to ACh in normal weight adults but resulted in an ∼ 20% increase (P < 0.05) in ACh-induced vasodilation in overweight and obese adults. These results demonstrate that overweight and obesity are associated with enhanced ET-1-mediated vasoconstriction that contributes to endothelial vasodilator dysfunction and may play a role in the increased prevalence of hypertension with increased adiposity.
Collapse
Affiliation(s)
- Brian R Weil
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder 80309, USA
| | | | | | | | | | | |
Collapse
|
46
|
Pressure load: the main factor for altered gene expression in right ventricular hypertrophy in chronic hypoxic rats. PLoS One 2011; 6:e15859. [PMID: 21246034 PMCID: PMC3016335 DOI: 10.1371/journal.pone.0015859] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 11/27/2010] [Indexed: 01/08/2023] Open
Abstract
Background The present study investigated whether changes in gene expression in the right ventricle following pulmonary hypertension can be attributed to hypoxia or pressure loading. Methodology/Principal Findings To distinguish hypoxia from pressure-induced alterations, a group of rats underwent banding of the pulmonary trunk (PTB), sham operation, or the rats were exposed to normoxia or chronic, hypobaric hypoxia. Pressure measurements were performed and the right ventricle was analyzed by Affymetrix GeneChip, and selected genes were confirmed by quantitative PCR and immunoblotting. Right ventricular systolic blood pressure and right ventricle to body weight ratio were elevated in the PTB and the hypoxic rats. Expression of the same 172 genes was altered in the chronic hypoxic and PTB rats. Thus, gene expression of enzymes participating in fatty acid oxidation and the glycerol channel were downregulated. mRNA expression of aquaporin 7 was downregulated, but this was not the case for the protein expression. In contrast, monoamine oxidase A and tissue transglutaminase were upregulated both at gene and protein levels. 11 genes (e.g. insulin-like growth factor binding protein) were upregulated in the PTB experiment and downregulated in the hypoxic experiment, and 3 genes (e.g. c-kit tyrosine kinase) were downregulated in the PTB and upregulated in the hypoxic experiment. Conclusion/Significance Pressure load of the right ventricle induces a marked shift in the gene expression, which in case of the metabolic genes appears compensated at the protein level, while both expression of genes and proteins of importance for myocardial function and remodelling are altered by the increased pressure load of the right ventricle. These findings imply that treatment of pulmonary hypertension should also aim at reducing right ventricular pressure.
Collapse
|
47
|
Kelly-Cobbs AI, Harris AK, Elgebaly MM, Li W, Sachidanandam K, Portik-Dobos V, Johnson M, Ergul A. Endothelial endothelin B receptor-mediated prevention of cerebrovascular remodeling is attenuated in diabetes because of up-regulation of smooth muscle endothelin receptors. J Pharmacol Exp Ther 2010; 337:9-15. [PMID: 21205912 DOI: 10.1124/jpet.110.175380] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Structure and function of the cerebrovasculature is critical for ischemic stroke outcome. We showed that diabetes causes cerebrovascular remodeling by activation of the endothelin A (ET(A)) receptors. The goal of this study was to test the hypotheses that vasculoprotective endothelial ET(B) receptors are decreased and pharmacological inhibition of the ET(B) receptor augments vascular remodeling of middle cerebral arteries (MCAs) in type 2 diabetes. MCA structure, matrix metalloprotease (MMP) activity, and matrix proteins as well as ET(A) and ET(B) receptor profiles were assessed in control Wistar and diabetic Goto-Kakizaki rats treated with vehicle, the ET(B) receptor antagonist (2R,3R,4S)-4-(1,3-benzodioxol-5-yl)-1-[2-[(2,6-diethylphenyl)amino]-2-oxoethyl]-2-(4-propoxyphenyl)pyrrolidine-3-carboxylic acid (A192621) (30 mg/kg/day), or the dual ET receptor antagonist bosentan (100 mg/kg/day) for 4 weeks. Diabetes increased vascular smooth muscle (VSM) ET(A) and ET(B) receptors; the increase was prevented by chronic bosentan treatment. MCA wall thickness was increased in diabetes, and this was associated with increased MMP-2 activity and collagen deposition but reduced MMP-13 activity. Because of up-regulation of VSM ET receptors in diabetes, selective ET(B) receptor antagonism with A192621 blunts this response, and combined ET(A) and ET(B) receptor blockade with bosentan completely prevents this response. On the other hand, A192621 treatment augmented remodeling in control animals, indicating a physiological protective role for this receptor subtype. Attenuation of changes in ET receptor profile with bosentan treatment suggests that ET-1 has a positive feedback on the expression of its receptors in the cerebrovasculature. These results emphasize that ET receptor antagonism may yield different results in healthy and diseased states.
Collapse
Affiliation(s)
- Aisha I Kelly-Cobbs
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|