1
|
Carper D, Lac M, Coue M, Labour A, Märtens A, Banda JAA, Mazeyrie L, Mechta M, Ingerslev LR, Elhadad M, Petit JV, Maslo C, Monbrun L, Del Carmine P, Sainte-Marie Y, Bourlier V, Laurens C, Mithieux G, Joanisse DR, Coudray C, Feillet-Coudray C, Montastier E, Viguerie N, Tavernier G, Waldenberger M, Peters A, Wang-Sattler R, Adamski J, Suhre K, Gieger C, Kastenmüller G, Illig T, Lichtinghagen R, Seissler J, Mounier R, Hiller K, Jordan J, Barrès R, Kuhn M, Pesta D, Moro C. Loss of atrial natriuretic peptide signaling causes insulin resistance, mitochondrial dysfunction, and low endurance capacity. SCIENCE ADVANCES 2024; 10:eadl4374. [PMID: 39383215 PMCID: PMC11463261 DOI: 10.1126/sciadv.adl4374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 09/06/2024] [Indexed: 10/11/2024]
Abstract
Type 2 diabetes (T2D) and obesity are strongly associated with low natriuretic peptide (NP) plasma levels and a down-regulation of NP guanylyl cyclase receptor-A (GCA) in skeletal muscle and adipose tissue. However, no study has so far provided evidence for a causal link between atrial NP (ANP)/GCA deficiency and T2D pathogenesis. Here, we show that both systemic and skeletal muscle ANP/GCA deficiencies in mice promote metabolic disturbances and prediabetes. Skeletal muscle insulin resistance is further associated with altered mitochondrial function and impaired endurance running capacity. ANP/GCA-deficient mice exhibit increased proton leak and reduced content of mitochondrial oxidative phosphorylation proteins. We further show that GCA is related to several metabolic traits in T2D and positively correlates with markers of oxidative capacity in human skeletal muscle. Together, these results indicate that ANP/GCA signaling controls muscle mitochondrial integrity and oxidative capacity in vivo and plays a causal role in the development of prediabetes.
Collapse
Affiliation(s)
- Deborah Carper
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Marlène Lac
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Marine Coue
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Axel Labour
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Andre Märtens
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig and Physikalisch-Technische Bundesanstalt, Brunswick, Germany
| | - Jorge Alberto Ayala Banda
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Laurène Mazeyrie
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Mie Mechta
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Roed Ingerslev
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mohamed Elhadad
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | | | - Claire Maslo
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Laurent Monbrun
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Peggy Del Carmine
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR, 5261 Lyon, France
| | - Yannis Sainte-Marie
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Virginie Bourlier
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Claire Laurens
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | | | - Denis R. Joanisse
- Department of Kinesiology, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Charles Coudray
- Dynamique Musculaire Et Métabolisme, INRAE, UMR866, Université Montpellier, Montpellier, France
| | | | - Emilie Montastier
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Nathalie Viguerie
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Geneviève Tavernier
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Melanie Waldenberger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Rui Wang-Sattler
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Christian Gieger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Illig
- Hannover Unified Biobank, Hannover Medical School, Hanover, Germany
| | - Ralf Lichtinghagen
- Department of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Jochen Seissler
- Diabetes Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU, München, Germany
| | - Remy Mounier
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR, 5261 Lyon, France
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig and Physikalisch-Technische Bundesanstalt, Brunswick, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Medical Faculty, University of Cologne, Cologne, Germany
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Dominik Pesta
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Medical Faculty, University of Cologne, Cologne, Germany
- Center for Endocrinology, Diabetes, and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Cedric Moro
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| |
Collapse
|
2
|
De Hert E, Verboven K, Wouters K, Jocken JWE, De Meester I. Prolyl Carboxypeptidase Activity Is Present in Human Adipose Tissue and Is Elevated in Serum of Obese Men with Type 2 Diabetes. Int J Mol Sci 2022; 23:13529. [PMID: 36362314 PMCID: PMC9655216 DOI: 10.3390/ijms232113529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Prolyl carboxypeptidase (PRCP) is involved in metabolic disorders by hydrolyzing anorexigenic peptides. A link between serum PRCP activity and obesity has been reported, but its origin/source is still unclear. Previously proven correlations between human serum PRCP activity and the amount of adipose tissue may suggest that adipose tissue is an important source of circulating PRCP. We investigated PRCP activity in visceral, subcutaneous adipose tissue (VAT and SCAT), skeletal muscle tissue and serum of lean and obese men with or without type 2 diabetes (T2D). Correlations between PRCP activity, metabolic and biochemical parameters and immune cell populations were assessed. PRCP activity was the highest in VAT, compared to SCAT, and was very low in skeletal muscle tissue in the overall group. Serum PRCP activity was significantly higher in T2-diabetic obese men, compared to lean and obese non-diabetic men, and was positively correlated with glycemic control. A positive correlation was observed between serum PRCP activity and VAT immune cell populations, which might indicate that circulating PRCP activity is deriving rather from the immune fraction than from adipocytes. In conclusion, PRCP activity was observed in human adipose tissue for the first time and serum PRCP activity is correlated with T2D in obese men.
Collapse
Affiliation(s)
- Emilie De Hert
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Kenneth Verboven
- REVAL—Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, 3590 Diepenbeek, Belgium
- BIOMED—Biomedical Research Center, Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Kristiaan Wouters
- Cardiovascular Research Institute Maastricht (CARIM), Department of Internal Medicine, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Johan W. E. Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
3
|
Mishra S, Sadagopan N, Dunkerly-Eyring B, Rodriguez S, Sarver DC, Ceddia RP, Murphy SA, Knutsdottir H, Jani VP, Ashok D, Oeing CU, O'Rourke B, Gangoiti JA, Sears DD, Wong GW, Collins S, Kass DA. Inhibition of phosphodiesterase type 9 reduces obesity and cardiometabolic syndrome in mice. J Clin Invest 2021; 131:148798. [PMID: 34618683 DOI: 10.1172/jci148798] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/16/2021] [Indexed: 12/16/2022] Open
Abstract
Central obesity with cardiometabolic syndrome (CMS) is a major global contributor to human disease, and effective therapies are needed. Here, we show that cyclic GMP-selective phosphodiesterase 9A inhibition (PDE9-I) in both male and ovariectomized female mice suppresses preestablished severe diet-induced obesity/CMS with or without superimposed mild cardiac pressure load. PDE9-I reduces total body, inguinal, hepatic, and myocardial fat; stimulates mitochondrial activity in brown and white fat; and improves CMS, without significantly altering activity or food intake. PDE9 localized at mitochondria, and its inhibition in vitro stimulated lipolysis in a PPARα-dependent manner and increased mitochondrial respiration in both adipocytes and myocytes. PPARα upregulation was required to achieve the lipolytic, antiobesity, and metabolic effects of PDE9-I. All these PDE9-I-induced changes were not observed in obese/CMS nonovariectomized females, indicating a strong sexual dimorphism. We found that PPARα chromatin binding was reoriented away from fat metabolism-regulating genes when stimulated in the presence of coactivated estrogen receptor-α, and this may underlie the dimorphism. These findings have translational relevance given that PDE9-I is already being studied in humans for indications including heart failure, and efficacy against obesity/CMS would enhance its therapeutic utility.
Collapse
Affiliation(s)
| | | | | | - Susana Rodriguez
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dylan C Sarver
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ryan P Ceddia
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Hildur Knutsdottir
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Vivek P Jani
- Division of Cardiology, Department of Medicine, and.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | - Jon A Gangoiti
- UCSD Biochemical Genetics and Metabolomics Laboratory and
| | - Dorothy D Sears
- Department of Medicine, UCSD, La Jolla, California, USA.,College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - David A Kass
- Division of Cardiology, Department of Medicine, and.,Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Ding Y, Wang H, Geng B, Xu G. Sulfhydration of perilipin 1 is involved in the inhibitory effects of cystathionine gamma lyase/hydrogen sulfide on adipocyte lipolysis. Biochem Biophys Res Commun 2019; 521:786-790. [PMID: 31706571 DOI: 10.1016/j.bbrc.2019.10.192] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 11/29/2022]
Abstract
Hydrogen sulfide (H2S) is a novel adipokine mediating glucose uptake, lipid storage and mobilization, thus contributing to the genesis of obesity and associated diseases. Our previous work demonstrated that H2S inhibited isoproterenol-stimulated lipolysis by reducing the phosphorylation of perilipin 1 (plin-1), a lipid-droplet protein blocking lipase access. How H2S modulates plin-1 phosphorylation is still unclear. Our present study found that an H2S donor slightly increased adipose tissue weight and reduced lipolysis in mice; by contrast, deleting the key H2S generation enzyme cystathionine gamma lyase (CSE) in adipocytes lowered adipose accumulation and enhanced lipolysis. Intriguingly, an H2S donor induced sulfhydration of plin-1 but not hormone-sensitive lipase, and CSE deletion abolished the post-translational modification of plin-1. During isoproterenol-stimulated lipolysis, plin-1 sulfhydration was associated with reduced phosphorylation, and removing sulfhydration by dithiothreitol recovered the phosphorylation. Finally, plin-1 knockout abolished the effect of H2S on lipolysis, which indicates that plin-1 sulfhydration is a major direct target of H2S in lipolysis. We have identified a new post-translation modification, sulfhydration (direct action by H2S) of plin-1, causing reduced phosphorylation then decreased lipolysis. This finding also highlights a novel molecular regulatory mechanism of lipolysis.
Collapse
Affiliation(s)
- Yajun Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Beijing, PR China
| | - Huamin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Beijing, PR China
| | - Bin Geng
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Beijing, PR China.
| | - Guoheng Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Beijing, PR China.
| |
Collapse
|
5
|
Johansen M, Schou M, Rasmussen J, Rossignol P, Holm M, Chabanova E, Dela F, Faber J, Kistorp C. Low N-terminal pro-brain natriuretic peptide levels are associated with non-alcoholic fatty liver disease in patients with type 2 diabetes. DIABETES & METABOLISM 2019; 45:429-435. [DOI: 10.1016/j.diabet.2018.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/02/2018] [Accepted: 11/10/2018] [Indexed: 12/24/2022]
|
6
|
Cannone V, Cabassi A, Volpi R, Burnett JC. Atrial Natriuretic Peptide: A Molecular Target of Novel Therapeutic Approaches to Cardio-Metabolic Disease. Int J Mol Sci 2019; 20:E3265. [PMID: 31269783 PMCID: PMC6651335 DOI: 10.3390/ijms20133265] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/11/2022] Open
Abstract
Atrial natriuretic peptide (ANP) is a cardiac hormone with pleiotropic cardiovascular and metabolic properties including vasodilation, natriuresis and suppression of the renin-angiotensin-aldosterone system. Moreover, ANP induces lipolysis, lipid oxidation, adipocyte browning and ameliorates insulin sensitivity. Studies on ANP genetic variants revealed that subjects with higher ANP plasma levels have lower cardio-metabolic risk. In vivo and in humans, augmenting the ANP pathway has been shown to exert cardiovascular therapeutic actions while ameliorating the metabolic profile. MANP is a novel designer ANP-based peptide with greater and more sustained biological actions than ANP in animal models. Recent studies also demonstrated that MANP lowers blood pressure and inhibits aldosterone in hypertensive subjects whereas cardiometabolic properties of MANP are currently tested in an on-going clinical study in hypertension and metabolic syndrome. Evidence from in vitro, in vivo and in human studies support the concept that ANP and related pathway represent an optimal target for a comprehensive approach to cardiometabolic disease.
Collapse
Affiliation(s)
- Valentina Cannone
- Cardiorenal Research Laboratory, Circulatory Failure Division, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
- Division of Clinical Medicine, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Aderville Cabassi
- Division of Clinical Medicine, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Riccardo Volpi
- Division of Clinical Medicine, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - John C Burnett
- Cardiorenal Research Laboratory, Circulatory Failure Division, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Liu J, Lu W, Shi B, Klein S, Su X. Peroxisomal regulation of redox homeostasis and adipocyte metabolism. Redox Biol 2019; 24:101167. [PMID: 30921635 PMCID: PMC6434164 DOI: 10.1016/j.redox.2019.101167] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 12/26/2022] Open
Abstract
Peroxisomes are ubiquitous cellular organelles required for specific pathways of fatty acid oxidation and lipid synthesis, and until recently their functions in adipocytes have not been well appreciated. Importantly, peroxisomes host many oxygen-consumption reactions and play a major role in generation and detoxification of reactive oxygen species (ROS) and reactive nitrogen species (RNS), influencing whole cell redox status. Here, we review recent progress in peroxisomal functions in lipid metabolism as related to ROS/RNS metabolism and discuss the roles of peroxisomal redox homeostasis in adipogenesis and adipocyte metabolism. We provide a framework for understanding redox regulation of peroxisomal functions in adipocytes together with testable hypotheses for developing therapies for obesity and the related metabolic diseases.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Biochemistry and Molecular Biology, Soochow University College of Medicine, Suzhou, 215123, China
| | - Wen Lu
- Department of Biochemistry and Molecular Biology, Soochow University College of Medicine, Suzhou, 215123, China; Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Bimin Shi
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Soochow University College of Medicine, Suzhou, 215123, China; Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
8
|
Li H, Zhang Q, He Y, Shi J, Hu W, Peng H. Sex-specific association between soluble corin and metabolic syndrome in Chinese adults. Hypertens Res 2019; 42:1029-1035. [DOI: 10.1038/s41440-019-0228-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/02/2019] [Accepted: 01/16/2019] [Indexed: 11/09/2022]
|
9
|
Adrenergically and non-adrenergically mediated human adipose tissue lipolysis during acute exercise and exercise training. Clin Sci (Lond) 2018; 132:1685-1698. [PMID: 29980605 DOI: 10.1042/cs20180453] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 02/07/2023]
Abstract
Obesity-related adipose tissue (AT) dysfunction, in particular subcutaneous AT (SCAT) lipolysis, is characterized by catecholamine resistance and impaired atrial natriuretic peptide (ANP) responsiveness. It remains unknown whether exercise training improves (non-)adrenergically mediated lipolysis in metabolically compromised conditions. We investigated the effects of local combined α-/β-adrenoceptor blockade on abdominal SCAT lipolysis in lean insulin sensitive (IS) (n=10), obese IS (n=10), and obese insulin resistant (IR) (n=10) men. Obese men participated in a 12-week exercise training intervention to determine the effects on SCAT lipolysis. Abdominal SCAT extracellular glycerol concentration and blood flow (ATBF) were investigated using microdialysis, with/without locally combined α-/β-adrenoceptor blockade at rest, during low-intensity endurance-type exercise and post-exercise recovery. In obese IR men, microdialysis was repeated after exercise intervention. The exercise-induced increase in SCAT extracellular glycerol was more pronounced in obese IS compared with lean IS men, possibly resulting from lower ATBF in obese IS men. The exercise-induced increase in extracellular glycerol was blunted in obese IR compared with obese IS men, despite comparable local ATBF. Abdominal SCAT extracellular glycerol was markedly reduced (remaining ~60% of exercise-induced SCAT extracellular glycerol) following the local α-/β-adrenoceptor blockade in obese IS but not in IR men, suggesting reduced catecholamine-mediated lipolysis during exercise in obese IR men. Exercise training did not affect (non-)adrenergically mediated lipolysis in obese IR men. Our findings showed a major contribution of non-adrenergically-mediated lipolysis during exercise in male abdominal SCAT. Furthermore, catecholamine-mediated lipolysis may be blunted during exercise in obese IR men but could not be improved by exercise intervention, despite an improved metabolic profile and body composition.
Collapse
|
10
|
Zhou LY, Zeng H, Wang S, Chen JX. Regulatory Role of Endothelial PHD2 in the Hepatic Steatosis. Cell Physiol Biochem 2018; 48:1003-1011. [PMID: 30036883 PMCID: PMC6350253 DOI: 10.1159/000491968] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/25/2018] [Indexed: 12/11/2022] Open
Abstract
Background/Aims: Liver disease is a leading cause of high mortality and morbidity worldwide. The aim of the present study is to investigate the regulatory role of prolyl hydroxylase-2 (PHD2)-hypoxia-inducible factor-2α (HIF-2α) axis on nonalcoholic fatty liver disease (NAFLD) and to explore the potential mechanisms by which endothelial (EC)-specific PHD2 deficiency regulates hepatic steatosis and fibrosis. Methods: In the endothelial-specific PHD2 knockout (PHD2ECKO) mouse fed with normal diet or high fat diet (HFD), liver lipid accumulation and fibrosis were measured by Oil Red O and Masson trichrome staining. The fat and body weight (FW/BW) ratio and glucose tolerance were measured. The expression of HIF-2α, atrial natriuretic peptide (ANP), angiopoietin-2 (Ang-2), and transforming growth factor-β (TGF-β) were analyzed by western blot analysis. Results: The steatosis and fibrosis were significantly increased in the PHD2ECKO mice. FW/BW ratio was significantly increased in the PHD2ECKO mice. Moreover, knockout of endothelial PHD2 resulted in an impairment of glucose tolerance in mice. Western blot analysis showed that the expression of HIF-2α in liver tissues was not significantly increased. Interestingly, the expression of ANP was decreased, and Ang-2 and TGF-β levels were significantly increased in the liver of PHD2ECKO mice. The FW/BW ratio was also significantly increased in the PHD2ECKO mice fed with HFD for 16 weeks. Feeding HFD resulted in a significant increase in hepatic steatosis in the control PHD2f/f mice, but did not further enhance hepatic steatosis in the PHD2ECKO mice. Conclusions: We concluded that the endothelial PHD2 plays a critical role in hepatic steatosis and fibrosis, which may be involved in the regulation of ANP and Ang-2/TGF-β signaling pathway, but not the HIF-2α expression.
Collapse
Affiliation(s)
- Li-Ying Zhou
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, Mississippi, USA.,Department of Reproduction, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Heng Zeng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, Mississippi, USA
| | - Shuo Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, Mississippi, USA.,Key laboratory of cerebral cardiopulmonary Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, Mississippi, USA
| |
Collapse
|
11
|
Jordan J, Birkenfeld AL, Melander O, Moro C. Natriuretic Peptides in Cardiovascular and Metabolic Crosstalk: Implications for Hypertension Management. Hypertension 2018; 72:270-276. [PMID: 29941512 DOI: 10.1161/hypertensionaha.118.11081] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jens Jordan
- From the Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany (J.J.) .,University of Cologne, Germany (J.J.)
| | - Andreas L Birkenfeld
- Medical Clinic III, Paul Langerhans Institute Dresden, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Germany (A.L.B.).,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany (A.L.B.).,Division of Diabetes and Nutritional Sciences, Rayne Institute, King's College London, United Kingdom (A.L.B.)
| | - Olle Melander
- Department of Clinical Sciences, Lund University (O.M.).,Department of Internal Medicine (O.M.)
| | - Cedric Moro
- Skåne University Hospital, Malmö, Sweden; Obesity Research Laboratory, INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France (C.M.).,UMR1048, Paul Sabatier University, University of Toulouse, France (C.M.)
| |
Collapse
|
12
|
Krauzová E, Tůma P, de Glisezinski I, Štich V, Šiklová M. Metformin Does Not Inhibit Exercise-Induced Lipolysis in Adipose Tissue in Young Healthy Lean Men. Front Physiol 2018; 9:604. [PMID: 29875699 PMCID: PMC5974160 DOI: 10.3389/fphys.2018.00604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/04/2018] [Indexed: 01/04/2023] Open
Abstract
Objective: Metformin was shown to exert an antilipolytic action in adipose tissue (AT) that might mediate beneficial effects on lipid metabolism in diabetic patients. However, during exercise, the inhibition of induced lipolysis in AT would limit the energy substrate supply for working muscle. Thus, the aim of this study was to investigate whether metformin exerts inhibitory effect on exercise-induced lipolysis in subcutaneous adipose tissue (SCAT) (Moro et al., 2007) in humans. Approach: Ten healthy lean men underwent two exercise sessions consisting of 60 min of cycling on bicycle ergometer combined with (a) orally administered metformin and (b) metformin locally administered into SCAT. Microdialysis was used to assess lipolysis in situ in SCAT. Glycerol, metformin and lactate were measured in dialysate and plasma by enzyme colorimetric kits and capillary electrophoresis. Results: Metformin levels increased continuously in plasma during 3 h after oral administration, and peaked after 3.5 h (peak concentration 4 μg/ml). Metformin was detected in dialysate outflowing from SCAT and showed a similar time-course as that in plasma with the peak concentration of 1.3 μg/ml. The lipolytic rate in SCAT (assessed as glycerol release) increased in response to exercise (4.3 ± 0.5-fold vs. basal; p = 0.002) and was not suppressed either by local or oral metformin administration. The lactate levels increased in plasma and in dialysate from SCAT after 30-60 min of exercise (3.6-fold vs. basal; p = 0.015; 2.75-fold vs. basal; p = 0.002, respectively). No effect of metformin on lactate levels in SCAT dialysate or in plasma during exercise was observed. Conclusion: Metformin did not reduce the exercise-induced lipolysis in SCAT. This suggests that metformin administration does not interfere with the lipid mobilization and energy substrate provision during physical activity.
Collapse
Affiliation(s)
- Eva Krauzová
- Department for the Study of Obesity and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czechia.,Second Department of Internal Medicine, University Hospital Královské Vinohrady, Prague, Czechia
| | - Petr Tůma
- Department of Hygiene, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Isabelle de Glisezinski
- INSERM, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, Toulouse, France.,Department of Clinical Biochemistry and Sports Medicine, Toulouse University Hospital, Toulouse, France
| | - Vladimír Štich
- Department for the Study of Obesity and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czechia.,Second Department of Internal Medicine, University Hospital Královské Vinohrady, Prague, Czechia
| | - Michaela Šiklová
- Department for the Study of Obesity and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
13
|
Jocken JWE, Reijnders D, Canfora EE, Boekschoten MV, Plat J, Goossens GH, Blaak EE. Effects of gut microbiota manipulation on ex vivo lipolysis in human abdominal subcutaneous adipocytes. Adipocyte 2018; 7:106-112. [PMID: 29693476 PMCID: PMC6152497 DOI: 10.1080/21623945.2018.1464366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The intestinal microbiota may contribute to the development of obesity by affecting host lipid metabolism and insulin sensitivity. To investigate the effects of microbiota manipulation on ex vivo basal and β-adrenergically-stimulated lipolysis in human adipocytes, 36 obese men were randomized to amoxicillin (broad-spectrum antibiotic), vancomycin (narrow-spectrum antibiotic) or placebo treatment (7 d, 1500 mg/d). Before and after treatment, ex vivo adipose tissue lipolysis was assessed under basal conditions and during stimulation with the non-selective β-agonist isoprenaline using freshly isolated mature adipocytes. Gene (targeted microarray) and protein expression were analyzed to investigate underlying pathways. Antibiotics treatment did not significantly affect basal and maximal isoprenaline-mediated glycerol release from adipocytes. Adipose tissue β-adrenoceptor expression or post-receptor signalling was also not different between groups. In conclusion, 7 d oral antibiotics treatment has no effect on ex vivo lipolysis in mature adipocytes derived from adipose tissue of obese insulin resistant men.
Collapse
Affiliation(s)
- Johan W. E. Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, ER Maastricht, The Netherlands
- Top Institute Food and Nutrition, PA Wageningen, the Netherlands
| | - Dorien Reijnders
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, ER Maastricht, The Netherlands
- Top Institute Food and Nutrition, PA Wageningen, the Netherlands
| | - Emanuel E. Canfora
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, ER Maastricht, The Netherlands
- Top Institute Food and Nutrition, PA Wageningen, the Netherlands
| | - Mark V. Boekschoten
- Top Institute Food and Nutrition, PA Wageningen, the Netherlands
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Joghum Plat
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, ER Maastricht, The Netherlands
| | - Gijs H. Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, ER Maastricht, The Netherlands
- Top Institute Food and Nutrition, PA Wageningen, the Netherlands
| | - Ellen E. Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, ER Maastricht, The Netherlands
- Top Institute Food and Nutrition, PA Wageningen, the Netherlands
| |
Collapse
|
14
|
Verboven K, Wouters K, Gaens K, Hansen D, Bijnen M, Wetzels S, Stehouwer CD, Goossens GH, Schalkwijk CG, Blaak EE, Jocken JW. Abdominal subcutaneous and visceral adipocyte size, lipolysis and inflammation relate to insulin resistance in male obese humans. Sci Rep 2018; 8:4677. [PMID: 29549282 PMCID: PMC5856747 DOI: 10.1038/s41598-018-22962-x] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/05/2018] [Indexed: 12/16/2022] Open
Abstract
Obesity is associated with a disturbed adipose tissue (AT) function characterized by adipocyte hypertrophy, an impaired lipolysis and pro-inflammatory phenotype, which contributes to insulin resistance (IR). We investigated whether AT phenotype in different AT depots of obese individuals with and without type 2 diabetes mellitus (T2DM) is associated with whole-body IR. Subcutaneous (SC) and visceral (V) AT biopsies from 18 lean, 17 obese and 8 obese T2DM men were collected. AT phenotype was characterized by ex vivo measurement of basal and stimulated lipolysis (mature adipocytes), adipocyte size distribution (AT tissue sections) and AT immune cells (flow cytometry). In VAT, mean adipocyte size, CD45+ leukocytes and M1 macrophages were significantly increased in both obese groups compared to lean individuals. In SCAT, despite adipocyte hypertrophy, no significant differences in immune cell populations between groups were found. In SCAT, multiple linear regression analysis showed that none of the AT phenotype markers independently contributed to HOMA-IR while in VAT, mean adipocyte size was significantly related to HOMA-IR. In conclusion, beside adipocyte hypertrophy in VAT, M1 macrophage- or B-cell-mediated inflammation, may contribute to IR, while inflammation in hypertrophic SCAT does not seem to play a major role in IR.
Collapse
Affiliation(s)
- K Verboven
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands. .,Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium.
| | - K Wouters
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - K Gaens
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - D Hansen
- Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium.,Heart Centre Hasselt, Jessa Hospital, Hasselt, Belgium
| | - M Bijnen
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - S Wetzels
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - C D Stehouwer
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - G H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - C G Schalkwijk
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - J W Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
15
|
Stinkens R, van der Kolk BW, Jordan J, Jax T, Engeli S, Heise T, Jocken JW, May M, Schindler C, Havekes B, Schaper N, Albrecht D, Kaiser S, Hartmann N, Letzkus M, Langenickel TH, Goossens GH, Blaak EE. The effects of angiotensin receptor neprilysin inhibition by sacubitril/valsartan on adipose tissue transcriptome and protein expression in obese hypertensive patients. Sci Rep 2018; 8:3933. [PMID: 29500454 PMCID: PMC5834447 DOI: 10.1038/s41598-018-22194-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/19/2018] [Indexed: 01/30/2023] Open
Abstract
Increased activation of the renin-angiotensin system is involved in the onset and progression of cardiometabolic diseases, while natriuretic peptides (NP) may exert protective effects. We have recently demonstrated that sacubitril/valsartan (LCZ696), a first-in-class angiotensin receptor neprilysin inhibitor, which blocks the angiotensin II type-1 receptor and augments natriuretic peptide levels, improved peripheral insulin sensitivity in obese hypertensive patients. Here, we investigated the effects of sacubitril/valsartan (400 mg QD) treatment for 8 weeks on the abdominal subcutaneous adipose tissue (AT) phenotype compared to the metabolically neutral comparator amlodipine (10 mg QD) in 70 obese hypertensive patients. Abdominal subcutaneous AT biopsies were collected before and after intervention to determine the AT transcriptome and expression of proteins involved in lipolysis, NP signaling and mitochondrial oxidative metabolism. Both sacubitril/valsartan and amlodipine treatment did not significantly induce AT transcriptional changes in pathways related to lipolysis, NP signaling and oxidative metabolism. Furthermore, protein expression of adipose triglyceride lipase (ATGL) (Ptime*group = 0.195), hormone-sensitive lipase (HSL) (Ptime*group = 0.458), HSL-ser660 phosphorylation (Ptime*group = 0.340), NP receptor-A (NPRA) (Ptime*group = 0.829) and OXPHOS complexes (Ptime*group = 0.964) remained unchanged. In conclusion, sacubitril/valsartan treatment for 8 weeks did not alter the abdominal subcutaneous AT transcriptome and expression of proteins involved in lipolysis, NP signaling and oxidative metabolism in obese hypertensive patients.
Collapse
Affiliation(s)
- R Stinkens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - B W van der Kolk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J Jordan
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany.,Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - T Jax
- Profil GmbH, Neuss, Germany
| | - S Engeli
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
| | | | - J W Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - M May
- Clinical Research Center Hannover, Hannover Medical School, Hannover, Germany
| | - C Schindler
- Clinical Research Center Hannover, Hannover Medical School, Hannover, Germany
| | - B Havekes
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Internal Medicine, Division of Endocrinology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - N Schaper
- Department of Internal Medicine, Division of Endocrinology, Maastricht University Medical Center+, Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, CAPHRI School for Public Health and Primary Care, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - D Albrecht
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - S Kaiser
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - N Hartmann
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - M Letzkus
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - T H Langenickel
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - G H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.
| |
Collapse
|
16
|
Benomar K, Espiard S, Loyer C, Jannin A, Vantyghem MC. [Atrial natriuretic hormones and metabolic syndrome: recent advances]. Presse Med 2018; 47:116-124. [PMID: 29496376 DOI: 10.1016/j.lpm.2017.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/21/2017] [Accepted: 12/04/2017] [Indexed: 01/20/2023] Open
Abstract
Natriuretic peptides are a group of hormones including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), C type (CNP), urodilatin and guanilyn. ANP (half-life: 2-4 min), is secreted by the atrium, BNP (half-life: 20 min) by the ventricle, CNP by the vascular endothelium, urodilatin by the kidney and guanylin by the intestine. These natriuretic peptides prevent water and salt retention through renal action, vasodilatation and hormonal inhibition of aldosterone, vasopressin and cortisol. These peptides also have a recently demonstrated metabolic effect through an increase of lipolysis, thermogenesis, beta cell proliferation and muscular sensitivity to insulin. Blood levels of these natriuretic peptides depend on "active NPR-A receptors/clearance NPR-C receptors", the last ones being abundant on adipocytes. Therefore, natriuretic peptides act as adipose tissue regulator and constitute a link between blood pressure and metabolic syndrome. They are used as markers and treatment of cardiac failure. Other applications are on going. BNP and NT-proBNP (inactive portion de la pro-hormone) are used as markers of cardiac failure since they have a longer half-life than ANP. BNP decrease is quicker and more important than that one of NT-ProBNP in case of improvement of cardiac failure. Chronic renal insufficiency and beta-blockers increase BNP levels. BNP measurement is useless under treatment with neprilysine inhibitors such as sacubitril, one of the neutral endopeptidases involved in catabolism of natriuretic peptides. The association sacubitril/valsartan is a new treatment of chronic cardiac failure, acting through the decrease of ANP catabolism.
Collapse
Affiliation(s)
- Kanza Benomar
- Centre hospitalo-universitaire de Lille, hôpital C-Huriez, service d'endocrinologie et métabolisme, 1, rue Polonovski, 59037 Lille cedex, France; UMR 1190 recherche translationnelle sur le diabète Inserm, 59000 Lille, France; EGID (European Genomic Institute for Diabetes), université de Lille, 59000 Lille, France
| | - Stéphanie Espiard
- Centre hospitalo-universitaire de Lille, hôpital C-Huriez, service d'endocrinologie et métabolisme, 1, rue Polonovski, 59037 Lille cedex, France
| | - Camille Loyer
- Centre hospitalo-universitaire de Lille, hôpital C-Huriez, service d'endocrinologie et métabolisme, 1, rue Polonovski, 59037 Lille cedex, France
| | - Arnaud Jannin
- Centre hospitalo-universitaire de Lille, hôpital C-Huriez, service d'endocrinologie et métabolisme, 1, rue Polonovski, 59037 Lille cedex, France
| | - Marie-Christine Vantyghem
- Centre hospitalo-universitaire de Lille, hôpital C-Huriez, service d'endocrinologie et métabolisme, 1, rue Polonovski, 59037 Lille cedex, France; UMR 1190 recherche translationnelle sur le diabète Inserm, 59000 Lille, France; EGID (European Genomic Institute for Diabetes), université de Lille, 59000 Lille, France.
| |
Collapse
|
17
|
Verboven K, Hansen D, Jocken JWE, Blaak EE. Natriuretic peptides in the control of lipid metabolism and insulin sensitivity. Obes Rev 2017; 18:1243-1259. [PMID: 28901677 DOI: 10.1111/obr.12598] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/08/2017] [Accepted: 07/20/2017] [Indexed: 12/24/2022]
Abstract
Natriuretic peptides have long been known for their cardiovascular function. However, a growing body of evidence emphasizes the role of natriuretic peptides in human substrate and energy metabolism, thereby connecting the heart with several insulin-sensitive organs like adipose tissue, skeletal muscle and liver. Obesity may be associated with an impaired regulation of the natriuretic peptide system, also indicated as a natriuretic handicap. Evidence points towards a contribution of this natriuretic handicap to the development of obesity, type 2 diabetes mellitus and cardiometabolic complications, although the causal relationship is not fully understood. Nevertheless, targeting the natriuretic peptide pathway may improve metabolic health in obesity and type 2 diabetes mellitus. This review will focus on current literature regarding the metabolic roles of natriuretic peptides with emphasis on lipid metabolism and insulin sensitivity. Furthermore, it will be discussed how exercise and lifestyle intervention may modulate the natriuretic peptide-related metabolic effects.
Collapse
Affiliation(s)
- K Verboven
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - D Hansen
- REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,Heart Centre Hasselt, Jessa Hospital, Hasselt, Belgium
| | - J W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
18
|
Moro C. Targeting cardiac natriuretic peptides in the therapy of diabetes and obesity. Expert Opin Ther Targets 2016; 20:1445-1452. [DOI: 10.1080/14728222.2016.1254198] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|