1
|
Ma S, Qiu Y, Zhang C. Cytoskeleton Rearrangement in Podocytopathies: An Update. Int J Mol Sci 2024; 25:647. [PMID: 38203817 PMCID: PMC10779434 DOI: 10.3390/ijms25010647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/14/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Podocyte injury can disrupt the glomerular filtration barrier (GFB), leading to podocytopathies that emphasize podocytes as the glomerulus's key organizer. The coordinated cytoskeleton is essential for supporting the elegant structure and complete functions of podocytes. Therefore, cytoskeleton rearrangement is closely related to the pathogenesis of podocytopathies. In podocytopathies, the rearrangement of the cytoskeleton refers to significant alterations in a string of slit diaphragm (SD) and focal adhesion proteins such as the signaling node nephrin, calcium influx via transient receptor potential channel 6 (TRPC6), and regulation of the Rho family, eventually leading to the disorganization of the original cytoskeletal architecture. Thus, it is imperative to focus on these proteins and signaling pathways to probe the cytoskeleton rearrangement in podocytopathies. In this review, we describe podocytopathies and the podocyte cytoskeleton, then discuss the molecular mechanisms involved in cytoskeleton rearrangement in podocytopathies and summarize the effects of currently existing drugs on regulating the podocyte cytoskeleton.
Collapse
Affiliation(s)
| | | | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.M.); (Y.Q.)
| |
Collapse
|
2
|
Chen B, Guan X, Gunning WT, Ge Y, Gohara AF, Dworkin LD, Gong R. Negative Modulation of B Cell Activation by Melanocortin 1 Receptor Signaling Protects against Membranous Nephropathy. J Am Soc Nephrol 2023; 34:467-481. [PMID: 36446431 PMCID: PMC10103281 DOI: 10.1681/asn.2022050605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/09/2022] [Accepted: 11/06/2022] [Indexed: 12/05/2022] Open
Abstract
SIGNIFICANCE STATEMENT Emerging evidence suggests that melanocortin neuropeptides-specifically adrenocorticotropic hormone-offer a novel, steroidogenic-independent therapeutic modality for membranous nephropathy (MN). The molecular mechanism underlying this beneficial effect, however, remains largely elusive. To investigate whether melanocortins modulate humoral immunity, the authors induced passive Heymann nephritis, a model of human MN, in wild-type and melanocortin 1 receptor (MC1R) knockout rats and treated them with melanocortin agents. Additional rats received adoptive transfer of bone marrow-derived cells beforehand from wild-type or MC1R knockout rats. The findings indicate that MC1R signaling plays a key role in negative modulation of B-cell activation and thereby suppresses humoral immune responses in passive Heymann nephritis, and suggest that MC1R signaling might offer a novel B cell-targeted therapeutic strategy for MN. BACKGROUND Emerging evidence suggests that the pituitary neuropeptide melanocortins-specifically, adrenocorticotropic hormone-offer a novel nonsteroidogenic therapeutic modality for membranous nephropathy (MN). However, the mechanism(s) of action remains elusive. METHODS To investigate whether melanocortins modulate humoral immunity, we induced passive Heymann nephritis (PHN), a model of MN, in wild-type (WT) and melanocortin 1 receptor (MC1R) knockout (KO) rats. We treated the animals with melanocortin agents-repository corticotropin injection, the nonsteroidogenic pan-melanocortin receptor agonist [Nle 4 , DPhe 7 ]-α-melanocyte stimulating hormone, the selective MC1R agonist MS05, vehicle gel, or phosphate-buffered saline-and evaluated kidney function, histology, and molecular changes. Additional rats received adoptive transfer of syngeneic bone marrow-derived cells beforehand from WT or MC1R KO rats. RESULTS KO of MC1R worsened PHN and this was associated with increased deposition of autologous immunoglobulin G (IgG) and complement C5b-9 in glomeruli and higher circulating levels of autologous IgG-evidence of a sensitized humoral immune response. Melanocortin therapy ameliorated PHN in WT rats, coinciding with reduced glomerular deposition of autologous IgG and C5b -9. The beneficial efficacy of melanocortins was blunted in KO rats but restored by adoptive transfer of syngeneic bone marrow-derived cells derived from WT rats. Mechanistically, MC1R was expressed in B lymphocytes and was negatively associated with B cell activation. MC1R agonism triggered the expression of microphthalmia-associated transcription factor in activated B cells in a cAMP-dependent mode and also repressed the expression of interferon regulatory factor 4 (a lymphoid transcription factor essential for B-cell development and maturation), resulting in suppressed plasma cell differentiation and IgG production. CONCLUSIONS MC1R signaling negatively modulates B cell activation and suppresses humoral immune responses in PHN, suggesting that MC1R signaling might offer a novel therapeutic target for MN.
Collapse
Affiliation(s)
- Bohan Chen
- Division of Nephrology, University of Toledo College of Medicine, Toledo, Ohio
- Current address: Blood Purification Center, Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuejing Guan
- Division of Nephrology, University of Toledo College of Medicine, Toledo, Ohio
| | - William T. Gunning
- Department of Pathology, University of Toledo Medical Center, Toledo, Ohio
| | - Yan Ge
- Division of Nephrology, University of Toledo College of Medicine, Toledo, Ohio
| | - Amira F. Gohara
- Department of Pathology, University of Toledo Medical Center, Toledo, Ohio
| | - Lance D. Dworkin
- Division of Nephrology, University of Toledo College of Medicine, Toledo, Ohio
- Division of Kidney Disease and Hypertension, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Rujun Gong
- Division of Nephrology, University of Toledo College of Medicine, Toledo, Ohio
- Division of Kidney Disease and Hypertension, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
- Center for Diabetes and Endocrine Research, University of Toledo Medical Center, Toledo, Ohio
| |
Collapse
|
3
|
Guan X, Chen B, Malhotra DK, Gohara AF, Dworkin LD, Gong R. Hematopoietic-specific melanocortin 1 receptor signaling protects against nephrotoxic serum nephritis and mediates the beneficial effect of melanocortin therapy. Kidney Int 2023; 103:331-342. [PMID: 36374665 PMCID: PMC10431720 DOI: 10.1016/j.kint.2022.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022]
Abstract
The melanocortin hormone system has emerged as a novel therapeutic target for treating refractory glomerular diseases. However, the role of hematopoietic melanocortin 1 receptor (MC1R) signaling remains unknown. Upon insult by rabbit nephrotoxic serum, MC1R null-mutant mice developed more severe crescentic glomerulonephritis than wild-type mice, marked by aggravated proteinuria, kidney dysfunction and histologic lesions. Melanocortin therapy, using Repository Corticotropin Injection (Acthar Gel), the pan-melanocortin receptor agonist NDP-MSH, or the MC1R agonist MS05, ameliorated experimental nephritis in wild-type mice but this effect was blunted in null mice. Exacerbated experimental nephritis in null mice was associated with increased glomerular deposition of autologous IgG and C5b-9, in parallel with higher circulating levels of autologous IgG2c and IgG3. Additionally, the Th1 immune response was potentiated in null mice with experimental nephritis, accompanied by diminished kidney FoxP3+ regulatory T cells. Kidney infiltration of macrophages was also augmented by MC1R deficiency with an enhanced M1 polarization. Moreover, adoptive transfer of syngeneic bone marrow-derived cells from wild-type mice mitigated experimental nephritis in null mice and restored the beneficial efficacy of melanocortins. Mechanistically, MC1R was expressed by diverse subsets of kidney leukocytes, including macrophages, T and B lymphocytes, and was inversely associated with the NFκB pathway, a key player in immune responses. MS05 attenuated the production of rabbit IgG-specific IgG2c and IgG3 in cultured wild-type splenocytes, and promoted M2 polarization in M1-primed wild-type macrophages, associated with NFκB inhibition. In contrast, in null splenocytes or macrophages, this effect of MS05 was barely detectable, but was mimicked by an NFκB inhibitor. Thus, hematopoietic MC1R signaling attenuates experimental nephritis and mediates the beneficial effect of melanocortin therapy via, in part, regulating the immune response.
Collapse
Affiliation(s)
- Xuejing Guan
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA; The Center for Diabetes and Endocrine Research, University of Toledo Medical Center, Toledo, Ohio, USA
| | - Bohan Chen
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA; The Center for Diabetes and Endocrine Research, University of Toledo Medical Center, Toledo, Ohio, USA; Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island, USA
| | - Deepak K Malhotra
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Amira F Gohara
- Department of Pathology, University of Toledo Medical Center, Toledo, Ohio, USA
| | - Lance D Dworkin
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Rujun Gong
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA; The Center for Diabetes and Endocrine Research, University of Toledo Medical Center, Toledo, Ohio, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, USA.
| |
Collapse
|
4
|
Gokula V, Terrero D, Joe B. Six Decades of History of Hypertension Research at the University of Toledo: Highlighting Pioneering Contributions in Biochemistry, Genetics, and Host-Microbiota Interactions. Curr Hypertens Rep 2022; 24:669-685. [PMID: 36301488 PMCID: PMC9708772 DOI: 10.1007/s11906-022-01226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW The study aims to capture the history and lineage of hypertension researchers from the University of Toledo in Ohio and showcase their collective scientific contributions dating from their initial discoveries of the physiology of adrenal and renal systems and genetics regulating blood pressure (BP) to its more contemporary contributions including microbiota and metabolomic links to BP regulation. RECENT FINDINGS The University of Toledo College of Medicine and Life Sciences (UTCOMLS), previously known as the Medical College of Ohio, has contributed significantly to our understanding of the etiology of hypertension. Two of the scientists, Patrick Mulrow and John Rapp from UTCOMLS, have been recognized with the highest honor, the Excellence in Hypertension award from the American Heart Association for their pioneering work on the physiology and genetics of hypertension, respectively. More recently, Bina Joe has continued their legacy in the basic sciences by uncovering previously unknown novel links between microbiota and metabolites to the etiology of hypertension, work that has been recognized by the American Heart Association with multiple awards. On the clinical research front, Christopher Cooper and colleagues lead the CORAL trials and contributed importantly to the investigations on renal artery stenosis treatment paradigms. Hypertension research at this institution has not only provided these pioneering insights, but also grown careers of scientists as leaders in academia as University Presidents and Deans of Medical Schools. Through the last decade, the university has expanded its commitment to Hypertension research as evident through the development of the Center for Hypertension and Precision Medicine led by Bina Joe as its founding Director. Hypertension being the top risk factor for cardiovascular diseases, which is the leading cause of human mortality, is an important area of research in multiple international universities. The UTCOMLS is one such university which, for the last 6 decades, has made significant contributions to our current understanding of hypertension. This review is a synthesis of this rich history. Additionally, it also serves as a collection of audio archives by more recent faculty who are also prominent leaders in the field of hypertension research, including John Rapp, Bina Joe, and Christopher Cooper, which are cataloged at Interviews .
Collapse
Affiliation(s)
- Veda Gokula
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA
| | - David Terrero
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy, University of Toledo, Toledo, OH, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA.
| |
Collapse
|
5
|
Hu D, Li J, Zhuang Y, Mao X. Adrenocorticotropic hormone: An expansion of our current understanding of the treatment for nephrotic syndrome. Steroids 2021; 176:108930. [PMID: 34648797 DOI: 10.1016/j.steroids.2021.108930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 09/14/2021] [Accepted: 09/30/2021] [Indexed: 11/26/2022]
Abstract
In clinical practice, we may encounter a treatment dilemma where in some patients with nephrotic syndrome are resistant to glucocorticoids or immunosuppressive agents. Thus, we currently lack viable treatment options and eagerly await the availability of new drugs. Adrenocorticotropic hormone (ACTH) had earlier been used to treat nephrotic syndrome in children, but has now become less popular owing to the advent of oral glucocorticoids. However, in recent studies, ACTH was reportedly used again for treating nephrotic syndrome, reducing proteinuria and protecting renal function, indicating a possibility for its use in the treatment of refractory nephrotic syndrome. This review analysed the validity of ACTH in these studies, focusing on the mechanism of action, application in both paediatric and adult patients with nephrotic syndrome, particularly in children, and possible side effects. We anticipate that our findings will help clinicians in treatment decision-making.
Collapse
Affiliation(s)
- Dongxu Hu
- Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou City, Sichuan Province, China
| | - Jiaqin Li
- Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou City, Sichuan Province, China
| | - Yuan Zhuang
- Department of Paediatrics, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, No. 25, Taiping Street, Luzhou City, Sichuan Province, China
| | - Xiaoyan Mao
- Department of Paediatrics, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, No. 25, Taiping Street, Luzhou City, Sichuan Province, China.
| |
Collapse
|
6
|
De Vriese AS, Wetzels JF, Glassock RJ, Sethi S, Fervenza FC. Therapeutic trials in adult FSGS: lessons learned and the road forward. Nat Rev Nephrol 2021; 17:619-630. [PMID: 34017116 PMCID: PMC8136112 DOI: 10.1038/s41581-021-00427-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 02/03/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is not a specific disease entity but a lesion that primarily targets the podocyte. In a broad sense, the causes of the lesion can be divided into those triggered by a presumed circulating permeability factor, those that occur secondary to a process that might originate outside the kidneys, those caused by a genetic mutation in a podocyte or glomerular basement membrane protein, and those that arise through an as yet unidentifiable process, seemingly unrelated to a circulating permeability factor. A careful attempt to correctly stratify patients with FSGS based on their clinical presentation and pathological findings on kidney biopsy is essential for sound treatment decisions in individual patients. However, it is also essential for the rational design of therapeutic trials in FSGS. Greater recognition of the pathophysiology underlying podocyte stress and damage in FSGS will increase the likelihood that the cause of an FSGS lesion is properly identified and enable stratification of patients in future interventional trials. Such efforts will facilitate the identification of effective therapeutic agents.
Collapse
Affiliation(s)
- An S De Vriese
- Division of Nephrology and Infectious Diseases, AZ Sint-Jan Brugge, Brugge, Belgium
- Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Jack F Wetzels
- Department of Nephrology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Richard J Glassock
- Department of Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sanjeev Sethi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
7
|
Sun K, Xie Q, Hao CM. Mechanisms of Scarring in Focal Segmental Glomerulosclerosis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2021; 7:350-358. [PMID: 34604342 PMCID: PMC8443927 DOI: 10.1159/000517108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/27/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Focal segmental glomerulosclerosis (FSGS) is a histologic pattern characterized by focal glomerular scarring, which often progresses to systemic and diffuse glomerulosclerosis. Previous studies have emphasized that the initiation of classic FSGS occurs in podocytes. The dysfunction and loss of podocytes have been associated with the development of proteinuria and the progression of various diseases. In addition, primary, secondary, and genetic FSGS are caused by different mechanisms of podocyte injury. SUMMARY The potential sources and mechanism of podocyte supplementation are the focus of our current research. Increasing attention has been paid to the role played by parietal epithelial cells (PECs) during the progression of FSGS. PECs are not only the primary influencing factors in glomerulosclerosis lesions but also have repair abilities, which remain a focus of debate. Notably, other resident glomerular cells also play significant roles in the progression of this disease. KEY MESSAGE In this review, we focus on the mechanism of scarring in FSGS and discuss current and potential therapeutic strategies.
Collapse
Affiliation(s)
- Ke Sun
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qionghong Xie
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuan-Ming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
- Nephrology Division, Vanderbilt University Medical Center School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Chang M, Chen B, Shaffner J, Dworkin LD, Gong R. Melanocortin System in Kidney Homeostasis and Disease: Novel Therapeutic Opportunities. Front Physiol 2021; 12:651236. [PMID: 33716796 PMCID: PMC7943476 DOI: 10.3389/fphys.2021.651236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/03/2021] [Indexed: 12/30/2022] Open
Abstract
Melanocortin peptides, melanocortin receptors, melanocortin receptor accessory proteins, and endogenous antagonists of melanocortin receptors are the key components constituting the melanocortin hormone system, one of the most complex and important hormonal systems in our body. A plethora of evidence suggests that melanocortins possess a protective activity in a variety of kidney diseases in both rodent models and human patients. In particular, the steroidogenic melanocortin peptide adrenocorticotropic hormone (ACTH), has been shown to exert a beneficial effect in a number of kidney diseases, possibly via a mechanism independent of its steroidogenic activity. In patients with steroid-resistant nephrotic glomerulopathy, ACTH monotherapy is still effective in inducing proteinuria remission. This has inspired research on potential implications of the melanocortin system in glomerular diseases. However, our understanding of the role of the melanocortinergic pathway in kidney disease is very limited, and there are still huge unknowns to be explored. The most controversial among these is the identification of effector cells in the kidney as well as the melanocortin receptors responsible for conveying the renoprotective action. This review article introduces the melanocortin hormone system, summarizes the existing evidence for the expression of melanocortin receptors in the kidney, and evaluates the potential strategy of melanocortin therapy for kidney disease.
Collapse
Affiliation(s)
- Mingyang Chang
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| | - Bohan Chen
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| | - James Shaffner
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| | - Lance D Dworkin
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| | - Rujun Gong
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| |
Collapse
|
9
|
Fan K, Zeng L, Guo J, Xie S, Yu Y, Chen J, Cao J, Xiang Q, Zhang S, Luo Y, Deng Q, Zhou Q, Zhao Y, Hao L, Wang Z, Zhong L. Visualized podocyte-targeting and focused ultrasound responsive glucocorticoid nano-delivery system against immune-associated nephropathy without glucocorticoid side effect. Am J Cancer Res 2021; 11:2670-2690. [PMID: 33456566 PMCID: PMC7806481 DOI: 10.7150/thno.53083] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoids are widely used in the treatment of nephritis, however, its dose-dependent side effects, such as the increased risk of infection and metabolic disturbances, hamper its clinical use. This study reports a visualized podocyte-targeting and focused ultrasound responsive glucocorticoid nano-delivery system (named as Dex/PFP@LIPs-BMS-α), which specific delivers dexamethasone (Dex) to podocyte targets and reduces systemic side effects. Methods: The glucocorticoid nano-delivery system was synthesized by a lipid thin film and a simple facile acoustic-emulsification method. This glucocorticoid nano-delivery system used BMS-470539 (BMS-α), a synthetic compound, as a “navigator” to specifically identify and target the melanocortin-1 receptor (MC-1R) on podocytes. The loaded perfluoropentane (PFP) realizes the directed "explosion effect" through ultrasound-targeted microbubble destruction (UTMD) technology under the coordination of low intensity focused ultrasound (LIFU) to completely release Dex. Results: Both in vitro and in vivo experiments have demonstrated that Dex/PFP@LIPs-BMs-α accurately gathered to podocyte targets and improved podocyte morphology. Moreover, in vivo, proteinuria and serum creatinine levels were significantly reduced in the group treated with Dex/PFP@LIPs-BMS-α, and no severe side effects were detected. Furthermore, Dex/PFP@LIPs-BMS-α, with capabilities of ultrasound, photoacoustic and fluorescence imaging, provided individualized visual guidance and the monitoring of treatment. Conclusion: This study provides a promising strategy of Dex/PFP@LIPs-BMS-α as effective and safe against immune-associated nephropathy.
Collapse
|