1
|
de Sousa RBN, do Nascimento LRS, Costa LHA, Leite VRMC, Borges CL, de Deus JM, Rebelo ACS, Pinheiro DDS, Pedrino GR. Combinatorial analysis of ACE and ACE2 polymorphisms reveals protection against COVID-19 worsening: A genetic association study in Brazilian patients. PLoS One 2023; 18:e0288178. [PMID: 38032879 PMCID: PMC10688632 DOI: 10.1371/journal.pone.0288178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/20/2023] [Indexed: 12/02/2023] Open
Abstract
Since angiotensin-converting enzyme 2, ACE2, was identified as the receptor for SARS-CoV-2 and considering the intense physiological interplay between the two angitensinases isoforms, ACE and ACE2, as counter-regulatory axis of the renin-angiotensin system, we proposed the evaluation of polymorphisms in these two key regulators in relation to COVID-19 severity. A genetic association study involving 621 COVID-19 hospitalized patients from Brazil was performed. All subjects had a confirmed diagnosis of COVID-19 via RT-PCR. Patients were categorized into two groups: the "mild" group (N = 296), composed of individuals hospitalized in ward beds who progressed to cure, and the "severe" group (N = 325), composed of individuals who required hospitalization in an intensive care unit (ICU), or who died. Blood samples were genotyped for ACE I/D polymorphism and ACE2 G8790A polymorphism by real-time PCR via TaqMan assay. The analysis of combined polymorphisms revealed a protective role for genotypic profile II/A_ (ORA = 0,26; p = 0,037) against the worsening of COVID-19 in women. The results indicate a protection profile to COVID-19 progression, in which the II/A_ carriers have almost four times less chance of a severe outcome. It is proposed that a decreased activity of ACE (deleterious effects) in conjunction with an increased ACE2 activity (protective effects), should be the underlying mechanism. The findings are unprecedented once other studies have not explored the genotypic combination analysis for ACE and ACE2 polymorphisms and bring perspectives and expectations for dealing with the COVID-19 pandemic based on definitions of genetically-based risk groups within the context of personalized medicine.
Collapse
Affiliation(s)
| | - Lis Raquel Silva do Nascimento
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Luiz Henrique Alves Costa
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | | | - Clayton Luiz Borges
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - José Miguel de Deus
- Department of Gynecology and Obstetrics, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Ana Cristina Silva Rebelo
- Department of Morphology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Denise da Silva Pinheiro
- Laboratory of Clinical Analysis and Health Education, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Gustavo Rodrigues Pedrino
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| |
Collapse
|
2
|
Sanad AM, Qadri F, Popova E, Rodrigues AF, Heinbokel T, Quach S, Schulz A, Bachmann S, Kreutz R, Alenina N, Bader M. Transgenic angiotensin-converting enzyme 2 overexpression in the rat vasculature protects kidneys from ageing-induced injury. Kidney Int 2023:S0085-2538(23)00313-7. [PMID: 37105519 DOI: 10.1016/j.kint.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
Chronic kidney disease is one of the leading causes of morbidity and mortality especially among the aged population. A decline in kidney function with ageing comparable to ageing-related processes in human kidneys has also been described in Sprague-Dawley (SD) rats. The renin-angiotensin-system (RAS) plays a pivotal role in the pathophysiology of cardiovascular and kidney disease and is a successful therapeutic target. The discovery of angiotensin-(1-7) (Ang(1-7)), mainly produced by angiotensin-converting enzyme 2 (ACE2), and its receptor MAS offered a new view on the RAS. This ACE2/Ang(1-7)/MAS axis counteracts most deleterious actions of the RAS in the kidney. In order to evaluate if activation of this axis has a protective effect in ageing-induced kidney disease we generated a transgenic rat model (TGR(SM22hACE2)) overexpressing human ACE2 in vascular smooth muscle cells. These animals showed a specific transgene expression pattern and increased ACE2 activity in the kidney. Telemetric recording of the cardiovascular parameters and evaluation of kidney function by histology and urine analysis revealed no alterations in blood pressure regulation and basal kidney function in young transgenic rats when compared to young SD rats. However, with ageing, SD rats developed a decline in kidney function characterized by severe albuminuria which was significantly less pronounced in TGR(SM22hACE2) rats. Concomitantly, we detected lower mRNA expression levels of kidney damage markers in aged transgenic animals. Thus, our results indicate that vascular ACE2-overexpression protects the kidney against ageing-induced decline in kidney function supporting the kidney-protective role of the ACE2/Ang(1-7)/MAS axis.
Collapse
Affiliation(s)
- Antonia Maria Sanad
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fatimunnisa Qadri
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Elena Popova
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - André Felipe Rodrigues
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Free University of Berlin, Department of Biology, Chemistry and Pharmacy, Berlin, Germany
| | - Timm Heinbokel
- Charité Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany; Berlin Institute of Health at Charité Universitatsmedizin Berlin, Berlin, Germany
| | - Susanna Quach
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Charité Universitätsmedizin Berlin, Department of Pediatrics, Division of Gastroenterology, Nephrology and Metabolic Medicine, Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT)
| | - Angela Schulz
- Charité Universitätsmedizin Berlin, Institute of Clinical Pharmacology and Toxicology, Berlin, Germany
| | - Sebastian Bachmann
- Charité Universitätsmedizin Berlin, Institute of Functional Anatomy, Berlin, Germany
| | - Reinhold Kreutz
- Charité Universitätsmedizin Berlin, Institute of Clinical Pharmacology and Toxicology, Berlin, Germany
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; University of Lübeck, Institute for Biology, Lübeck, Germany.
| |
Collapse
|
3
|
COVID-19-Induced Myocarditis: Pathophysiological Roles of ACE2 and Toll-like Receptors. Int J Mol Sci 2023; 24:ijms24065374. [PMID: 36982447 PMCID: PMC10049267 DOI: 10.3390/ijms24065374] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
The clinical manifestations of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection responsible for coronavirus disease 2019 (COVID-19) commonly include dyspnoea and fatigue, and they primarily involve the lungs. However, extra-pulmonary organ dysfunctions, particularly affecting the cardiovascular system, have also been observed following COVID-19 infection. In this context, several cardiac complications have been reported, including hypertension, thromboembolism, arrythmia and heart failure, with myocardial injury and myocarditis being the most frequent. These secondary myocardial inflammatory responses appear to be associated with a poorer disease course and increased mortality in patients with severe COVID-19. In addition, numerous episodes of myocarditis have been reported as a complication of COVID-19 mRNA vaccinations, especially in young adult males. Changes in the cell surface expression of angiotensin-converting enzyme 2 (ACE2) and direct injury to cardiomyocytes resulting from exaggerated immune responses to COVID-19 are just some of the mechanisms that may explain the pathogenesis of COVID-19-induced myocarditis. Here, we review the pathophysiological mechanisms underlying myocarditis associated with COVID-19 infection, with a particular focus on the involvement of ACE2 and Toll-like receptors (TLRs).
Collapse
|
4
|
Esfahani SH, Jayaraman S, Karamyan VT. Is Diminazene an Angiotensin-Converting Enzyme 2 (ACE2) Activator? Experimental Evidence and Implications. J Pharmacol Exp Ther 2022; 383:149-156. [PMID: 36507848 PMCID: PMC9553104 DOI: 10.1124/jpet.122.001339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/17/2022] [Indexed: 01/07/2023] Open
Abstract
Antiprotozoal veterinary drug diminazene aceturate (DIZE) has been proposed to be an angiotensin-converting enzyme 2 (ACE2) activator. Since then, DIZE was used in dozens of experimental studies, but its mechanism of action attributed to ACE2 activation and enhanced formation of angiontensin-(1-7) [Ang-(1-7)] from Ang II was not carefully verified. The aim of this study was to confirm the effect of DIZE on catalytic activity of ACE2 and extend it to other peptidases involved in formation and degradation of Ang-(1-7). Concentration-dependent effect of DIZE on the initial rate of a fluorogenic substrate hydrolysis by human and mouse recombinant ACE2 was measured at assay conditions imitating that of the original report, but no activation of ACE2 was documented. Similar results were obtained with a more physiologically relevant assay buffer. In addition, DIZE did not affect activity of recombinant neprilysin, neurolysin, thimet oligopeptidase, and ACE. Efficiency of the fluorogenic substrate hydrolysis (Vmax/Km value) by ACE2 in response to different concentrations of DIZE was also measured, but no substantial effects were documented. Likewise, DIZE failed to enhance the hydrolysis of ACE2 endogenous substrate Ang II. Identity of the commercial recombinant ACE2 variants used in these experiments was confirmed by inhibition with two well characterized inhibitors (DX600 and MLN4760), activation by NaCl, and Western Blotting using validated antibodies. These observations challenge the widely accepted notion about the molecular mechanism of DIZE action and call for not ascribing this molecule as an ACE2 activator. SIGNIFICANCE STATEMENT: DIZE has been proposed and widely used in experimental studies as an ACE2 activator. The detailed in vitro pharmacological studies failed to confirm that DIZE is an ACE2 activator. In addition, DIZE did not substantially affect the activity of other peptidases involved in formation and degradation of angiotensin-(1-7). Researchers should refrain from calling DIZE an ACE2 activator. Other mechanisms are responsible for the therapeutic benefits attributed to DIZE.
Collapse
Affiliation(s)
- Shiva Hadi Esfahani
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Srinidhi Jayaraman
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| |
Collapse
|
5
|
Lumpuy-Castillo J, Vales-Villamarín C, Mahíllo-Fernández I, Pérez-Nadador I, Soriano-Guillén L, Lorenzo O, Garcés C. Association of ACE2 Polymorphisms and Derived Haplotypes With Obesity and Hyperlipidemia in Female Spanish Adolescents. Front Cardiovasc Med 2022; 9:888830. [PMID: 35586646 PMCID: PMC9108422 DOI: 10.3389/fcvm.2022.888830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
BackgroundIn the cardiovascular (CV) system, overactivation of the angiotensin converting enzyme (ACE) may trigger deleterious responses derived from angiotensin (Ang)-II, which can be attenuated by stimulation of ACE2 and subsequent Ang-(1-7) metabolite. However, ACE2 exhibits a high degree of genetic polymorphism that may affect its structure and stability, interfering with these cardioprotective actions. The aim of this study was to analyse the relationship of ACE2 polymorphisms with cardiovascular risk factors in children.MethodologyFive ACE2-single nucleotide polymorphisms (SNP), rs4646188, rs2158083, rs233575, rs879922, and rs2074192, previously related to CV risk factors, were analyzed in a representative sample of 12–16-year-old children and tested for their potential association with anthropometric parameters, insulin levels and the lipid profile.ResultsGirls (N = 461) exhibited lower rates of overweight, obesity, blood pressure, and glycemia than boys (N = 412), though increased plasma lipids. The triglycerides (TG)/HDL-C ratio was, however, lower in females. Interestingly, only in girls, the occurrence of overweight/obesity was associated with the SNPs rs879922 [OR 1.67 (1.02–2.75)], rs233575 [OR 1.98 (1.21- 3.22)] and rs2158083 [OR 1.67 (1.04–2.68)]. Also, TG levels were linked to the rs879922, rs233575, and rs2158083 SNPs, and the TG/HDL-C ratio was associated with rs879922 and rs233575. Levels of TC and LDL-C were associated with rs2074192 and rs2158083. Furthermore, the established cut-off level for TG ≥ 90 mg/dL was related to rs879922 [OR 1.78 (1.06–2.96)], rs2158083 [OR 1.75 (1.08–2.82)], and rs233575 [OR 1.62 (1.00–2.61)]. The cut-off level for TC ≥ 170 mg/dL was associated with rs2074192 OR 1.54 (1.04–2.28) and rs2158083 [OR 1.53 (1.04–2.25)]. Additionally, the haplotype (C-G-C) derived from rs879922-rs2158083-rs233575 was related to higher prevalence of overweight/obesity and TG elevation.ConclusionThe expression and activity of ACE2 may be essential for CV homeostasis. Interestingly, the ACE2-SNPs rs879922, rs233575, rs2158083 and rs2074192, and the haplotype (C-G-C) of the three former could induce vulnerability to obesity and hyperlipidemia in women. Thus, these SNPs might be used as predictive biomarkers for CV diseases and as molecular targets for CV therapy.
Collapse
Affiliation(s)
- Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre on Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain
| | | | | | - Iris Pérez-Nadador
- Lipid Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
| | | | - Oscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre on Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain
- *Correspondence: Oscar Lorenzo
| | - Carmen Garcés
- Lipid Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
| |
Collapse
|
6
|
Turner AJ, Nalivaeva NN. Angiotensin-converting enzyme 2 (ACE2): Two decades of revelations and re-evaluation. Peptides 2022; 151:170766. [PMID: 35151768 PMCID: PMC8830188 DOI: 10.1016/j.peptides.2022.170766] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022]
Abstract
Angiotensin-converting enzyme-2, or ACE2, is primarily a zinc-dependent peptidase and ectoenzyme expressed in numerous cell types and functioning as a counterbalance to ACE in the renin-angiotensin system. It was discovered 21 years ago more than 40 years after the discovery of ACE itself. Its primary physiological activity is believed to be in the conversion of angiotensin II to the vasodilatory angiotensin-(1-7) acting through the Mas receptor. As such it has been implicated in numerous pathological conditions, largely in a protective mode which has led to the search for ACE2 activatory mechanisms. ACE2 has a diverse substrate specificity allowing its participation in multiple peptide pathways. It also regulates aspects of amino acid transport through its homology with a membrane protein, collectrin. It also serves as a viral receptor for the SARS virus, and subsequently SARS-CoV2, driving the current COVID-19 pandemic. ACE2 therefore provides a therapeutic target for the treatment of COVID and understanding the biological events following viral binding can provide insight into the multiple pathologies caused by the virus, particularly inflammatory and vascular. In part this may relate to the ability of ACE2, like ACE, to be shed from the cell membrane. The shed form of ACE2 (sACE2) may be a factor in determining susceptibility to certain COVID pathologies. Hence, for just over 20 years, ACE2 has provided numerous surprises in the field of vasoactive peptides with, no doubt, more to come but it is its central role in COVID pathology that is producing the current intense interest in its biology.
Collapse
Affiliation(s)
- Anthony J Turner
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Natalia N Nalivaeva
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia; Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
7
|
Angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers: potential allies in the COVID-19 pandemic instead of a threat? Clin Sci (Lond) 2021; 135:1009-1014. [PMID: 33881142 PMCID: PMC8062870 DOI: 10.1042/cs20210182] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the leading player of the protective renin–angiotensin system (RAS) pathway but also the entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RAS inhibitors seemed to interfere with the ACE2 receptor, and their safety was addressed in COVID-19 patients. Pedrosa et al. (Clin. Sci. (Lond.) (2021), 135, 465–481) showed in rats that captopril and candesartan up-regulated ACE2 expression and the protective RAS pathway in lung tissue. In culture of pneumocytes, the captopril/candesartan-induced ACE2 up-regulation was associated with inhibition of ADAM17 activity, counterbalancing increased ACE2 expression, which was associated with reduced SARS-CoV-2 spike protein entry. If confirmed in humans, these results could become the pathophysiological background for justifying RAS inhibitors as cornerstone cardiovascular protectives even during COVID-19 pandemic.
Collapse
|