1
|
Chen SS, Li L, Yao B, Guo JL, Lu PS, Zhang HL, Zhang KH, Zou YJ, Luo NJ, Sun SC, Hu LL, Ren YP. Mutation of the SUMOylation site of Aurora-B disrupts spindle formation and chromosome alignment in oocytes. Cell Death Discov 2024; 10:447. [PMID: 39438456 PMCID: PMC11496499 DOI: 10.1038/s41420-024-02217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Aurora-B is a kinase that regulates spindle assembly and kinetochore-microtubule (KT-MT) attachment during mitosis and meiosis. SUMOylation is involved in the oocyte meiosis regulation through promoting spindle assembly and chromosome segregation, but its substrates to support this function is still unknown. It is reported that Aurora-B is SUMOylated in somatic cells, and SUMOylated Aurora-B contributes the process of mitosis. However, whether Aurora-B is SUMOylated in oocytes and how SUMOylation of Aurora-B impacts its function in oocyte meiosis remain poorly understood. In this study, we report that Aurora-B is modified by SUMOylation in mouse oocytes. The results show that Aurora-B colocalized and interacted with SUMO-2/3 in mouse oocytes, confirming that Aurora-B is modified by SUMO-2/3 in this system. Compared with that in young mice, the protein expression of SUMO-2/3 decreased in the oocytes of aged mice, indicating that SUMOylation might be related to mouse aging. Overexpression of Aurora-B SUMOylation site mutants, Aurora-BK207R and Aurora-BK292R, inhibited Aurora-B recruitment and first polar body extrusion, disrupting localization of gamma tubulin, spindle formation and chromosome alignment in oocytes. The results show that it was related to decreased recruitment of p-HDAC6 which induces the high stability of whole spindle microtubules including the microtubules of both correct and wrong KT-MT attachments though increased acetylation of microtubules. Therefore, our results corroborate the notion that Aurora-B activity is regulated by SUMO-2/3 in oocytes, and that SUMOylated Aurora B plays an important role in spindle formation and chromosome alignment.
Collapse
Affiliation(s)
- Shan-Shan Chen
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Department of Reproduction, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215000, China
| | - Li Li
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Bo Yao
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Jia-Lun Guo
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Ping-Shuang Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Hao-Lin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Kun-Huan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yuan-Jing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Nan-Jian Luo
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Lin-Lin Hu
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| | - Yan-Ping Ren
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| |
Collapse
|
2
|
Xu X, Huang Y, Yang F, Sun X, Lin R, Feng J, Yang M, Shao J, Liu X, Zhou T, Xie S, Yang Y. NudCL2 is required for cytokinesis by stabilizing RCC2 with Hsp90 at the midbody. Protein Cell 2024; 15:766-782. [PMID: 38801297 PMCID: PMC11443449 DOI: 10.1093/procel/pwae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/21/2024] [Indexed: 05/29/2024] Open
Abstract
Cytokinesis is required for faithful division of cytoplasmic components and duplicated nuclei into two daughter cells. Midbody, a protein-dense organelle that forms at the intercellular bridge, is indispensable for successful cytokinesis. However, the regulatory mechanism of cytokinesis at the midbody still remains elusive. Here, we unveil a critical role for NudC-like protein 2 (NudCL2), a co-chaperone of heat shock protein 90 (Hsp90), in cytokinesis regulation by stabilizing regulator of chromosome condensation 2 (RCC2) at the midbody in mammalian cells. NudCL2 localizes at the midbody, and its downregulation results in cytokinesis failure, multinucleation, and midbody disorganization. Using iTRAQ-based quantitative proteomic analysis, we find that RCC2 levels are decreased in NudCL2 knockout (KO) cells. Moreover, Hsp90 forms a complex with NudCL2 to stabilize RCC2, which is essential for cytokinesis. RCC2 depletion mirrors phenotypes observed in NudCL2-downregulated cells. Importantly, ectopic expression of RCC2 rescues the cytokinesis defects induced by NudCL2 deletion, but not vice versa. Together, our data reveal the significance of the NudCL2/Hsp90/RCC2 pathway in cytokinesis at the midbody.
Collapse
Affiliation(s)
- Xiaoyang Xu
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yuliang Huang
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Feng Yang
- Research Center for Children’s Health and Innovation, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Xiaoxia Sun
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Rijin Lin
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jiaxing Feng
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Mingyang Yang
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jiaqi Shao
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Tianhua Zhou
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Center for RNA Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
| | - Shanshan Xie
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yuehong Yang
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Kouznetsova A, Valentiniene S, Liu JG, Kitajima TS, Brismar H, Höög C. Aurora B and Aurora C pools at two chromosomal regions collaboratively maintain chromosome alignment and prevent aneuploidy at the second meiotic division in mammalian oocytes. Front Cell Dev Biol 2024; 12:1470981. [PMID: 39355122 PMCID: PMC11442388 DOI: 10.3389/fcell.2024.1470981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024] Open
Abstract
Correct chromosome segregation is essential to preserve genetic integrity. The two protein kinases, Aurora B and its meiotic homolog Aurora C, regulate attachments between chromosomal kinetochores and microtubules, thereby contributing to the accuracy of the chromosome segregation process. Here we performed a detailed examination of the localization and activity of Aurora B/C kinases, their partner Incenp and the kinetochore target Hec1, during the second meiotic division in mouse oocytes. We found that a majority of Aurora B and C changed their localization from the outer kinetochore region of chromosomes at prometaphase II to an inner central region localized between sister centromeres at metaphase II. Depletion of the Aurora B/C pool at the inner central region using the haspin kinase inhibitor 5-iodotubercidin resulted in chromosome misalignments at the metaphase II stage. To further understand the role of the Aurora B/C pool at the central region, we examined the behaviour of single chromatids, that lack a central Aurora B/C pool but retain Aurora B/C at the outer kinetochores. We found that kinetochore-microtubule attachments at single chromatids were corrected at both prometaphase II and metaphase II stages, but that single chromatids compared to paired chromatids were more prone to misalignments following treatment of oocytes with the Aurora B/C inhibitory drugs AZD1152 and GSK1070916. We conclude that the Aurora B/C pool at the inner central region stabilizes chromosome alignment during metaphase II arrest, while Aurora B/C localized at the kinetochore assist in re-establishing chromosome positioning at the metaphase plate if alignment is lost. Collaboratively these two pools prevent missegregation and aneuploidy at the second meiotic division in mammalian oocytes.
Collapse
Affiliation(s)
- Anna Kouznetsova
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sonata Valentiniene
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jian-Guo Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tomoya S. Kitajima
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Christer Höög
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Li Y, Wu M, Liu Y, Sun L, Mu P, Ma B, Xie J. Haspin mediates H3.3S31 phosphorylation downstream of Aurora B in mouse embryonic stem cells. Protein Sci 2024; 33:e5126. [PMID: 39073155 PMCID: PMC11284449 DOI: 10.1002/pro.5126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
Histone phosphorylation is instrumental in regulating diverse cellular processes across eukaryotes. Unraveling the kinases that target specific histone sites is key to deciphering the underlying mechanisms. Among the various sites on histone tails that can undergo phosphorylation, the kinase responsible for H3.3S31 phosphorylation remained elusive. Since both H3.3S31ph and H3T3ph occur specifically during mitosis, and Haspin is the known kinase for H3T3 phosphorylation, we investigated its potential role in H3.3S31 phosphorylation. We employed CRISPR/Cas9, RNA interference, and specific small molecule inhibitors to eliminate Haspin function in various cell types. Our data consistently revealed a link between Haspin and H3.3S31ph. Furthermore, in vitro kinase assays provided evidence supporting Haspin's contribution to H3.3S31ph. Loss- and gain-of-function experiments targeting Haspin and Aurora B further suggested a hierarchical relationship. Haspin acts as a downstream kinase of Aurora B, specifically orchestrating H3.3S31 phosphorylation in mESCs. This study unveils a novel role for Haspin as a kinase in regulating H3.3S31 phosphorylation during mitosis. This discovery holds promise for expanding our understanding of the functional significance of Haspin and H3.3S31ph in mammals.
Collapse
Affiliation(s)
- Yuanyuan Li
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
- The Center for Reproductive Medicine, Shanghai East HospitalTongji UniversityShanghaiChina
| | - Meixian Wu
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yang Liu
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Lihua Sun
- The Center for Reproductive Medicine, Shanghai East HospitalTongji UniversityShanghaiChina
| | - Peiqiang Mu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Binbin Ma
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
- Present address:
Department of BiologyThe Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Jing Xie
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
- The Center for Reproductive Medicine, Shanghai East HospitalTongji UniversityShanghaiChina
| |
Collapse
|
5
|
Chen S, Sun Q, Yao B, Ren Y. The Molecular Mechanism of Aurora-B Regulating Kinetochore-Microtubule Attachment in Mitosis and Oocyte Meiosis. Cytogenet Genome Res 2024; 164:69-77. [PMID: 39068909 DOI: 10.1159/000540588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Aurora kinase B (Aurora-B), a member of the chromosomal passenger complex, is involved in correcting kinetochore-microtubule (KT-MT) attachment errors and regulating sister chromatid condensation and cytoplasmic division during mitosis. SUMMARY However, few reviews have discussed its mechanism in oocyte meiosis and the differences between its role in mitosis and meiosis. Therefore, in this review, we summarize the localization, recruitment, activation, and functions of Aurora-B in mitosis and oocyte meiosis. The accurate regulation of Aurora-B is essential for ensuring accurate chromosomal segregation and correct KT-MT attachments. Aurora-B regulates the stability of KT-MT attachments by competing with cyclin-dependent kinase 1 to control the phosphorylation of the SILK and RVSF motifs on kinetochore scaffold 1 and by competing with protein phosphatase 1 to influence the phosphorylation of NDC80 which is the substrate of Aurora-B. In addition, Aurora-B regulates the spindle assembly checkpoint by promoting the recruitment and activation of mitotic arrest deficient 2. KEY MESSAGES This review provides a theoretical foundation for elucidating the mechanism of cell division and understanding oocyte chromosomal aneuploidy.
Collapse
Affiliation(s)
- Shanshan Chen
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, China,
| | - Qiqi Sun
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Bo Yao
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Yanping Ren
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| |
Collapse
|
6
|
McGory JM, Verma V, Barcelos DM, Maresca TJ. Multimerization of a disordered kinetochore protein promotes accurate chromosome segregation by localizing a core dynein module. J Cell Biol 2024; 223:e202211122. [PMID: 38180477 PMCID: PMC10770731 DOI: 10.1083/jcb.202211122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 09/06/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024] Open
Abstract
Kinetochores connect chromosomes and spindle microtubules to maintain genomic integrity through cell division. Crosstalk between the minus-end directed motor dynein and kinetochore-microtubule attachment factors promotes accurate chromosome segregation by a poorly understood pathway. Here, we identify a linkage between the intrinsically disordered protein Spc105 (KNL1 orthologue) and dynein using an optogenetic oligomerization assay. Core pools of the checkpoint protein BubR1 and the adaptor complex RZZ contribute to the linkage. Furthermore, a minimal segment of Spc105 with a propensity to multimerize and which contains protein binding motifs is sufficient to link Spc105 to RZZ/dynein. Deletion of the minimal region from Spc105 compromises the recruitment of its binding partners to kinetochores and elevates chromosome missegregation due to merotelic attachments. Restoration of normal chromosome segregation and localization of BubR1 and RZZ requires both protein binding motifs and oligomerization of Spc105. Together, our results reveal that higher-order multimerization of Spc105 contributes to localizing a core pool of RZZ that promotes accurate chromosome segregation.
Collapse
Affiliation(s)
- Jessica M. McGory
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Vikash Verma
- Biology Department, University of Massachusetts, Amherst, MA, USA
| | | | - Thomas J. Maresca
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
7
|
Muir KW, Batters C, Dendooven T, Yang J, Zhang Z, Burt A, Barford D. Structural mechanism of outer kinetochore Dam1-Ndc80 complex assembly on microtubules. Science 2023; 382:1184-1190. [PMID: 38060647 PMCID: PMC7615550 DOI: 10.1126/science.adj8736] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
Kinetochores couple chromosomes to the mitotic spindle to segregate the genome during cell division. An error correction mechanism drives the turnover of kinetochore-microtubule attachments until biorientation is achieved. The structural basis for how kinetochore-mediated chromosome segregation is accomplished and regulated remains an outstanding question. In this work, we describe the cryo-electron microscopy structure of the budding yeast outer kinetochore Ndc80 and Dam1 ring complexes assembled onto microtubules. Complex assembly occurs through multiple interfaces, and a staple within Dam1 aids ring assembly. Perturbation of key interfaces suppresses yeast viability. Force-rupture assays indicated that this is a consequence of impaired kinetochore-microtubule attachment. The presence of error correction phosphorylation sites at Ndc80-Dam1 ring complex interfaces and the Dam1 staple explains how kinetochore-microtubule attachments are destabilized and reset.
Collapse
Affiliation(s)
- Kyle W. Muir
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Christopher Batters
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Tom Dendooven
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jing Yang
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ziguo Zhang
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Alister Burt
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - David Barford
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
8
|
Titova E, Shagieva G, Dugina V, Kopnin P. The Role of Aurora B Kinase in Normal and Cancer Cells. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2054-2062. [PMID: 38462449 DOI: 10.1134/s0006297923120088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/22/2023] [Accepted: 10/28/2023] [Indexed: 03/12/2024]
Abstract
Aurora kinases are essential players in mammalian cell division. These kinases are involved in the regulation of spindle dynamics, microtubule-kinetochore interactions, and chromosome condensation and orientation during mitosis. At least three members of the Aurora family - Aurora kinases A, B, and C - have been identified in mammals. Aurora B is essential for maintaining genomic stability and normal cell division. Mutations and dysregulation of this kinase are implicated in tumor initiation and progression. In this review, we discuss the functions of Aurora B, the relationship between increased Aurora B activity and carcinogenesis, and the prospects for the use of Aurora B kinase inhibitors in antitumor therapy.
Collapse
Affiliation(s)
- Ekaterina Titova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Galina Shagieva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vera Dugina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Pavel Kopnin
- Institute of Carcinogenesis, Blokhin National Medical Research Centre of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| |
Collapse
|
9
|
Villa-Consuegra S, Tallada VA, Jimenez J. Aurora B kinase erases monopolar microtubule-kinetochore arrays at the meiosis I-II transition. iScience 2023; 26:108339. [PMID: 38026180 PMCID: PMC10654595 DOI: 10.1016/j.isci.2023.108339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
During meiosis, faithful chromosome segregation requires monopolar spindle microtubule-kinetochore arrays in MI to segregate homologous chromosomes, but bipolar in MII to segregate sister chromatids. Using fission yeasts, we found that the universal Aurora B kinase localizes to kinetochores in metaphase I and in the mid-spindle during anaphase I, as in mitosis; but in the absence of an intervening S phase, the importin α Imp1 propitiates its release from the spindle midzone to re-localize at kinetochores during meiotic interkinesis. We show that "error-correction" activity of kinetochore re-localized Aurora B becomes essential to erase monopolar arrangements from anaphase I, a prerequisite to satisfy the spindle assembly checkpoint (SAC) and to generate proper bipolar arrays at the onset of MII. This microtubule-kinetochore resetting activity of Aurora B at the MI-MII transition is required to prevent chromosome missegregation in meiosis II, a type of error often associated with birth defects and infertility in humans.
Collapse
Affiliation(s)
- Sergio Villa-Consuegra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas, Carretera de Utrera Km1, 41013 Seville, Spain
| | - Víctor A. Tallada
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas, Carretera de Utrera Km1, 41013 Seville, Spain
| | - Juan Jimenez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas, Carretera de Utrera Km1, 41013 Seville, Spain
| |
Collapse
|
10
|
Wang PC, Yang ZS, Gu XW. Effect of Aurora kinase B on polyploidy and decidualization in mouse uterus. Am J Reprod Immunol 2023; 90:e13793. [PMID: 37881124 DOI: 10.1111/aji.13793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/18/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023] Open
Abstract
RESEARCH QUESTION Decidualization is critical to the establishment of mouse normal pregnancy. The fibroblast-like stromal cells in the process form polyploid multinucleated cells. Aurora kinase B (Aurora B) has previously been shown to regulate polyploidy in various cells. However, whether Aurora B regulates the formation of decidual cell polyploidization and its regulatory mechanisms remain poorly understood. DESIGN Establish decidualization model of mouse primary endometrial stromal cells in vitro. Construct pseudopregnancy mouse models and delayed-activation mouse models. Detect Aurora B and polyploidization related genes in mouse uteri treated by Aurora B specific inhibitor Barasertib and CPT. RESULTS In this study, we found that Aurora B was strongly expressed in endometrial stromal cells after implantation. Additionally, Aurora B was remarkably up regulated in the stromal cells of oil-induced deciduomoa and in vitro decidualization. As an Aurora B specific inhibitor, Barasertib significantly inhibits the mRNA expression of Prl8a2, a marker of mouse decidualization. Furthermore, the protein levels of p-Plk1, Survivin and p-Cdk1 were inhibited by Barasertib. CPT-induced DNA damage suppressed Aurkb (encodes Aurora B) expression, thus resulting in polyploidization. CONCLUSION Our data shows that Aurora B is expressed in decidual stromal cells of implantation sites and plays a key role for mouse decidualization. The protein of Plk1, Survivn, and Cdk1 may participate in formation of decidual cell polyploidization during mouse decidualization.
Collapse
Affiliation(s)
- Peng-Chao Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Zhen-Shan Yang
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Xiao-Wei Gu
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| |
Collapse
|
11
|
Sherwin D, Gutierrez-Morton E, Bokros M, Haluska C, Wang Y. A new layer of regulation of chromosomal passenger complex (CPC) translocation in budding yeast. Mol Biol Cell 2023; 34:ar97. [PMID: 37405742 PMCID: PMC10551702 DOI: 10.1091/mbc.e23-02-0063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023] Open
Abstract
The conserved chromosomal passenger complex (CPC) consists of Ipl1Aurora-B, Sli15INCENP, Bir1Survivin, and Nbl1Borealin, and localizes at the kinetochore/centromere to correct kinetochore attachment errors and to prevent checkpoint silencing. After anaphase entry, the CPC moves from the kinetochore/centromere to the spindle. In budding yeast, CPC subunit Sli15 is phosphorylated by both cyclin-dependent kinase (CDK) and Ipl1 kinase. Following anaphase onset, activated Cdc14 phosphatase reverses Sli15 phosphorylation imposed by CDK to promote CPC translocation. Although abolished Sli15 phosphorylation imposed by Ipl1 also causes CPC translocation, the regulation of Ipl1-imposed Sli15 phosphorylation remains unclear. In addition to Sli15, Cdc14 also dephosphorylates Fin1, a regulatory subunit of protein phosphatase 1 (PP1), to enable kinetochore localization of Fin1-PP1. Here, we present evidence supporting the notion that kinetochore-localized Fin1-PP1 likely reverses Ipl1-imposed Sli15 phosphorylation to promote CPC translocation from the kinetochore/centromere to the spindle. Importantly, premature Fin1 kinetochore localization or phospho-deficient sli15 mutation causes checkpoint defects in response to tensionless attachments, resulting in chromosome missegregation. In addition, our data indicate that reversion of CDK- and Ipl1-imposed Sli15 phosphorylation shows an additive effect on CPC translocation. Together, these results reveal a previously unidentified pathway to regulate CPC translocation, which is important for accurate chromosome segregation.
Collapse
Affiliation(s)
- Delaney Sherwin
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300
| | - Emily Gutierrez-Morton
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300
| | - Michael Bokros
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300
| | - Cory Haluska
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300
| | - Yanchang Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300
| |
Collapse
|
12
|
Edgerton HD, Mukherjee S, Johansson M, Bachant J, Gardner MK, Clarke DJ. Low tension recruits the yeast Aurora B protein Ipl1 to centromeres in metaphase. J Cell Sci 2023; 136:jcs261416. [PMID: 37519149 PMCID: PMC10445749 DOI: 10.1242/jcs.261416] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023] Open
Abstract
Accurate genome segregation in mitosis requires that all chromosomes are bioriented on the spindle. Cells monitor biorientation by sensing tension across sister centromeres. Chromosomes that are not bioriented have low centromere tension, which allows Aurora B (yeast Ipl1) to perform error correction that locally loosens kinetochore-microtubule attachments to allow detachment of microtubules and fresh attempts at achieving biorientation. However, it is not known whether low tension recruits Aurora B to centromeres or, alternatively, whether low tension directly activates Aurora B already localized at centromeres. In this work, we experimentally induced low tension in metaphase Saccharomyces cerevisiae yeast cells, then monitored Ipl1 localization. We find low tension recruits Ipl1 to centromeres. Furthermore, low tension-induced Ipl1 recruitment depended on Bub1, which is known to provide a binding site for Ipl1. In contrast, Top2, which can also recruit Ipl1 to centromeres, was not required. Our results demonstrate cells are sensitive to low tension at centromeres and respond by actively recruiting Ip1l for error correction.
Collapse
Affiliation(s)
- Heather D. Edgerton
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Soumya Mukherjee
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marnie Johansson
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jeff Bachant
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Melissa K. Gardner
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Duncan J. Clarke
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
13
|
Cimini D. Twenty years of merotelic kinetochore attachments: a historical perspective. Chromosome Res 2023; 31:18. [PMID: 37466740 PMCID: PMC10411636 DOI: 10.1007/s10577-023-09727-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/20/2023] [Accepted: 07/08/2023] [Indexed: 07/20/2023]
Abstract
Micronuclei, small DNA-containing structures separate from the main nucleus, were used for decades as an indicator of genotoxic damage. Micronuclei containing whole chromosomes were considered a biomarker of aneuploidy and were believed to form, upon mitotic exit, from chromosomes that lagged behind in anaphase as all other chromosomes segregated to the poles of the mitotic spindle. However, the mechanism responsible for inducing anaphase lagging chromosomes remained unknown until just over twenty years ago. Here, I summarize what preceded and what followed this discovery, highlighting some of the open questions and opportunities for future investigation.
Collapse
Affiliation(s)
- Daniela Cimini
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
14
|
Roshan P, Kuppa S, Mattice JR, Kaushik V, Chadda R, Pokhrel N, Tumala BR, Biswas A, Bothner B, Antony E, Origanti S. An Aurora B-RPA signaling axis secures chromosome segregation fidelity. Nat Commun 2023; 14:3008. [PMID: 37230964 PMCID: PMC10212944 DOI: 10.1038/s41467-023-38711-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Errors in chromosome segregation underlie genomic instability associated with cancers. Resolution of replication and recombination intermediates and protection of vulnerable single-stranded DNA (ssDNA) intermediates during mitotic progression requires the ssDNA binding protein Replication Protein A (RPA). However, the mechanisms that regulate RPA specifically during unperturbed mitotic progression are poorly resolved. RPA is a heterotrimer composed of RPA70, RPA32 and RPA14 subunits and is predominantly regulated through hyperphosphorylation of RPA32 in response to DNA damage. Here, we have uncovered a mitosis-specific regulation of RPA by Aurora B kinase. Aurora B phosphorylates Ser-384 in the DNA binding domain B of the large RPA70 subunit and highlights a mode of regulation distinct from RPA32. Disruption of Ser-384 phosphorylation in RPA70 leads to defects in chromosome segregation with loss of viability and a feedback modulation of Aurora B activity. Phosphorylation at Ser-384 remodels the protein interaction domains of RPA. Furthermore, phosphorylation impairs RPA binding to DSS1 that likely suppresses homologous recombination during mitosis by preventing recruitment of DSS1-BRCA2 to exposed ssDNA. We showcase a critical Aurora B-RPA signaling axis in mitosis that is essential for maintaining genomic integrity.
Collapse
Affiliation(s)
- Poonam Roshan
- Department of Biology, St. Louis University, St. Louis, MO, 63103, USA
| | - Sahiti Kuppa
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Jenna R Mattice
- Department of Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Vikas Kaushik
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Rahul Chadda
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Nilisha Pokhrel
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53217, USA
| | - Brunda R Tumala
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Aparna Biswas
- Department of Biology, St. Louis University, St. Louis, MO, 63103, USA
| | - Brian Bothner
- Department of Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, 63104, USA.
| | - Sofia Origanti
- Department of Biology, St. Louis University, St. Louis, MO, 63103, USA.
| |
Collapse
|
15
|
McGory JM, Barcelos DM, Verma V, Maresca TJ. An intrinsically disordered kinetochore protein coordinates mechanical regulation of chromosome segregation by dynein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.07.539709. [PMID: 37214933 PMCID: PMC10197574 DOI: 10.1101/2023.05.07.539709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Kinetochores connect chromosomes and spindle microtubules to maintain genomic integrity through cell division. Crosstalk between the minus-end directed motor dynein and kinetochore-microtubule attachment factors promotes accurate chromosome segregation through a poorly understood pathway. Here we identify a physical linkage between the intrinsically disordered protein Spc105 (KNL1 orthologue) and dynein using an optogenetic oligomerization assay. Core pools of the checkpoint protein BubR1 and the adaptor complex RZZ mediate the connection of Spc105 to dynein. Furthermore, a minimal segment of Spc105 that contains regions with a propensity to multimerize and binding motifs for Bub1 and BubR1 is sufficient to functionally link Spc105 to RZZ and dynein. Deletion of the minimal region from Spc105 reduces recruitment of its binding partners to bioriented kinetochores and causes chromosome mis-segregation. Restoration of normal chromosome segregation and localization of BubR1 and RZZ requires both protein binding motifs and higher-order oligomerization of Spc105. Together, our results reveal that higher-order multimerization of Spc105 is required to recruit a core pool of RZZ that modulates microtubule attachment stability to promote accurate chromosome segregation.
Collapse
|
16
|
Bunning AR, Gupta Jr. ML. The importance of microtubule-dependent tension in accurate chromosome segregation. Front Cell Dev Biol 2023; 11:1096333. [PMID: 36755973 PMCID: PMC9899852 DOI: 10.3389/fcell.2023.1096333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Accurate chromosome segregation is vital for cell and organismal viability. The mitotic spindle, a bipolar macromolecular machine composed largely of dynamic microtubules, is responsible for chromosome segregation during each cell replication cycle. Prior to anaphase, a bipolar metaphase spindle must be formed in which each pair of chromatids is attached to microtubules from opposite spindle poles. In this bipolar configuration pulling forces from the dynamic microtubules can generate tension across the sister kinetochores. The tension status acts as a signal that can destabilize aberrant kinetochore-microtubule attachments and reinforces correct, bipolar connections. Historically it has been challenging to isolate the specific role of tension in mitotic processes due to the interdependency of attachment and tension status at kinetochores. Recent technical and experimental advances have revealed new insights into how tension functions during mitosis. Here we summarize the evidence that tension serves as a biophysical signal that unifies multiple aspects of kinetochore and centromere function to ensure accurate chromosome segregation.
Collapse
|
17
|
Di Cesare E, Moroni S, Bartoli J, Damizia M, Giubettini M, Koerner C, Krenn V, Musacchio A, Lavia P. Aurora B SUMOylation Is Restricted to Centromeres in Early Mitosis and Requires RANBP2. Cells 2023; 12:cells12030372. [PMID: 36766713 PMCID: PMC9913629 DOI: 10.3390/cells12030372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Conjugation with the small ubiquitin-like modifier (SUMO) modulates protein interactions and localisation. The kinase Aurora B, a key regulator of mitosis, was previously identified as a SUMOylation target in vitro and in assays with overexpressed components. However, where and when this modification genuinely occurs in human cells was not ascertained. Here, we have developed intramolecular Proximity Ligation Assays (PLA) to visualise SUMO-conjugated Aurora B in human cells in situ. We visualised Aurora B-SUMO products at centromeres in prometaphase and metaphase, which declined from anaphase onwards and became virtually undetectable at cytokinesis. In the mitotic window in which Aurora B/SUMO products are abundant, Aurora B co-localised and interacted with NUP358/RANBP2, a nucleoporin with SUMO ligase and SUMO-stabilising activity. Indeed, in addition to the requirement for the previously identified PIAS3 SUMO ligase, we found that NUP358/RANBP2 is also implicated in Aurora B-SUMO PLA product formation and centromere localisation. In summary, SUMOylation marks a distinctive window of Aurora B functions at centromeres in prometaphase and metaphase while being dispensable for functions exerted in cytokinesis, and RANBP2 contributes to this control, adding a novel layer to modulation of Aurora B functions during mitosis.
Collapse
Affiliation(s)
- Erica Di Cesare
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, 00185 Rome, Italy
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Moroni
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, 00185 Rome, Italy
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Jessica Bartoli
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, 00185 Rome, Italy
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Michela Damizia
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, 00185 Rome, Italy
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Carolin Koerner
- Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Veronica Krenn
- Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Andrea Musacchio
- Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Patrizia Lavia
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, 00185 Rome, Italy
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: or
| |
Collapse
|
18
|
Pugh L, Pancholi A, Purat PC, Agudo-Alvarez S, Benito-Arenas R, Bastida A, Bolanos-Garcia VM. Computational Biology Dynamics of Mps1 Kinase Molecular Interactions with Isoflavones Reveals a Chemical Scaffold with Potential to Develop New Therapeutics for the Treatment of Cancer. Int J Mol Sci 2022; 23:ijms232214228. [PMID: 36430712 PMCID: PMC9692432 DOI: 10.3390/ijms232214228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
The protein kinase Mps1 (monopolar spindle 1) is an important regulator of the Spindle Assembly Checkpoint (SAC), the evolutionary conserved checkpoint system of higher organisms that monitors the proper bipolar attachment of all chromosomes to the mitotic spindle during cell division. Defects in the catalytic activity and the transcription regulation of Mps1 are associated with genome instability, aneuploidy, and cancer. Moreover, multiple Mps1 missense and frameshift mutations have been reported in a wide range of types of cancer of different tissue origin. Due to these features, Mps1 arises as one promising drug target for cancer therapy. In this contribution, we developed a computational biology approach to study the dynamics of human Mps1 kinase interaction with isoflavones, a class of natural flavonoids, and compared their predicted mode of binding with that observed in the crystal structure of Mps1 in complex with reversine, a small-sized inhibitor of Mps1 and Aurora B kinases. We concluded that isoflavones define a chemical scaffold that can be used to develop new Mps1 inhibitors for the treatment of cancer associated with Mps1 amplification and aberrant chromosome segregation. In a broader context, the present report illustrates how modern chemoinformatics approaches can accelerate drug development in oncology.
Collapse
Affiliation(s)
- Lauren Pugh
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
| | - Alisha Pancholi
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
| | - Priscila Celeste Purat
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
| | - Sandra Agudo-Alvarez
- Departamento de Química Bio-Orgánica, IQOG, c/Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Raúl Benito-Arenas
- Departamento de Química Bio-Orgánica, IQOG, c/Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Agatha Bastida
- Departamento de Química Bio-Orgánica, IQOG, c/Juan de la Cierva 3, E-28006 Madrid, Spain
- Correspondence: (A.B.); (V.M.B.-G.); Tel.: +44-01865-484146 (V.M.B.-G.)
| | - Victor M. Bolanos-Garcia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
- Correspondence: (A.B.); (V.M.B.-G.); Tel.: +44-01865-484146 (V.M.B.-G.)
| |
Collapse
|
19
|
Marsoner T, Yedavalli P, Masnovo C, Fink S, Schmitzer K, Campbell CS. Aurora B activity is promoted by cooperation between discrete localization sites in budding yeast. Mol Biol Cell 2022; 33:ar85. [PMID: 35704464 PMCID: PMC9582632 DOI: 10.1091/mbc.e21-11-0590] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/17/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023] Open
Abstract
Chromosome biorientation is promoted by the four-member chromosomal passenger complex (CPC) through phosphorylation of incorrect kinetochore-microtubule attachments. During chromosome alignment, the CPC localizes to the inner centromere, the inner kinetochore, and spindle microtubules. Here we show that a small domain of the CPC subunit INCENP/Sli15 is required to target the complex to all three of these locations in budding yeast. This domain, the single alpha helix (SAH), is essential for phosphorylation of outer kinetochore substrates, chromosome segregation, and viability. By restoring the CPC to each of its three locations through targeted mutations and fusion constructs, we determined their individual contributions to chromosome biorientation. We find that only the inner centromere localization is sufficient for cell viability on its own. However, when combined, the inner kinetochore and microtubule binding activities are also sufficient to promote accurate chromosome segregation. Furthermore, we find that the two pathways target the CPC to different kinetochore attachment states, as the inner centromere-targeting pathway is primarily responsible for bringing the complex to unattached kinetochores. We have therefore discovered that two parallel localization pathways are each sufficient to promote CPC activity in chromosome biorientation, both depending on the SAH domain of INCENP/Sli15.
Collapse
Affiliation(s)
- Theodor Marsoner
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, A-1030 Vienna, Austria
| | - Poornima Yedavalli
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, A-1030 Vienna, Austria
| | - Chiara Masnovo
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, A-1030 Vienna, Austria
| | - Sarah Fink
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, A-1030 Vienna, Austria
| | - Katrin Schmitzer
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, A-1030 Vienna, Austria
| | - Christopher S. Campbell
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|
20
|
Vukušić K, Tolić IM. Polar Chromosomes-Challenges of a Risky Path. Cells 2022; 11:1531. [PMID: 35563837 PMCID: PMC9101661 DOI: 10.3390/cells11091531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/29/2022] Open
Abstract
The process of chromosome congression and alignment is at the core of mitotic fidelity. In this review, we discuss distinct spatial routes that the chromosomes take to align during prometaphase, which are characterized by distinct biomolecular requirements. Peripheral polar chromosomes are an intriguing case as their alignment depends on the activity of kinetochore motors, polar ejection forces, and a transition from lateral to end-on attachments to microtubules, all of which can result in the delayed alignment of these chromosomes. Due to their undesirable position close to and often behind the spindle pole, these chromosomes may be particularly prone to the formation of erroneous kinetochore-microtubule interactions, such as merotelic attachments. To prevent such errors, the cell employs intricate mechanisms to preposition the spindle poles with respect to chromosomes, ensure the formation of end-on attachments in restricted spindle regions, repair faulty attachments by error correction mechanisms, and delay segregation by the spindle assembly checkpoint. Despite this protective machinery, there are several ways in which polar chromosomes can fail in alignment, mis-segregate, and lead to aneuploidy. In agreement with this, polar chromosomes are present in certain tumors and may even be involved in the process of tumorigenesis.
Collapse
Affiliation(s)
- Kruno Vukušić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | | |
Collapse
|
21
|
SWAP, SWITCH, and STABILIZE: Mechanisms of Kinetochore–Microtubule Error Correction. Cells 2022; 11:cells11091462. [PMID: 35563768 PMCID: PMC9104000 DOI: 10.3390/cells11091462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022] Open
Abstract
For correct chromosome segregation in mitosis, eukaryotic cells must establish chromosome biorientation where sister kinetochores attach to microtubules extending from opposite spindle poles. To establish biorientation, any aberrant kinetochore–microtubule interactions must be resolved in the process called error correction. For resolution of the aberrant interactions in error correction, kinetochore–microtubule interactions must be exchanged until biorientation is formed (the SWAP process). At initiation of biorientation, the state of weak kinetochore–microtubule interactions should be converted to the state of stable interactions (the SWITCH process)—the conundrum of this conversion is called the initiation problem of biorientation. Once biorientation is established, tension is applied on kinetochore–microtubule interactions, which stabilizes the interactions (the STABILIZE process). Aurora B kinase plays central roles in promoting error correction, and Mps1 kinase and Stu2 microtubule polymerase also play important roles. In this article, we review mechanisms of error correction by considering the SWAP, SWITCH, and STABILIZE processes. We mainly focus on mechanisms found in budding yeast, where only one microtubule attaches to a single kinetochore at biorientation, making the error correction mechanisms relatively simpler.
Collapse
|
22
|
de Regt AK, Clark CJ, Asbury CL, Biggins S. Tension can directly suppress Aurora B kinase-triggered release of kinetochore-microtubule attachments. Nat Commun 2022; 13:2152. [PMID: 35443757 PMCID: PMC9021268 DOI: 10.1038/s41467-022-29542-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/03/2022] [Indexed: 11/09/2022] Open
Abstract
Chromosome segregation requires sister kinetochores to attach microtubules emanating from opposite spindle poles. Proper attachments come under tension and are stabilized, but defective attachments lacking tension are released, giving another chance for correct attachments to form. This error correction process depends on Aurora B kinase, which phosphorylates kinetochores to destabilize their microtubule attachments. However, the mechanism by which Aurora B distinguishes tense versus relaxed kinetochores remains unclear because it is difficult to detect kinase-triggered detachment and to manipulate kinetochore tension in vivo. To address these challenges, we apply an optical trapping-based assay using soluble Aurora B and reconstituted kinetochore-microtubule attachments. Strikingly, the tension on these attachments suppresses their Aurora B-triggered release, suggesting that tension-dependent changes in the conformation of kinetochores can regulate Aurora B activity or its outcome. Our work uncovers the basis for a key mechano-regulatory event that ensures accurate segregation and may inform studies of other mechanically regulated enzymes.
Collapse
Affiliation(s)
- Anna K de Regt
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Cordell J Clark
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| | - Sue Biggins
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
23
|
Doodhi H, Tanaka TU. Swap and stop - Kinetochores play error correction with microtubules: Mechanisms of kinetochore-microtubule error correction: Mechanisms of kinetochore-microtubule error correction. Bioessays 2022; 44:e2100246. [PMID: 35261042 PMCID: PMC9344824 DOI: 10.1002/bies.202100246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/30/2022]
Abstract
Correct chromosome segregation in mitosis relies on chromosome biorientation, in which sister kinetochores attach to microtubules from opposite spindle poles prior to segregation. To establish biorientation, aberrant kinetochore–microtubule interactions must be resolved through the error correction process. During error correction, kinetochore–microtubule interactions are exchanged (swapped) if aberrant, but the exchange must stop when biorientation is established. In this article, we discuss recent findings in budding yeast, which have revealed fundamental molecular mechanisms promoting this “swap and stop” process for error correction. Where relevant, we also compare the findings in budding yeast with mechanisms in higher eukaryotes. Evidence suggests that Aurora B kinase differentially regulates kinetochore attachments to the microtubule end and its lateral side and switches relative strength of the two kinetochore–microtubule attachment modes, which drives the exchange of kinetochore–microtubule interactions to resolve aberrant interactions. However, Aurora B kinase, recruited to centromeres and inner kinetochores, cannot reach its targets at kinetochore–microtubule interface when tension causes kinetochore stretching, which stops the kinetochore–microtubule exchange once biorientation is established.
Collapse
Affiliation(s)
- Harinath Doodhi
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
24
|
In Vivo Methods to Monitor Cardiomyocyte Proliferation. J Cardiovasc Dev Dis 2022; 9:jcdd9030073. [PMID: 35323621 PMCID: PMC8950582 DOI: 10.3390/jcdd9030073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/07/2022] Open
Abstract
Adult mammalian cardiomyocytes demonstrate scarce cycling and even lower proliferation rates in response to injury. Signals that enhance cardiomyocyte proliferation after injury will be groundbreaking, address unmet clinical needs, and represent new strategies to treat cardiovascular diseases. In vivo methods to monitor cardiomyocyte proliferation are critical to addressing this challenge. Fortunately, advances in transgenic approaches provide sophisticated techniques to quantify cardiomyocyte cycling and proliferation.
Collapse
|
25
|
Barbosa J, Sunkel CE, Conde C. The Role of Mitotic Kinases and the RZZ Complex in Kinetochore-Microtubule Attachments: Doing the Right Link. Front Cell Dev Biol 2022; 10:787294. [PMID: 35155423 PMCID: PMC8832123 DOI: 10.3389/fcell.2022.787294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/13/2022] [Indexed: 12/31/2022] Open
Abstract
During mitosis, the interaction of kinetochores (KTs) with microtubules (MTs) drives chromosome congression to the spindle equator and supports the segregation of sister chromatids. Faithful genome partition critically relies on the ability of chromosomes to establish and maintain proper amphitelic end-on attachments, a configuration in which sister KTs are connected to robust MT fibers emanating from opposite spindle poles. Because the capture of spindle MTs by KTs is error prone, cells use mechanisms that sense and correct inaccurate KT-MT interactions before committing to segregate sister chromatids in anaphase. If left unresolved, these errors can result in the unequal distribution of chromosomes and lead to aneuploidy, a hallmark of cancer. In this review, we provide an overview of the molecular strategies that monitor the formation and fine-tuning of KT-MT attachments. We describe the complex network of proteins that operates at the KT-MT interface and discuss how AURORA B and PLK1 coordinate several concurrent events so that the stability of KT-MT attachments is precisely modulated throughout mitotic progression. We also outline updated knowledge on how the RZZ complex is regulated to ensure the formation of end-on attachments and the fidelity of mitosis.
Collapse
Affiliation(s)
- João Barbosa
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Claudio E. Sunkel
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Carlos Conde
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
26
|
Bolanos-Garcia VM. On the Regulation of Mitosis by the Kinetochore, a Macromolecular Complex and Organising Hub of Eukaryotic Organisms. Subcell Biochem 2022; 99:235-267. [PMID: 36151378 DOI: 10.1007/978-3-031-00793-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The kinetochore is the multiprotein complex of eukaryotic organisms that is assembled on mitotic or meiotic centromeres to connect centromeric DNA with microtubules. Its function involves the coordinated action of more than 100 different proteins. The kinetochore acts as an organiser hub that establishes physical connections with microtubules and centromere-associated proteins and recruits central protein components of the spindle assembly checkpoint (SAC), an evolutionarily conserved surveillance mechanism of eukaryotic organisms that detects unattached kinetochores and destabilises incorrect kinetochore-microtubule attachments. The molecular communication between the kinetochore and the SAC is highly dynamic and tightly regulated to ensure that cells can progress towards anaphase until each chromosome is properly bi-oriented on the mitotic spindle. This is achieved through an interplay of highly cooperative interactions and concerted phosphorylation/dephosphorylation events that are organised in time and space.This contribution discusses our current understanding of the function, structure and regulation of the kinetochore, in particular, how its communication with the SAC results in the amplification of specific signals to exquisitely control the eukaryotic cell cycle. This contribution also addresses recent advances in machine learning approaches, cell imaging and proteomics techniques that have enhanced our understanding of the molecular mechanisms that ensure the high fidelity and timely segregation of the genetic material every time a cell divides as well as the current challenges in the study of this fascinating molecular machine.
Collapse
Affiliation(s)
- Victor M Bolanos-Garcia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK.
| |
Collapse
|
27
|
Chen Q, Zhang M, Pan X, Yuan X, Zhou L, Yan L, Zeng LH, Xu J, Yang B, Zhang L, Huang J, Lu W, Fukagawa T, Wang F, Yan H. Bub1 and CENP-U redundantly recruit Plk1 to stabilize kinetochore-microtubule attachments and ensure accurate chromosome segregation. Cell Rep 2021; 36:109740. [PMID: 34551298 DOI: 10.1016/j.celrep.2021.109740] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/03/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022] Open
Abstract
Bub1 is required for the kinetochore/centromere localization of two essential mitotic kinases Plk1 and Aurora B. Surprisingly, stable depletion of Bub1 by ∼95% in human cells marginally affects whole chromosome segregation fidelity. We show that CENP-U, which is recruited to kinetochores by the CENP-P and CENP-Q subunits of the CENP-O complex, is required to prevent chromosome mis-segregation in Bub1-depleted cells. Mechanistically, Bub1 and CENP-U redundantly recruit Plk1 to kinetochores to stabilize kinetochore-microtubule attachments, thereby ensuring accurate chromosome segregation. Furthermore, unlike its budding yeast homolog, the CENP-O complex does not regulate centromeric localization of Aurora B. Consistently, depletion of Bub1 or CENP-U sensitizes cells to the inhibition of Plk1 but not Aurora B kinase activity. Taken together, our findings provide mechanistic insight into the regulation of kinetochore function, which may have implications for targeted treatment of cancer cells with mutations perturbing kinetochore recruitment of Plk1 by Bub1 or the CENP-O complex.
Collapse
Affiliation(s)
- Qinfu Chen
- Department of Pharmacology, Zhejiang University City College, Hangzhou 310015, China; The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Miao Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xuan Pan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xueying Yuan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Linli Zhou
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Lu Yan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ling-Hui Zeng
- Department of Pharmacology, Zhejiang University City College, Hangzhou 310015, China
| | - Junfen Xu
- Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Bing Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Long Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jun Huang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Weiguo Lu
- Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Fangwei Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Cancer Center, Zhejiang University, Hangzhou 310058, China.
| | - Haiyan Yan
- Department of Pharmacology, Zhejiang University City College, Hangzhou 310015, China.
| |
Collapse
|
28
|
Aurora B Tension Sensing Mechanisms in the Kinetochore Ensure Accurate Chromosome Segregation. Int J Mol Sci 2021; 22:ijms22168818. [PMID: 34445523 PMCID: PMC8396173 DOI: 10.3390/ijms22168818] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/29/2022] Open
Abstract
The accurate segregation of chromosomes is essential for the survival of organisms and cells. Mistakes can lead to aneuploidy, tumorigenesis and congenital birth defects. The spindle assembly checkpoint ensures that chromosomes properly align on the spindle, with sister chromatids attached to microtubules from opposite poles. Here, we review how tension is used to identify and selectively destabilize incorrect attachments, and thus serves as a trigger of the spindle assembly checkpoint to ensure fidelity in chromosome segregation. Tension is generated on properly attached chromosomes as sister chromatids are pulled in opposing directions but resisted by centromeric cohesin. We discuss the role of the Aurora B kinase in tension-sensing and explore the current models for translating mechanical force into Aurora B-mediated biochemical signals that regulate correction of chromosome attachments to the spindle.
Collapse
|
29
|
Watson L, Soliman TN, Davis K, Kelly J, Lockwood N, Yang X, Lynham S, Scott JD, Crossland V, McDonald NQ, Mann DJ, Armstrong A, Eggert U, Parker PJ. Co-ordinated control of the Aurora B abscission checkpoint by PKCε complex assembly, midbody recruitment and retention. Biochem J 2021; 478:2247-2263. [PMID: 34143863 PMCID: PMC8238520 DOI: 10.1042/bcj20210283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022]
Abstract
A requirement for PKCε in exiting from the Aurora B dependent abscission checkpoint is associated with events at the midbody, however, the recruitment, retention and action of PKCε in this compartment are poorly understood. Here, the prerequisite for 14-3-3 complex assembly in this pathway is directly linked to the phosphorylation of Aurora B S227 at the midbody. However, while essential for PKCε control of Aurora B, 14-3-3 association is shown to be unnecessary for the activity-dependent enrichment of PKCε at the midbody. This localisation is demonstrated to be an autonomous property of the inactive PKCε D532N mutant, consistent with activity-dependent dissociation. The C1A and C1B domains are necessary for this localisation, while the C2 domain and inter-C1 domain (IC1D) are necessary for retention at the midbody. Furthermore, it is shown that while the IC1D mutant retains 14-3-3 complex proficiency, it does not support Aurora B phosphorylation, nor rescues division failure observed with knockdown of endogenous PKCε. It is concluded that the concerted action of multiple independent events facilitates PKCε phosphorylation of Aurora B at the midbody to control exit from the abscission checkpoint.
Collapse
Affiliation(s)
- Lisa Watson
- Protein Phosphorylation Laboratory, Francis Crick Institute, Midland Road, London NE1 1AT, U.K
| | - Tanya N. Soliman
- Protein Phosphorylation Laboratory, Francis Crick Institute, Midland Road, London NE1 1AT, U.K
| | - Khalil Davis
- Protein Phosphorylation Laboratory, Francis Crick Institute, Midland Road, London NE1 1AT, U.K
| | - Joanna Kelly
- Protein Phosphorylation Laboratory, Francis Crick Institute, Midland Road, London NE1 1AT, U.K
| | - Nicola Lockwood
- Protein Phosphorylation Laboratory, Francis Crick Institute, Midland Road, London NE1 1AT, U.K
| | - Xiaoping Yang
- Proteomics Facility, King's College London, Denmark Hill Campus, London SE5 9NU, U.K
| | - Steven Lynham
- Proteomics Facility, King's College London, Denmark Hill Campus, London SE5 9NU, U.K
| | - John D. Scott
- Department of Pharmacology, University of Washington, Seattle, WA 98195, U.S.A
| | - Victoria Crossland
- Protein Phosphorylation Laboratory, Francis Crick Institute, Midland Road, London NE1 1AT, U.K
| | - Neil Q. McDonald
- Signalling and Structural Biology Laboratory, Francis Crick Institute, Midland Road, London NE1 1AT, U.K
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London WC1E 7HX, U.K
| | - David J. Mann
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Alan Armstrong
- Department of Chemistry, Imperial College London White City Campus, London W12 0BZ, U.K
| | - Ulrike Eggert
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, U.K
- Department of Chemistry, King's College London, London SE1 1UL, U.K
| | - Peter J. Parker
- Protein Phosphorylation Laboratory, Francis Crick Institute, Midland Road, London NE1 1AT, U.K
- CRUK KHP Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, U.K
| |
Collapse
|
30
|
Chemical tools for dissecting cell division. Nat Chem Biol 2021; 17:632-640. [PMID: 34035515 PMCID: PMC10157795 DOI: 10.1038/s41589-021-00798-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 04/13/2021] [Indexed: 02/03/2023]
Abstract
Components of the cell division machinery typically function at varying cell cycle stages and intracellular locations. To dissect cellular mechanisms during the rapid division process, small-molecule probes act as complementary approaches to genetic manipulations, with advantages of temporal and in some cases spatial control and applicability to multiple model systems. This Review focuses on recent advances in chemical probes and applications to address select questions in cell division. We discuss uses of both enzyme inhibitors and chemical inducers of dimerization, as well as emerging techniques to promote future investigations. Overall, these concepts may open new research directions for applying chemical probes to advance cell biology.
Collapse
|
31
|
Chen GY, Renda F, Zhang H, Gokden A, Wu DZ, Chenoweth DM, Khodjakov A, Lampson MA. Tension promotes kinetochore-microtubule release by Aurora B kinase. J Cell Biol 2021; 220:212027. [PMID: 33904910 PMCID: PMC8082439 DOI: 10.1083/jcb.202007030] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/06/2021] [Accepted: 03/24/2021] [Indexed: 12/19/2022] Open
Abstract
To ensure accurate chromosome segregation, interactions between kinetochores and microtubules are regulated by a combination of mechanics and biochemistry. Tension provides a signal to discriminate attachment errors from bi-oriented kinetochores with sisters correctly attached to opposite spindle poles. Biochemically, Aurora B kinase phosphorylates kinetochores to destabilize interactions with microtubules. To link mechanics and biochemistry, current models regard tension as an input signal to locally regulate Aurora B activity. Here, we show that the outcome of kinetochore phosphorylation depends on tension. Using optogenetics to manipulate Aurora B at individual kinetochores, we find that kinase activity promotes microtubule release when tension is high. Conversely, when tension is low, Aurora B activity promotes depolymerization of kinetochore–microtubules while maintaining attachment. Thus, phosphorylation converts a catch-bond, in which tension stabilizes attachments, to a slip-bond, which releases microtubules under tension. We propose that tension is a signal inducing distinct error-correction pathways, with release or depolymerization being advantageous for typical errors characterized by high or low tension, respectively.
Collapse
Affiliation(s)
- Geng-Yuan Chen
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - Fioranna Renda
- Wadsworth Center, New York State Department of Health, Albany, NY
| | - Huaiying Zhang
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - Alper Gokden
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - Daniel Z Wu
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - David M Chenoweth
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
32
|
Audett MR, Maresca TJ. The whole is greater than the sum of its parts: at the intersection of order, disorder, and kinetochore function. Essays Biochem 2020; 64:349-358. [PMID: 32756877 PMCID: PMC8011995 DOI: 10.1042/ebc20190069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 11/17/2022]
Abstract
The kinetochore (KT) field has matured tremendously since Earnshaw first identified CENP-A, CENP-B, and CENP-C [1,2]. In the past 35 years, the accumulation of knowledge has included: defining the parts list, identifying epistatic networks of interdependence within the parts list, understanding the spatial organization of subcomplexes into a massive structure - hundreds of megadaltons in size, and dissecting the functions of the KT in its entirety as well as of its individual parts. Like nearly all cell and molecular biology fields, the structure-function paradigm has been foundational to advances in the KT field. A point nicely highlighted by the fact that we are at the precipice of the in vitro reconstitution of a functional KT holo complex. Yet conventional notions of structure cannot provide a complete picture of the KT especially since it contains an abundance of unstructured or intrinsically disordered constituents. The combination of structured and disordered proteins within the KT results in an assembled system that is functionally greater than the sum of its parts.
Collapse
Affiliation(s)
- Margaux R Audett
- Biology Department, University of Massachusetts, Amherst, MA, U.S.A
| | - Thomas J Maresca
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, U.S.A
| |
Collapse
|