1
|
Patel A, Miles A, Strackhouse T, Cook L, Leng S, Patel S, Klinger K, Rudrabhatla S, Potlakayala SD. Methods of crop improvement and applications towards fortifying food security. Front Genome Ed 2023; 5:1171969. [PMID: 37484652 PMCID: PMC10361821 DOI: 10.3389/fgeed.2023.1171969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Agriculture has supported human life from the beginning of civilization, despite a plethora of biotic (pests, pathogens) and abiotic (drought, cold) stressors being exerted on the global food demand. In the past 50 years, the enhanced understanding of cellular and molecular mechanisms in plants has led to novel innovations in biotechnology, resulting in the introduction of desired genes/traits through plant genetic engineering. Targeted genome editing technologies such as Zinc-Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) have emerged as powerful tools for crop improvement. This new CRISPR technology is proving to be an efficient and straightforward process with low cost. It possesses applicability across most plant species, targets multiple genes, and is being used to engineer plant metabolic pathways to create resistance to pathogens and abiotic stressors. These novel genome editing (GE) technologies are poised to meet the UN's sustainable development goals of "zero hunger" and "good human health and wellbeing." These technologies could be more efficient in developing transgenic crops and aid in speeding up the regulatory approvals and risk assessments conducted by the US Departments of Agriculture (USDA), Food and Drug Administration (FDA), and Environmental Protection Agency (EPA).
Collapse
Affiliation(s)
- Aayushi Patel
- Penn State Harrisburg, Middletown, PA, United States
| | - Andrew Miles
- Penn State University Park, State College, University Park, PA, United States
| | | | - Logan Cook
- Penn State Harrisburg, Middletown, PA, United States
| | - Sining Leng
- Shanghai United Cell Biotechnology Co Ltd, Shanghai, China
| | - Shrina Patel
- Penn State Harrisburg, Middletown, PA, United States
| | | | | | | |
Collapse
|
2
|
Wang G, Xu Z, Wang F, Huang Y, Xin Y, Liang S, Li B, Si H, Sun L, Wang Q, Ding X, Zhu X, Chen L, Yu L, Lindsey K, Zhang X, Jin S. Development of an efficient and precise adenine base editor (ABE) with expanded target range in allotetraploid cotton (Gossypium hirsutum). BMC Biol 2022; 20:45. [PMID: 35164736 PMCID: PMC8845244 DOI: 10.1186/s12915-022-01232-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/13/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Base editors (BEs) display diverse applications in a variety of plant species such as Arabidopsis, rice, wheat, maize, soybean, and cotton, where they have been used to mediate precise base pair conversions without the collateral generation of undesirable double-stranded breaks (DSB). Studies of single-nucleotide polymorphisms (SNPs) underpinning plant traits are still challenging, particularly in polyploidy species where such SNPs are present in multiple copies, and simultaneous modification of all alleles would be required for functional analysis. Allotetraploid cotton has a number of homoeologous gene pairs located in the A and D sub-genomes with considerable SNPs, and it is desirable to develop adenine base editors (ABEs) for efficient and precise A-to-G single-base editing without DSB in such complex genome. RESULTS We established various ABE vectors based on different engineered adenosine deaminase (TadA) proteins fused to Cas9 variants (dCas9, nCas9), enabling efficient A to G editing up to 64% efficiency on-target sites of the allotetraploid cotton genome. Comprehensive analysis showed that GhABE7.10n exhibited the highest editing efficiency, with the main editing sites specifically located at the position A5 (counting the PAM as positions 21-23). Furthermore, DNA and RNA off-target analysis of cotton plants edited with GhABE7.10n and GhABE7.10d by whole genome and whole-transcriptome sequencing revealed no DNA off-target mutations, while very low-level RNA off-target mutations were detected. A new base editor, namely GhABE7.10dCpf1 (7.10TadA + dCpf1), that recognizes a T-rich PAM, was developed for the first time. Targeted A-to-G substitutions generated a single amino acid change in the cotton phosphatidyl ethanolamine-binding protein (GhPEBP), leading to a compact cotton plant architecture, an ideotype for mechanized harvesting of modern cotton production. CONCLUSIONS Our data illustrate the robustness of adenine base editing in plant species with complex genomes, which provides efficient and precise toolkit for cotton functional genomics and precise molecular breeding.
Collapse
Affiliation(s)
- Guanying Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Zhongping Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Fuqiu Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Yuefan Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Yanfeng Xin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Sijia Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Bo Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.,Xinjiang Key Laboratory of Crop Biotechnology, Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Wulumuqi, Xinjaing, 830000, People's Republic of China
| | - Huan Si
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Lin Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Qiongqiong Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Xiao Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Xiangqian Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Luo Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Lu Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
| |
Collapse
|
3
|
Abstract
Genome-editing tools provide advanced biotechnological techniques that enable the precise and efficient targeted modification of an organism's genome. Genome-editing systems have been utilized in a wide variety of plant species to characterize gene functions and improve agricultural traits. We describe the current applications of genome editing in plants, focusing on its potential for crop improvement in terms of adaptation, resilience, and end-use. In addition, we review novel breakthroughs that are extending the potential of genome-edited crops and the possibilities of their commercialization. Future prospects for integrating this revolutionary technology with conventional and new-age crop breeding strategies are also discussed.
Collapse
Affiliation(s)
- Yi Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Karen Massel
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, QLD, 4072, Australia
| | - Ian D Godwin
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, QLD, 4072, Australia
| | - Caixia Gao
- The State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Zhang Y, Massel K, Godwin ID, Gao C. Applications and potential of genome editing in crop improvement. Genome Biol 2018. [PMID: 30501614 DOI: 10.1186/s13059-018-1586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Genome-editing tools provide advanced biotechnological techniques that enable the precise and efficient targeted modification of an organism's genome. Genome-editing systems have been utilized in a wide variety of plant species to characterize gene functions and improve agricultural traits. We describe the current applications of genome editing in plants, focusing on its potential for crop improvement in terms of adaptation, resilience, and end-use. In addition, we review novel breakthroughs that are extending the potential of genome-edited crops and the possibilities of their commercialization. Future prospects for integrating this revolutionary technology with conventional and new-age crop breeding strategies are also discussed.
Collapse
Affiliation(s)
- Yi Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Karen Massel
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, QLD, 4072, Australia
| | - Ian D Godwin
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, QLD, 4072, Australia
| | - Caixia Gao
- The State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|