1
|
Reyes RA, Raghavan SSR, Hurlburt NK, Introini V, Bol S, Kana IH, Jensen RW, Martinez-Scholze E, Gestal-Mato M, López-Gutiérrez B, Sanz S, Bancells C, Fernández-Quintero ML, Loeffler JR, Ferguson JA, Lee WH, Martin GM, Theander TG, Lusingu JPA, Minja DTR, Ssewanyana I, Feeney ME, Greenhouse B, Ward AB, Bernabeu M, Pancera M, Turner L, Bunnik EM, Lavstsen T. Broadly inhibitory antibodies to severe malaria virulence proteins. Nature 2024; 636:182-189. [PMID: 39567685 DOI: 10.1038/s41586-024-08220-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
Malaria pathology is driven by the accumulation of Plasmodium falciparum-infected erythrocytes in microvessels1. This process is mediated by the polymorphic erythrocyte membrane protein 1 (PfEMP1) adhesion proteins of the parasite. A subset of PfEMP1 variants that bind to human endothelial protein C receptor (EPCR) through their CIDRα1 domains is responsible for severe malaria pathogenesis2. A longstanding question is whether individual antibodies can recognize the large repertoire of circulating PfEMP1 variants. Here we describe two broadly reactive and inhibitory human monoclonal antibodies to CIDRα1. The antibodies isolated from two different individuals exhibited similar and consistent EPCR-binding inhibition of diverse CIDRα1 domains, representing five of the six subclasses of CIDRα1. Both antibodies inhibited EPCR binding of both recombinant full-length and native PfEMP1 proteins, as well as parasite sequestration in bioengineered 3D human brain microvessels under physiologically relevant flow conditions. Structural analyses of the two antibodies in complex with three different CIDRα1 antigen variants reveal similar binding mechanisms that depend on interactions with three highly conserved amino acid residues of the EPCR-binding site in CIDRα1. These broadly reactive antibodies are likely to represent a common mechanism of acquired immunity to severe malaria and offer novel insights for the design of a vaccine or treatment targeting severe malaria.
Collapse
Affiliation(s)
- Raphael A Reyes
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sai Sundar Rajan Raghavan
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Nicholas K Hurlburt
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Sebastiaan Bol
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ikhlaq Hussain Kana
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Rasmus W Jensen
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Elizabeth Martinez-Scholze
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | - Johannes R Loeffler
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - James Alexander Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Greg Michael Martin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Thor G Theander
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - John P A Lusingu
- National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania
| | - Daniel T R Minja
- National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania
| | | | - Margaret E Feeney
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Louise Turner
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark.
| | - Evelien M Bunnik
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Thomas Lavstsen
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark.
| |
Collapse
|
2
|
Ruybal-Pesántez S, Tiedje KE, Pilosof S, Tonkin-Hill G, He Q, Rask TS, Amenga-Etego L, Oduro AR, Koram KA, Pascual M, Day KP. Age-specific patterns of DBLα var diversity can explain why residents of high malaria transmission areas remain susceptible to Plasmodium falciparum blood stage infection throughout life. Int J Parasitol 2022; 52:721-731. [PMID: 35093396 PMCID: PMC9339046 DOI: 10.1016/j.ijpara.2021.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/26/2022]
Abstract
Immunity to Plasmodium falciparum is non-sterilising, thus individuals residing in malaria-endemic areas are at risk of infection throughout their lifetime. Here we seek to find a genomic epidemiological explanation for why residents of all ages harbour blood stage infections despite lifelong exposure to P. falciparum in areas of high transmission. We do this by exploring, for the first known time, the age-specific patterns of diversity of variant antigen encoding (var) genes in the reservoir of infection. Microscopic and submicroscopic P. falciparum infections were analysed at the end of the wet and dry seasons in 2012-2013 for a cohort of 1541 residents aged from 1 to 91 years in an area characterised by high seasonal malaria transmission in Ghana. By sequencing the near ubiquitous Duffy-binding-like alpha domain (DBLα) that encodes immunogenic domains, we defined var gene diversity in an estimated 1096 genomes detected in sequential wet and dry season sampling of this cohort. Unprecedented var (DBLα) diversity was observed in all ages with 42,399 unique var types detected. There was a high degree of maintenance of types between seasons (>40% seen more than once), with many of the same types, especially upsA, appearing multiple times in isolates from different individuals. Children and adolescents were found to be significant reservoirs of var DBLα diversity compared with adults. Var repertoires within individuals were highly variable, with children having more related var repertoires compared to adolescents and adults. Individuals of all ages harboured multiple genomes with var repertoires unrelated to those infecting other hosts. High turnover of parasites with diverse isolate var repertoires was also observed in all ages. These age-specific patterns are best explained by variant-specific immune selection. The observed level of var diversity for the population was then used to simulate the development of variant-specific immunity to the diverse var types under conservative assumptions. Simulations showed that the extent of observed var diversity with limited repertoire relatedness was sufficient to explain why adolescents and adults in this community remain susceptible to blood stage infection, even with multiple genomes.
Collapse
Affiliation(s)
| | - Kathryn E. Tiedje
- School of BioSciences, Bio21 Institute, The University of Melbourne, Australia,Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Australia
| | - Shai Pilosof
- Department of Ecology and Evolution, University of Chicago, USA,Department of Life Sciences, Ben-Gurion University, Be’er-Sheva, Israel
| | - Gerry Tonkin-Hill
- School of BioSciences, Bio21 Institute, The University of Melbourne, Australia,Bioinformatics Division, Walter and Eliza Hall Institute of Medial Research, Australia
| | - Qixin He
- Department of Ecology and Evolution, University of Chicago, USA
| | - Thomas S. Rask
- School of BioSciences, Bio21 Institute, The University of Melbourne, Australia
| | - Lucas Amenga-Etego
- West African Centre for Cell Biology and Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Ghana,Navrongo Health Research Centre, Ghana Health Service, Ghana
| | | | - Kwadwo A. Koram
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Ghana
| | | | - Karen P. Day
- School of BioSciences, Bio21 Institute, The University of Melbourne, Australia,Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Australia,Corresponding author. (K.P. Day)
| |
Collapse
|
3
|
Lennartz F, Higgins MK. Surface Plasmon Resonance Analysis of PfEMP1 Interaction with Receptors. Methods Mol Biol 2022; 2470:467-482. [PMID: 35881367 DOI: 10.1007/978-1-0716-2189-9_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A detailed understanding of the interaction between the highly variant Plasmodium falciparum erythrocyte membrane proteins 1 (PfEMP1) and their human binding partners is essential to explain their roles in disease development in malaria, as well as to understand how antibodies can inhibit these interactions and how the parasite manages to evade such an immune response. This chapter focuses on using surface plasmon resonance (SPR) as a reproducible, high-throughput method to quantitatively characterize these interactions. We describe how to utilize protein A or A/G and streptavidin for protein immobilization on SPR sensor chips and provide instructions on how to biotinylate proteins for this purpose and how to use SPR for binding competition assays. Since these experiments rely on recombinant proteins, we also present a method to verify their structural integrity using circular dichroism spectroscopy.
Collapse
Affiliation(s)
- Frank Lennartz
- Department of Biochemistry, University of Oxford, Oxford, UK.
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany.
| | | |
Collapse
|
4
|
Comprehensive analysis of antibody responses to Plasmodium falciparum erythrocyte membrane protein 1 domains. Vaccine 2018; 36:6826-6833. [PMID: 30262245 DOI: 10.1016/j.vaccine.2018.08.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/03/2018] [Accepted: 08/22/2018] [Indexed: 12/31/2022]
Abstract
Acquired antibodies directed towards antigens expressed on the surface of merozoites and infected erythrocytes play an important role in protective immunity to Plasmodium falciparum malaria. P. falciparum erythrocyte membrane protein 1 (PfEMP1), the major parasite component of the infected erythrocyte surface, has been implicated in malaria pathology, parasite sequestration and host immune evasion. However, the extent to which unique PfEMP1 domains interact with host immune response remains largely unknown. In this study, we sought to comprehensively understand the naturally acquired antibody responses targeting different Duffy binding-like (DBL), and Cysteine-rich interdomain region (CIDR) domains in a Ugandan cohort. Consequently, we created a protein library consisting of full-length DBL (n = 163) and CIDR (n = 108) domains derived from 62-var genes based on 3D7 genome. The proteins were expressed by a wheat germ cell-free system; a system that yields plasmodial proteins that are comparatively soluble, intact, biologically active and immunoreactive to human sera. Our findings suggest that all PfEMP1 DBL and CIDR domains, regardless of PfEMP1 group, are targets of naturally acquired immunity. The breadth of the immune response expands with children's age. We concurrently identified 10 DBL and 8 CIDR domains whose antibody responses were associated with reduced risk to symptomatic malaria in the Ugandan children cohort. This study highlights that only a restricted set of specific domains are essential for eliciting naturally acquired protective immunity in malaria. In light of current data, tandem domains in PfEMP1s PF3D7_0700100 and PF3D7_0425800 (DC4) are recommended for extensive evaluation in larger population cohorts to further assess their potential as alternative targets for malaria vaccine development.
Collapse
|
5
|
Abstract
Human malaria is a complex disease that can show a wide array of clinical outcomes, from asymptomatic carriage and chronic infection to acute disease presenting various life-threatening pathologies. The specific outcome of an infection is believed to be determined by a multifactorial interplay between the host and the parasite but with a general trend toward disease attenuation with increasing prior exposure. Therefore, the main burden of malaria in a population can be understood as a function of transmission intensity, which itself is intricately linked to the prevalence of infected hosts and mosquito vectors, the distribution of infection outcomes, and the parasite population diversity. Predicting the long-term impact of malaria intervention measures therefore requires an in-depth understanding of how the parasite causes disease, how this relates to previous exposures, and how different infection pathologies contribute to parasite transmission. Here, we provide a brief overview of recent advances in the molecular epidemiology of clinical malaria and how these might prove to be influential in our fight against this important disease.
Collapse
Affiliation(s)
- Mario Recker
- Centre for Mathematics and the Environment, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| | - Peter C Bull
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Caroline O Buckee
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| |
Collapse
|
6
|
Rorick MM, Baskerville EB, Rask TS, Day KP, Pascual M. Identifying functional groups among the diverse, recombining antigenic var genes of the malaria parasite Plasmodium falciparum from a local community in Ghana. PLoS Comput Biol 2018; 14:e1006174. [PMID: 29897905 PMCID: PMC6016947 DOI: 10.1371/journal.pcbi.1006174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 06/25/2018] [Accepted: 05/03/2018] [Indexed: 11/18/2022] Open
Abstract
A challenge in studying diverse multi-copy gene families is deciphering distinct functional types within immense sequence variation. Functional changes can in some cases be tracked through the evolutionary history of a gene family; however phylogenetic approaches are not possible in cases where gene families diversify primarily by recombination. We take a network theoretical approach to functionally classify the highly recombining var antigenic gene family of the malaria parasite Plasmodium falciparum. We sample var DBLα sequence types from a local population in Ghana, and classify 9,276 of these variants into just 48 functional types. Our approach is to first decompose each sequence type into its constituent, recombining parts; we then use a stochastic block model to identify functional groups among the parts; finally, we classify the sequence types based on which functional groups they contain. This method for functional classification does not rely on an inferred phylogenetic history, nor does it rely on inferring function based on conserved sequence features. Instead, it infers functional similarity among recombining parts based on the sharing of similar co-occurrence interactions with other parts. This method can therefore group sequences that have undetectable sequence homology or even distinct origination. Describing these 48 var functional types allows us to simplify the antigenic diversity within our dataset by over two orders of magnitude. We consider how the var functional types are distributed in isolates, and find a nonrandom pattern reflecting that common var functional types are non-randomly distinct from one another in terms of their functional composition. The coarse-graining of var gene diversity into biologically meaningful functional groups has important implications for understanding the disease ecology and evolution of this system, as well as for designing effective epidemiological monitoring and intervention.
Collapse
Affiliation(s)
- Mary M. Rorick
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States of America
- Department of Biology, University of Utah, Salt Lake City, UT, United States of America
| | - Edward B. Baskerville
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States of America
| | - Thomas S. Rask
- School of Biosciences, Bio21 Institute, The University of Melbourne, Melbourne, AU
- Department of Microbiology, New York University, New York, NY, United States of America
| | - Karen P. Day
- School of Biosciences, Bio21 Institute, The University of Melbourne, Melbourne, AU
- Department of Microbiology, New York University, New York, NY, United States of America
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States of America
- The Santa Fe Institute, Santa Fe, NM, United States of America
| |
Collapse
|