1
|
Thomas R, Fukamizo T, Suginta W. Green-Chemical Strategies for Production of Tailor-Made Chitooligosaccharides with Enhanced Biological Activities. Molecules 2023; 28:6591. [PMID: 37764367 PMCID: PMC10536575 DOI: 10.3390/molecules28186591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Chitooligosaccharides (COSs) are b-1,4-linked homo-oligosaccharides of N-acetylglucosamine (GlcNAc) or glucosamine (GlcN), and also include hetero-oligosaccharides composed of GlcNAc and GlcN. These sugars are of practical importance because of their various biological activities, such as antimicrobial, anti-inflammatory, antioxidant and antitumor activities, as well as triggering the innate immunity in plants. The reported data on bioactivities of COSs used to contain some uncertainties or contradictions, because the experiments were conducted with poorly characterized COS mixtures. Recently, COSs have been satisfactorily characterized with respect to their structures, especially the degree of polymerization (DP) and degree of N-acetylation (DA); thus, the structure-bioactivity relationship of COSs has become more unambiguous. To date, various green-chemical strategies involving enzymatic synthesis of COSs with designed sequences and desired biological activities have been developed. The enzymatic strategies could involve transglycosylation or glycosynthase reactions using reducing end-activated sugars as the donor substrates and chitinase/chitosanase and their mutants as the biocatalysts. Site-specific chitin deacetylases were also proposed to be applicable for this purpose. Furthermore, to improve the yields of the COS products, metabolic engineering techniques could be applied. The above-mentioned approaches will provide the opportunity to produce tailor-made COSs, leading to the enhanced utilization of chitin biomass.
Collapse
Affiliation(s)
- Reeba Thomas
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payunai, Wangchan District, Rayong 21210, Thailand; (R.T.); (T.F.)
| | - Tamo Fukamizo
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payunai, Wangchan District, Rayong 21210, Thailand; (R.T.); (T.F.)
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payunai, Wangchan District, Rayong 21210, Thailand; (R.T.); (T.F.)
| |
Collapse
|
2
|
Huang X, Rao G, Peng X, Xue Y, Hu H, Feng N, Zheng D. Effect of plant growth regulators DA-6 and COS on drought tolerance of pineapple through bromelain and oxidative stress. BMC PLANT BIOLOGY 2023; 23:180. [PMID: 37020215 PMCID: PMC10074694 DOI: 10.1186/s12870-023-04200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Due to global warming, drought climates frequently occur on land, and despite being drought resistant, pineapples are still subjected to varying degrees of drought stress. Plant growth regulators can regulate the stress tolerance of plants through hormonal effects. This experiment aims to investigate the regulatory effects of different plant growth regulators on Tainong- 16 and MD-2 Pineapple when subjected to drought stress. RESULTS In this experiment, we examined the regulatory effects of two different plant growth regulators, sprayed on two pineapple varieties: MD-2 Pineapple and Tainong-16. The main component of T1 was diethyl aminoethyl hexanoate (DA-6) and that of T2 is chitosan oligosaccharide (COS). An environment similar to a natural drought was simulated in the drought stress treatments. Then, pineapples at different periods were sampled and a series of indicators were measured. The experimental results showed that the drought treatments treated with T1 and T2 plant growth regulators had a decrease in malondialdehyde, an increase in bromelain and antioxidant enzyme indicators, and an increase in phenotypic and yield indicators. CONCLUSION This experiment demonstrated that DA-6 and COS can enhance the drought resistance of pineapple plants to a certain extent through bromelain and oxidative stress. Therefore, DA-6 and COS have potential applications and this experiment lays the foundation for further research.
Collapse
Affiliation(s)
- XiaoKui Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - GangShun Rao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - XiaoDu Peng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - YingBin Xue
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - HanQiao Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - NaiJie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen, 518000, Guangdong, China
| | - DianFeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China.
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
3
|
Controlled processivity in glycosyltransferases: A way to expand the enzymatic toolbox. Biotechnol Adv 2023; 63:108081. [PMID: 36529206 DOI: 10.1016/j.biotechadv.2022.108081] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/20/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Glycosyltransferases (GT) catalyse the biosynthesis of complex carbohydrates which are the most abundant group of molecules in nature. They are involved in several key mechanisms such as cell signalling, biofilm formation, host immune system invasion or cell structure and this in both prokaryotic and eukaryotic cells. As a result, research towards complete enzyme mechanisms is valuable to understand and elucidate specific structure-function relationships in this group of molecules. In a next step this knowledge could be used in GT protein engineering, not only for rational drug design but also for multiple biotechnological production processes, such as the biosynthesis of hyaluronan, cellooligosaccharides or chitooligosaccharides. Generation of these poly- and/or oligosaccharides is possible due to a common feature of several of these GTs: processivity. Enzymatic processivity has the ability to hold on to the growing polymer chain and some of these GTs can even control the number of glycosyl transfers. In a first part, recent advances in understanding the mechanism of various processive enzymes are discussed. To this end, an overview is given of possible engineering strategies for the purpose of new industrial and fundamental applications. In the second part of this review, we focused on specific chain length-controlling mechanisms, i.e., key residues or conserved regions, and this for both eukaryotic and prokaryotic enzymes.
Collapse
|
4
|
Ling M, Wu Y, Tian R, Liu Y, Yu W, Tao G, Lv X, Li J, Du G, Amaro RL, Liu L. Combinatorial pathway engineering of Bacillus subtilis for production of structurally defined and homogeneous chitooligosaccharides. Metab Eng 2022; 70:55-66. [PMID: 35033656 DOI: 10.1016/j.ymben.2022.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/30/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
Chitooligosaccharides (COSs) have a widespread range of biological functions and an incredible potential for various pharmaceutical and agricultural applications. Although several physical, chemical, and biological techniques have been reported for COSs production, it is still a challenge to obtain structurally defined COSs with defined polymerization (DP) and acetylation patterns, which hampers the specific characterization and application of COSs. Herein, we achieved the de novo production of structurally defined COSs using combinatorial pathway engineering in Bacillus subtilis. Specifically, the COSs synthase NodC from Azorhizobium caulinodans was overexpressed in B. subtilis, leading to 30 ± 0.86 mg/L of chitin oligosaccharides (CTOSs), the homo-oligomers of N-acetylglucosamine (GlcNAc) with a well-defined DP lower than 6. Then introduction of a GlcNAc synthesis module to promote the supply of the sugar acceptor GlcNAc, reduced CTOSs production, which suggested that the activity of COSs synthase NodC and the supply of sugar donor UDP-GlcNAc may be the limiting steps for CTOSs synthesis. Therefore, 6 exogenous COSs synthase candidates were examined, and the nodCM from Mesorhizobium loti yielded the highest CTOSs titer of 560 ± 16 mg/L. Finally, both the de novo pathway and the salvage pathway of UDP-GlcNAc were engineered to further promote the biosynthesis of CTOSs. The titer of CTOSs in 3-L fed-batch bioreactor reached 4.82 ± 0.11 g/L (85.6% CTOS5, 7.5% CTOS4, 5.3% CTOS3 and 1.6% CTOS2), which was the highest ever reported. This is the first report proving the feasibility of the de novo production of structurally defined CTOSs by synthetic biology, and provides a good starting point for further engineering to achieve the commercial production.
Collapse
Affiliation(s)
- Meixi Ling
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Rongzhen Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Wenwen Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Guanjun Tao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
| | - Rodrigo Ledesma Amaro
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
5
|
Kumar M, Rajput M, Soni T, Vivekanand V, Pareek N. Chemoenzymatic Production and Engineering of Chitooligosaccharides and N-acetyl Glucosamine for Refining Biological Activities. Front Chem 2020; 8:469. [PMID: 32671017 PMCID: PMC7329927 DOI: 10.3389/fchem.2020.00469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/05/2020] [Indexed: 01/07/2023] Open
Abstract
Chitooligosaccharides (COS) and N-acetyl glucosamine (GlcNAc) are currently of enormous relevance to pharmaceutical, nutraceutical, cosmetics, food, and agriculture industries due to their wide range of biological activities, which include antimicrobial, antitumor, antioxidant, anticoagulant, wound healing, immunoregulatory, and hypocholesterolemic effects. A range of methods have been developed for the synthesis of COS with a specific degree of polymerization along with high production titres. In this respect, chemical, enzymatic, and microbial means, along with modern genetic manipulation techniques, have been extensively explored; however no method has been able to competently produce defined COS and GlcNAc in a mono-system approach. Henceforth, the chitin research has turned toward increased exploration of chemoenzymatic processes for COS and GlcNAc generation. Recent developments in the area of green chemicals, mainly ionic liquids, proved vital for the specified COS and GlcNAc synthesis with better yield and purity. Moreover, engineering of COS and GlcNAc to generate novel derivatives viz. carboxylated, sulfated, phenolic acid conjugated, amino derived COS, etc., further improved their biological activities. Consequently, chemoenzymatic synthesis and engineering of COS and GlcNAc emerged as a useful approach to lead the biologically-active compound-based biomedical research to an advanced prospect in the forthcoming era.
Collapse
Affiliation(s)
- Manish Kumar
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Meenakshi Rajput
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Twinkle Soni
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur, India
| | - Nidhi Pareek
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|