1
|
Lobaina Y, Musacchio A, Ai P, Chen R, Suzarte E, Chinea G, Zhang M, Zhou Z, Lan Y, Silva R, Guillén G, Yang K, Li W, Perera Y, Hermida L. Obtaining HBV core protein VLPs carrying SARS-CoV-2 nucleocapsid conserved fragments as vaccine candidates. Virol J 2024; 21:310. [PMID: 39609857 PMCID: PMC11606075 DOI: 10.1186/s12985-024-02583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
The Hepatitis B core antigen (HBcAg) has been used as a carrier of several heterologous protein fragments based on its capacity to form virus-like particles (VLPs) and to activate innate and adaptive immune responses. In the present work, two chimeric proteins were designed as potential pancorona vaccine candidates, comprising the N- or C- terminal domain of SARS-CoV-2 nucleocapsid (N) protein fused to HBcAg. The recombinant proteins, obtained in E. coli, were named CN-1 and CND-1, respectively. The final protein preparations were able to form 10-25 nm particles, visualized by TEM. Both proteins were recognized by sera from COVID-19 convalescent donors; however, the antigenicity of CND-1 tends to be higher. The immunogenicity of both proteins was studied in Balb/C mice by intranasal route without adjuvant. After three doses, only CND-1 elicited a positive immune response, systemic and mucosal, against SARS-CoV-2 N protein. CND-1 was evaluated in a second experiment mixed with the CpG ODN-39 M as nasal adjuvant. The induced anti-N immunity was significantly enhanced, and the antibodies generated were cross-reactive with N protein from Omicron variant, and SARS-CoV-1. Also, an anti-N broad cellular immune response was detected in spleen, by IFN-γ ELISpot. The nasal formulation composed by CND-1 and ODN-39 M constitutes an attractive component for a second generation coronavirus vaccine, increasing the scope of S protein-based vaccines, by inducing mucosal immunity and systemic broad humoral and cellular responses against Sarbecovirus N protein.
Collapse
Affiliation(s)
- Yadira Lobaina
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC) Lengshuitan District, Yongzhou City, 425000, Hunan, China
- R&D Department, Yongzhou Zhong Gu Biotechnology Co., Ltd., Yangjiaqiao Street, Lengshuitan District, Yongzhou City, 425000, Hunan, China
| | - Alexis Musacchio
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC) Lengshuitan District, Yongzhou City, 425000, Hunan, China
- R&D Department, Yongzhou Zhong Gu Biotechnology Co., Ltd., Yangjiaqiao Street, Lengshuitan District, Yongzhou City, 425000, Hunan, China
- Research Department, Center for Genetic Engineering and Biotechnology (CIGB), 10600, Havana, Cuba
| | - Panchao Ai
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC) Lengshuitan District, Yongzhou City, 425000, Hunan, China
- Yongzhou Development and Construction Investment Co. Ltd. (YDCI), Yongzhou Economic and Technological Development Zone, Changfeng Industry Park, No. 1 Liebao Road, Lengshuitan District, Yongzhou City, Hunan Province, China
| | - Rong Chen
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC) Lengshuitan District, Yongzhou City, 425000, Hunan, China
- Yongzhou Development and Construction Investment Co. Ltd. (YDCI), Yongzhou Economic and Technological Development Zone, Changfeng Industry Park, No. 1 Liebao Road, Lengshuitan District, Yongzhou City, Hunan Province, China
| | - Edith Suzarte
- Research Department, Center for Genetic Engineering and Biotechnology (CIGB), 10600, Havana, Cuba
| | - Glay Chinea
- Research Department, Center for Genetic Engineering and Biotechnology (CIGB), 10600, Havana, Cuba
| | - Miaohong Zhang
- Hunan PRIMA Drug Research Center Co., Ltd., National Liuyang Economic and Technological Development Zone, 123 Kangtian Road, Changsha City, Hunan, China
| | - Zhiqiang Zhou
- Hunan PRIMA Drug Research Center Co., Ltd., National Liuyang Economic and Technological Development Zone, 123 Kangtian Road, Changsha City, Hunan, China
| | - Yaqin Lan
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC) Lengshuitan District, Yongzhou City, 425000, Hunan, China
- Yongzhou Development and Construction Investment Co. Ltd. (YDCI), Yongzhou Economic and Technological Development Zone, Changfeng Industry Park, No. 1 Liebao Road, Lengshuitan District, Yongzhou City, Hunan Province, China
| | - Ricardo Silva
- Science and Innovation Directorate, BioCubaFarma, Independence Avenue, No. 8126, Corner 100 Street, 10800, Havana, Cuba
| | - Gerardo Guillén
- Research Department, Center for Genetic Engineering and Biotechnology (CIGB), 10600, Havana, Cuba
| | - Ke Yang
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC) Lengshuitan District, Yongzhou City, 425000, Hunan, China
- Yongzhou Development and Construction Investment Co. Ltd. (YDCI), Yongzhou Economic and Technological Development Zone, Changfeng Industry Park, No. 1 Liebao Road, Lengshuitan District, Yongzhou City, Hunan Province, China
| | - Wen Li
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC) Lengshuitan District, Yongzhou City, 425000, Hunan, China.
- Yongzhou Development and Construction Investment Co. Ltd. (YDCI), Yongzhou Economic and Technological Development Zone, Changfeng Industry Park, No. 1 Liebao Road, Lengshuitan District, Yongzhou City, Hunan Province, China.
| | - Yasser Perera
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC) Lengshuitan District, Yongzhou City, 425000, Hunan, China.
- R&D Department, Yongzhou Zhong Gu Biotechnology Co., Ltd., Yangjiaqiao Street, Lengshuitan District, Yongzhou City, 425000, Hunan, China.
- Research Department, Center for Genetic Engineering and Biotechnology (CIGB), 10600, Havana, Cuba.
| | - Lisset Hermida
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC) Lengshuitan District, Yongzhou City, 425000, Hunan, China.
- Yongzhou Development and Construction Investment Co. Ltd. (YDCI), Yongzhou Economic and Technological Development Zone, Changfeng Industry Park, No. 1 Liebao Road, Lengshuitan District, Yongzhou City, Hunan Province, China.
- Science and Innovation Directorate, BioCubaFarma, Independence Avenue, No. 8126, Corner 100 Street, 10800, Havana, Cuba.
| |
Collapse
|
2
|
Lobaina Y, Chen R, Suzarte E, Ai P, Huerta V, Musacchio A, Silva R, Tan C, Martín A, Lazo L, Guillén-Nieto G, Yang K, Perera Y, Hermida L. The Nucleocapsid Protein of SARS-CoV-2, Combined with ODN-39M, Is a Potential Component for an Intranasal Bivalent Vaccine with Broader Functionality. Viruses 2024; 16:418. [PMID: 38543783 PMCID: PMC10976088 DOI: 10.3390/v16030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 05/23/2024] Open
Abstract
Despite the rapid development of vaccines against COVID-19, they have important limitations, such as safety issues, the scope of their efficacy, and the induction of mucosal immunity. The present study proposes a potential component for a new generation of vaccines. The recombinant nucleocapsid (N) protein from the SARS-CoV-2 Delta variant was combined with the ODN-39M, a synthetic 39 mer unmethylated cytosine-phosphate-guanine oligodeoxynucleotide (CpG ODN), used as an adjuvant. The evaluation of its immunogenicity in Balb/C mice revealed that only administration by intranasal route induced a systemic cross-reactive, cell-mediated immunity (CMI). In turn, this combination was able to induce anti-N IgA in the lungs, which, along with the specific IgG in sera and CMI in the spleen, was cross-reactive against the nucleocapsid protein of SARS-CoV-1. Furthermore, the nasal administration of the N + ODN-39M preparation, combined with RBD Delta protein, enhanced the local and systemic immune response against RBD, with a neutralizing capacity. Results make the N + ODN-39M preparation a suitable component for a future intranasal vaccine with broader functionality against Sarbecoviruses.
Collapse
Affiliation(s)
- Yadira Lobaina
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- R&D Department, Yongzhou Zhong Gu Biotechnology Co., Ltd., Yangjiaqiao Street, Lengshuitan District, Yongzhou 425000, China
| | - Rong Chen
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Edith Suzarte
- CIGB: Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (A.M.); (L.L.); (G.G.-N.)
| | - Panchao Ai
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Vivian Huerta
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- CIGB: Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (A.M.); (L.L.); (G.G.-N.)
| | - Alexis Musacchio
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- CIGB: Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (A.M.); (L.L.); (G.G.-N.)
| | - Ricardo Silva
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- BCF: R&D Section, Representative Office BCF in China, Jingtai Tower, No. 24 Jianguomen Wai Street, Chaoyang District, Beijing 100022, China
| | - Changyuan Tan
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Alejandro Martín
- CIGB: Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (A.M.); (L.L.); (G.G.-N.)
| | - Laura Lazo
- CIGB: Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (A.M.); (L.L.); (G.G.-N.)
| | - Gerardo Guillén-Nieto
- CIGB: Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (A.M.); (L.L.); (G.G.-N.)
| | - Ke Yang
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Yasser Perera
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- R&D Department, Yongzhou Zhong Gu Biotechnology Co., Ltd., Yangjiaqiao Street, Lengshuitan District, Yongzhou 425000, China
- CIGB: Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (A.M.); (L.L.); (G.G.-N.)
| | - Lisset Hermida
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
- BCF: R&D Section, Representative Office BCF in China, Jingtai Tower, No. 24 Jianguomen Wai Street, Chaoyang District, Beijing 100022, China
| |
Collapse
|
3
|
Kettenburg G, Kistler A, Ranaivoson HC, Ahyong V, Andrianiaina A, Andry S, DeRisi JL, Gentles A, Raharinosy V, Randriambolamanantsoa TH, Ravelomanantsoa NAF, Tato CM, Dussart P, Heraud JM, Brook CE. Full Genome Nobecovirus Sequences From Malagasy Fruit Bats Define a Unique Evolutionary History for This Coronavirus Clade. Front Public Health 2022; 10:786060. [PMID: 35223729 PMCID: PMC8873168 DOI: 10.3389/fpubh.2022.786060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/17/2022] [Indexed: 12/02/2022] Open
Abstract
Bats are natural reservoirs for both Alpha- and Betacoronaviruses and the hypothesized original hosts of five of seven known zoonotic coronaviruses. To date, the vast majority of bat coronavirus research has been concentrated in Asia, though coronaviruses are globally distributed; indeed, SARS-CoV and SARS-CoV-2-related Betacoronaviruses in the subgenus Sarbecovirus have been identified circulating in Rhinolophid bats in both Africa and Europe, despite the relative dearth of surveillance in these regions. As part of a long-term study examining the dynamics of potentially zoonotic viruses in three species of endemic Madagascar fruit bat (Pteropus rufus, Eidolon dupreanum, Rousettus madagascariensis), we carried out metagenomic Next Generation Sequencing (mNGS) on urine, throat, and fecal samples obtained from wild-caught individuals. We report detection of RNA derived from Betacoronavirus subgenus Nobecovirus in fecal samples from all three species and describe full genome sequences of novel Nobecoviruses in P. rufus and R. madagascariensis. Phylogenetic analysis indicates the existence of five distinct Nobecovirus clades, one of which is defined by the highly divergent ancestral sequence reported here from P. rufus bats. Madagascar Nobecoviruses derived from P. rufus and R. madagascariensis demonstrate, respectively, Asian and African phylogeographic origins, mirroring those of their fruit bat hosts. Bootscan recombination analysis indicates significant selection has taken place in the spike, nucleocapsid, and NS7 accessory protein regions of the genome for viruses derived from both bat hosts. Madagascar offers a unique phylogeographic nexus of bats and viruses with both Asian and African phylogeographic origins, providing opportunities for unprecedented mixing of viral groups and, potentially, recombination. As fruit bats are handled and consumed widely across Madagascar for subsistence, understanding the landscape of potentially zoonotic coronavirus circulation is essential for mitigation of future zoonotic threats.
Collapse
Affiliation(s)
- Gwenddolen Kettenburg
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States
| | - Amy Kistler
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Hafaliana Christian Ranaivoson
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
- Virology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Vida Ahyong
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Angelo Andrianiaina
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Santino Andry
- Department of Entomology, University of Antananarivo, Antananarivo, Madagascar
| | | | - Anecia Gentles
- Odum School of Ecology, University of Georgia, Athens, GA, United States
| | | | | | | | | | - Philippe Dussart
- Virology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Jean-Michel Heraud
- Virology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Cara E. Brook
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States
| |
Collapse
|
4
|
Godoy MG, Kibenge MJT, Kibenge FSB. SARS-CoV-2 transmission via aquatic food animal species or their products: A review. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2021; 536:736460. [PMID: 33564203 PMCID: PMC7860939 DOI: 10.1016/j.aquaculture.2021.736460] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 05/06/2023]
Abstract
Outbreaks of COVID-19 (coronavirus disease 2019) have been reported in workers in fish farms and fish processing plants arising from person-to-person transmission, raising concerns about aquatic animal food products' safety. A better understanding of such incidents is important for the aquaculture industry's sustainability, particularly with the global trade in fresh and frozen aquatic animal food products where contaminating virus could survive for some time. Despite a plethora of COVID-19-related scientific publications, there is a lack of reports on the risk of contact with aquatic food animal species or their products. This review aimed to examine the potential for Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) contamination and the potential transmission via aquatic food animals or their products and wastewater effluents. The extracellular viability of SARS-CoV-2 and how the virus is spread are reviewed, supporting the understanding that contaminated cold-chain food sources may introduce SAR-CoV-2 via food imports although the virus is unlikely to infect humans through consumption of aquatic food animals or their products or drinking water; i.e., SARS-CoV-2 is not a foodborne virus and should not be managed as such but instead through strong, multifaceted public health interventions including physical distancing, rapid contact tracing, and testing, enhanced hand and respiratory hygiene, frequent disinfection of high-touch surfaces, isolation of infected workers and their contacts, as well as enhanced screening protocols for international seafood trade.
Collapse
Affiliation(s)
- Marcos G Godoy
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Lago Panguipulli 1390, Puerto Montt, Chile
- Laboratorio de Biotecnología Aplicada, Facultad de Medicina Veterinaria, Sede De La Patagonia, Lago Panguipulli 1390, Puerto Montt, 5480000, Chile
- Doctorado en Acuicultura. Programa Cooperativo Universidad de Chile, Universidad Católica del Norte, Pontificia Universidad Católica de Valparaíso, Chile
| | - Molly J T Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, P.E.I., C1A 4P3, Canada
| | - Frederick S B Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, P.E.I., C1A 4P3, Canada
| |
Collapse
|