1
|
Xie T, Gao Y, Hu J, Luo R, Guo Y, Xie Q, Yan C, Tang Y, Chen P, Yang Z, Yu Q, Hu F, Zhang X. Increased matrix stiffness in pituitary neuroendocrine tumors invading the cavernous sinus is activated by TAFs: focus on the mechanical signatures. Endocrine 2025; 87:281-294. [PMID: 39240459 DOI: 10.1007/s12020-024-04022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE Pituitary neuroendocrine tumors (PitNETs) with invasion of the cavernous sinus (CS) are particularly challenging to treat. Tumor associated fibroblasts (TAFs) are recognized for their pivotal role in reprogramming extracellular matrix (ECM). Herein, we aimed to explore the potential involvement of TAFs in ECM reprogramming and elucidate the underlying mechanism involved. METHODS We applied dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to measure tumor vessel permeability and applied atomic force microscopy (AFM) to measure the matrix stiffness of PitNETs located in both CS and sella turcica (ST). Western blotting, immunofluorescence, immunohistochemistry, and quantitative RT-PCR were utilized to analyze the ECM components. Proteomic biochemical analysis was utilized to uncover potential mechanisms governing ECM dynamics. RESULTS We found that PitNETs in the CS were stiffer than those in the ST. Increased ECM stiffness within the CS facilitated the acquisition of stem-like properties, enhanced proliferation, and induced epithelial-to-mesenchymal transition (EMT) of GH3 cells. Furthermore, the expression levels of lysyl oxidase (LOX), matrix metallopeptidase 2 (MMP2) and MMP9 in pituitary adenoma cells increased in the stiffer matrix. Proteomic analysis suggested TAFs were activated in the CS area and contributed enhanced matrix stiffness by secreting Col-1 and Col-3. Furthermore, mTOR pathway was activated under higher matrix stiffness and the migration and invasion of GH3 cells be repressed by mTOR inhibitor. CONCLUSION These findings demonstrated that activated TAFs contributed to stiffer matrix and increased ECM stiffness stimulating mTOR pathway in pituitary tumor cells. Our study indicated that mTOR inhibitor was a promising treatment strategy from the standpoint of PitNET biomechanical properties.
Collapse
Affiliation(s)
- Tao Xie
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
- Department of Neurosurgery, Shanghai Geriatric Medical Center, 2560 Chunsheng Road, Shanghai, China
- Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
- The innovation and translation alliance of neuroendoscopy in the Yangtze River Delta, Shanghai, China
| | - Yang Gao
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Jiamin Hu
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Yinglong Guo
- Department of Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Qiang Xie
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Chaolong Yan
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Yifan Tang
- Department of Neurosurgery, Shanghai Geriatric Medical Center, 2560 Chunsheng Road, Shanghai, China
| | - Pin Chen
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Zijiang Yang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Qinqin Yu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
| | - Fan Hu
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Xiaobiao Zhang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China.
- Department of Neurosurgery, Shanghai Geriatric Medical Center, 2560 Chunsheng Road, Shanghai, China.
- Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China.
- The innovation and translation alliance of neuroendoscopy in the Yangtze River Delta, Shanghai, China.
- Digital Medical Research Center, Fudan University, 138 Yixueyuan Road, Shanghai, China.
| |
Collapse
|
2
|
Do Nascimento Amorim MS, Rates ERD, Isabela Vitoria DAC, Silva Diniz Filho JF, dos Santos CC, Santos-Oliveira R, Simões Gaspar R, Rodrigues Sanches J, Araújo Serra Pinto B, de Andrade Paes AM, Alencar LMR. Diabetes and Cognitive Decline: An Innovative Approach to Analyzing the Biophysical and Vibrational Properties of the Hippocampus. ACS OMEGA 2024; 9:40870-40881. [PMID: 39371966 PMCID: PMC11447714 DOI: 10.1021/acsomega.4c05869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024]
Abstract
Diabetes Mellitus (DM) is a disease characterized by high blood glucose levels, known as hyperglycemia. Diabetes represents a risk factor for the development of neurodegenerative diseases, such as Alzheimer's Disease (AD), one of the most prevalent neurodegenerative diseases worldwide, which leads to progressive mental, behavioral, and functional decline, affecting many brain structures, especially the hippocampus. Here, we aim to characterize the ultrastructural, nanomechanical, and vibrational changes in hyperglycemic hippocampal tissue using atomic force microscopy (AFM) and Raman spectroscopy. DM was induced in rats by streptozotocin injection (type 1) or dietary intervention (type 2). Cryosections of the hippocampus were prepared and analyzed on an MM8 AFM (Bruker) in Peak Force Quantitative Nanomechanics mode, performing 25 μm2 scans in 9 regions of 3 samples from each group. Ultrastructural and nanomechanical data such as surface roughness, area, volume, Young's modulus, and adhesion were evaluated. The hippocampal samples were also analyzed on a T64000 Spectrometer (Horiba), using a laser λ = 632.8 nm, and for each sample, four spectra were obtained in different regions. AFM analyses show changes on the ultrastructural scale since diabetic animals had hippocampal tissue with greater roughness and volume. Meanwhile, diabetic tissues had decreased adhesion and Young's modulus compared to control tissues. These were corroboratedby Raman data that shows changes in the molecular composition of diabetic tissues. The individual spectra show that the most significant changes are in the amide, cholesterol, and lipid bands. Overall, the data presented here show that hyperglycemia induces biophysical alterations in the hippocampal tissue of diabetic rats, providing novel biophysical and vibrational cues on the relationship between hyperglycemia and dementia.
Collapse
Affiliation(s)
- Maria
Do Socorro Do Nascimento Amorim
- Federal
University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
- Federal
University of Maranhão, University
School, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
| | - Erick Rafael Dias Rates
- Federal
University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
| | - de Araujo Costa
Melo Isabela Vitoria
- Federal
University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
| | - Joel Félix Silva Diniz Filho
- Federal
University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
| | - Clenilton Costa dos Santos
- Federal
University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
| | - Ralph Santos-Oliveira
- Brazilian
Nuclear Energy Commission, Nuclear Engineering
Institute, Rio de
Janeiro 21941906, Brazil
- Rio
de Janeiro State University, Laboratory
of Nanoradiopharmacy, Rio de Janeiro 23070200, Brazil
| | - Renato Simões Gaspar
- Campinas
State University, Translational Medicine
Department, Campinas, Sao Paulo 13083888, Brazil
| | - Jonas Rodrigues Sanches
- Federal
University of Maranhão, Department of Physiological Sciences, Laboratory of Experimental
Physiology, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
| | - Bruno Araújo Serra Pinto
- Federal
University of Maranhão, Department of Physiological Sciences, Laboratory of Experimental
Physiology, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
| | - Antonio Marcus de Andrade Paes
- Federal
University of Maranhão, Department of Physiological Sciences, Laboratory of Experimental
Physiology, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Federal
University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
| |
Collapse
|
3
|
Eliahoo P, Setayesh H, Hoffman T, Wu Y, Li S, Treweek JB. Viscoelasticity in 3D Cell Culture and Regenerative Medicine: Measurement Techniques and Biological Relevance. ACS MATERIALS AU 2024; 4:354-384. [PMID: 39006396 PMCID: PMC11240420 DOI: 10.1021/acsmaterialsau.3c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 07/16/2024]
Abstract
The field of mechanobiology is gaining prominence due to recent findings that show cells sense and respond to the mechanical properties of their environment through a process called mechanotransduction. The mechanical properties of cells, cell organelles, and the extracellular matrix are understood to be viscoelastic. Various technologies have been researched and developed for measuring the viscoelasticity of biological materials, which may provide insight into both the cellular mechanisms and the biological functions of mechanotransduction. Here, we explain the concept of viscoelasticity and introduce the major techniques that have been used to measure the viscoelasticity of various soft materials in different length- and timescale frames. The topology of the material undergoing testing, the geometry of the probe, the magnitude of the exerted stress, and the resulting deformation should be carefully considered to choose a proper technique for each application. Lastly, we discuss several applications of viscoelasticity in 3D cell culture and tissue models for regenerative medicine, including organoids, organ-on-a-chip systems, engineered tissue constructs, and tunable viscoelastic hydrogels for 3D bioprinting and cell-based therapies.
Collapse
Affiliation(s)
- Payam Eliahoo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089 United States
| | - Hesam Setayesh
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089 United States
| | - Tyler Hoffman
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Yifan Wu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Jennifer B Treweek
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089 United States
| |
Collapse
|
4
|
Orzeł U, Pasznik P, Miszta P, Lorkowski M, Niewieczerzał S, Jakowiecki J, Filipek S. GS-SMD server for steered molecular dynamics of peptide substrates in the active site of the γ-secretase complex. Nucleic Acids Res 2023:7173862. [PMID: 37207343 DOI: 10.1093/nar/gkad409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/15/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023] Open
Abstract
Despite recent advances in research, the mechanism of Alzheimer's disease is not fully understood yet. Understanding the process of cleavage and then trimming of peptide substrates, can help selectively block γ-secretase (GS) to stop overproduction of the amyloidogenic products. Our GS-SMD server (https://gs-smd.biomodellab.eu/) allows cleaving and unfolding of all currently known GS substrates (more than 170 peptide substrates). The substrate structure is obtained by threading of the substrate sequence into the known structure of GS complex. The simulations are performed in an implicit water-membrane environment so they are performed rather quickly, 2-6 h per job, depending on the mode of calculations (part of GS complex or the whole structure). It is also possible to introduce mutations to the substrate and GS and pull any part of the substrate in any direction using the steered molecular dynamics (SMD) simulations with constant velocity. The obtained trajectories are visualized and analyzed in the interactive way. One can also compare multiple simulations using the interaction frequency analysis. GS-SMD server can be useful for revealing mechanisms of substrate unfolding and role of mutations in this process.
Collapse
Affiliation(s)
- Urszula Orzeł
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Paweł Pasznik
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Przemysław Miszta
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Marcin Lorkowski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Szymon Niewieczerzał
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Jakub Jakowiecki
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Islam F, Purkait D, Mishra PP. Insights into the Dynamics and Helicase Activity of RecD2 of Deinococcus radiodurans during DNA Repair: A Single-Molecule Perspective. J Phys Chem B 2023; 127:4351-4363. [PMID: 37163679 DOI: 10.1021/acs.jpcb.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
While the double helix is the most stable conformation of DNA inside cells, its transient unwinding and subsequent partial separation of the two complementary strands yields an intermediate single-stranded DNA (ssDNA). The ssDNA is involved in all major DNA transactions such as replication, transcription, recombination, and repair. The process of DNA unwinding and translocation is shouldered by helicases that transduce the chemical energy derived from nucleotide triphosphate (NTP) hydrolysis to mechanical energy and utilize it to destabilize hydrogen bonds between complementary base pairs. Consequently, a comprehensive understanding of the molecular mechanisms of these enzymes is essential. In the last few decades, a combination of single-molecule techniques (force-based manipulation and visualization) have been employed to study helicase action. These approaches have allowed researchers to study the single helicase-DNA complex in real-time and the free energy landscape of their interaction together with the detection of conformational intermediates and molecular heterogeneity during the course of helicase action. Furthermore, the unique ability of these techniques to resolve helicase motion at nanometer and millisecond spatial and temporal resolutions, respectively, provided surprising insights into their mechanism of action. This perspective outlines the contribution of single-molecule methods in deciphering molecular details of helicase activities. It also exemplifies how each technique was or can be used to study the helicase action of RecD2 in recombination DNA repair.
Collapse
Affiliation(s)
- Farhana Islam
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Debayan Purkait
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Padmaja Prasad Mishra
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
6
|
Nandi T, Ainavarapu SRK. Native Salt Bridges Are a Key Regulator of Ubiquitin's Mechanical Stability. J Phys Chem B 2022; 126:3505-3511. [PMID: 35535497 DOI: 10.1021/acs.jpcb.2c00972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although it is known that various intramolecular interactions determine protein mechanical stability, a detailed molecular-level understanding of the key regulators of protein mechanical stability is still lacking. Here, we present evidence for salt bridges in ubiquitin as important intramolecular interactions that can affect protein mechanical stability. Ubiquitin has two salt bridges: one relatively surface-exposed (SB1:K11-E34) and the other relatively buried (SB2:K27-D52). Ubiquitin is a reversible post-translational modifier and is stable mechanically (Favgu = 185 pN). On breaking SB1, the mechanical stability of ubiquitin is slightly enhanced (Favgu = 193 pN). In contrast, the mechanical stability significantly decreased upon breaking SB2 (Favgu = 158 pN). These results suggest that SB1 are SB2 are regulators of the mechanical stability of ubiquitin. Interestingly, the mechanical stability decreased further (Favgu = 145 pN) for the double salt bridge (DB) null variant. Monte Carlo simulations elucidate that the main regulating factor is the spontaneous unfolding rate constant (ku0), being the highest for the DB null variant followed by the SB2 null variant, and it remains unaltered for the SB1 null variant, while the native-to-transition-state distance (xu) remains unchanged. Our study provides mechanistic understanding on how two native salt bridges can independently regulate the mechanical stability in a protein, which has implications in designing protein-based robust biomaterials in the future.
Collapse
Affiliation(s)
- Tathagata Nandi
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Sri Rama Koti Ainavarapu
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
7
|
Sarkar A. Biosensing, Characterization of Biosensors, and Improved Drug Delivery Approaches Using Atomic Force Microscopy: A Review. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.798928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Since its invention, atomic force microscopy (AFM) has come forth as a powerful member of the “scanning probe microscopy” (SPM) family and an unparallel platform for high-resolution imaging and characterization for inorganic and organic samples, especially biomolecules, biosensors, proteins, DNA, and live cells. AFM characterizes any sample by measuring interaction force between the AFM cantilever tip (the probe) and the sample surface, and it is advantageous over other SPM and electron micron microscopy techniques as it can visualize and characterize samples in liquid, ambient air, and vacuum. Therefore, it permits visualization of three-dimensional surface profiles of biological specimens in the near-physiological environment without sacrificing their native structures and functions and without using laborious sample preparation protocols such as freeze-drying, staining, metal coating, staining, or labeling. Biosensors are devices comprising a biological or biologically extracted material (assimilated in a physicochemical transducer) that are utilized to yield electronic signal proportional to the specific analyte concentration. These devices utilize particular biochemical reactions moderated by isolated tissues, enzymes, organelles, and immune system for detecting chemical compounds via thermal, optical, or electrical signals. Other than performing high-resolution imaging and nanomechanical characterization (e.g., determining Young’s modulus, adhesion, and deformation) of biosensors, AFM cantilever (with a ligand functionalized tip) can be transformed into a biosensor (microcantilever-based biosensors) to probe interactions with a particular receptors of choice on live cells at a single-molecule level (using AFM-based single-molecule force spectroscopy techniques) and determine interaction forces and binding kinetics of ligand receptor interactions. Targeted drug delivery systems or vehicles composed of nanoparticles are crucial in novel therapeutics. These systems leverage the idea of targeted delivery of the drug to the desired locations to reduce side effects. AFM is becoming an extremely useful tool in figuring out the topographical and nanomechanical properties of these nanoparticles and other drug delivery carriers. AFM also helps determine binding probabilities and interaction forces of these drug delivery carriers with the targeted receptors and choose the better agent for drug delivery vehicle by introducing competitive binding. In this review, we summarize contributions made by us and other researchers so far that showcase AFM as biosensors, to characterize other sensors, to improve drug delivery approaches, and to discuss future possibilities.
Collapse
|
8
|
Kravanja KA, Finšgar M. Analytical Techniques for the Characterization of Bioactive Coatings for Orthopaedic Implants. Biomedicines 2021; 9:1936. [PMID: 34944750 PMCID: PMC8698289 DOI: 10.3390/biomedicines9121936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022] Open
Abstract
The development of bioactive coatings for orthopedic implants has been of great interest in recent years in order to achieve both early- and long-term osseointegration. Numerous bioactive materials have been investigated for this purpose, along with loading coatings with therapeutic agents (active compounds) that are released into the surrounding media in a controlled manner after surgery. This review initially focuses on the importance and usefulness of characterization techniques for bioactive coatings, allowing the detailed evaluation of coating properties and further improvements. Various advanced analytical techniques that have been used to characterize the structure, interactions, and morphology of the designed bioactive coatings are comprehensively described by means of time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), 3D tomography, quartz crystal microbalance (QCM), coating adhesion, and contact angle (CA) measurements. Secondly, the design of controlled-release systems, the determination of drug release kinetics, and recent advances in drug release from bioactive coatings are addressed as the evaluation thereof is crucial for improving the synthesis parameters in designing optimal bioactive coatings.
Collapse
Affiliation(s)
| | - Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia;
| |
Collapse
|