1
|
Vigh-Larsen JF, Ørtenblad N, Nielsen J, Emil Andersen O, Overgaard K, Mohr M. The Role of Muscle Glycogen Content and Localization in High-Intensity Exercise Performance: A Placebo-Controlled Trial. Med Sci Sports Exerc 2022; 54:2073-2086. [PMID: 35868015 DOI: 10.1249/mss.0000000000003002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE We investigated the coupling between muscle glycogen content and localization and high-intensity exercise performance using a randomized, placebo-controlled, parallel-group design with emphasis on single-fiber subcellular glycogen concentrations and sarcoplasmic reticulum Ca 2+ kinetics. METHODS Eighteen well-trained participants performed high-intensity intermittent glycogen-depleting exercise, followed by randomization to a high- (CHO; ~1 g CHO·kg -1 ·h -1 ; n = 9) or low-carbohydrate placebo diet (PLA, <0.1 g CHO·kg -1 ·h -1 ; n = 9) for a 5-h recovery period. At baseline, after exercise, and after the carbohydrate manipulation assessments of repeated sprint ability (5 × 6-s maximal cycling sprints with 24 s of rest), neuromuscular function and ratings of perceived exertion during standardized high-intensity cycling (~90% Wmax ) were performed, while muscle and blood samples were collected. RESULTS The exercise and carbohydrate manipulations led to distinct muscle glycogen concentrations in CHO and PLA at the whole-muscle (291 ± 78 vs 175 ± 100 mmol·kg -1 dry weight (dw), P = 0.020) and subcellular level in each of three local regions ( P = 0.001-0.046). This was coupled with near-depleted glycogen concentrations in single fibers of both main fiber types in PLA, especially in the intramyofibrillar region (within the myofibrils). Furthermore, increased ratings of perceived exertion and impaired repeated sprint ability (~8% loss, P < 0.001) were present in PLA, with the latter correlating moderately to very strongly ( r = 0.47-0.71, P = 0.001-0.049) with whole-muscle glycogen and subcellular glycogen fractions. Finally, sarcoplasmic reticulum Ca 2+ uptake, but not release, was superior in CHO, whereas neuromuscular function, including prolonged low-frequency force depression, was unaffected by dietary manipulation. CONCLUSIONS Together, these results support an important role of muscle glycogen availability for high-intensity exercise performance, which may be mediated by reductions in single-fiber levels, particularly in distinct subcellular regions, despite only moderately lowered whole-muscle glycogen concentrations.
Collapse
Affiliation(s)
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, DENMARK
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, DENMARK
| | | | | | | |
Collapse
|
2
|
Ca(2+) permeation and/or binding to CaV1.1 fine-tunes skeletal muscle Ca(2+) signaling to sustain muscle function. Skelet Muscle 2015; 5:4. [PMID: 25717360 PMCID: PMC4340672 DOI: 10.1186/s13395-014-0027-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/11/2014] [Indexed: 11/13/2022] Open
Abstract
Background Ca2+ influx through CaV1.1 is not required for skeletal muscle excitation-contraction coupling, but whether Ca2+ permeation through CaV1.1 during sustained muscle activity plays a functional role in mammalian skeletal muscle has not been assessed. Methods We generated a mouse with a Ca2+ binding and/or permeation defect in the voltage-dependent Ca2+ channel, CaV1.1, and used Ca2+ imaging, western blotting, immunohistochemistry, proximity ligation assays, SUnSET analysis of protein synthesis, and Ca2+ imaging techniques to define pathways modulated by Ca2+ binding and/or permeation of CaV1.1. We also assessed fiber type distributions, cross-sectional area, and force frequency and fatigue in isolated muscles. Results Using mice with a pore mutation in CaV1.1 required for Ca2+ binding and/or permeation (E1014K, EK), we demonstrate that CaV1.1 opening is coupled to CaMKII activation and refilling of sarcoplasmic reticulum Ca2+ stores during sustained activity. Decreases in these Ca2+-dependent enzyme activities alter downstream signaling pathways (Ras/Erk/mTORC1) that lead to decreased muscle protein synthesis. The physiological consequences of the permeation and/or Ca2+ binding defect in CaV1.1 are increased fatigue, decreased fiber size, and increased Type IIb fibers. Conclusions While not essential for excitation-contraction coupling, Ca2+ binding and/or permeation via the CaV1.1 pore plays an important modulatory role in muscle performance. Electronic supplementary material The online version of this article (doi:10.1186/s13395-014-0027-1) contains supplementary material, which is available to authorized users.
Collapse
|
3
|
Bacterial peptidoglycan stimulates adipocyte lipolysis via NOD1. PLoS One 2014; 9:e97675. [PMID: 24828250 PMCID: PMC4020832 DOI: 10.1371/journal.pone.0097675] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 04/23/2014] [Indexed: 01/07/2023] Open
Abstract
Obesity is associated with inflammation that can drive metabolic defects such as hyperlipidemia and insulin resistance. Specific metabolites can contribute to inflammation, but nutrient intake and obesity are also associated with altered bacterial load in metabolic tissues (i.e. metabolic endotoxemia). These bacterial cues can contribute to obesity-induced inflammation. The specific bacterial components and host receptors that underpin altered metabolic responses are emerging. We previously showed that Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) activation with bacterial peptidoglycan (PGN) caused insulin resistance in mice. We now show that PGN induces cell-autonomous lipolysis in adipocytes via NOD1. Specific bacterial PGN motifs stimulated lipolysis in white adipose tissue (WAT) explants from WT, but not NOD1−/− mice. NOD1-activating PGN stimulated mitogen activated protein kinases (MAPK),protein kinase A (PKA), and NF-κB in 3T3-L1 adipocytes. The NOD1-mediated lipolysis response was partially reduced by inhibition of ERK1/2 or PKA alone, but not c-Jun N-terminal kinase (JNK). NOD1-stimulated lipolysis was partially dependent on NF-κB and was completely suppressed by inhibiting ERK1/2 and PKA simultaneously or hormone sensitive lipase (HSL). Our results demonstrate that bacterial PGN stimulates lipolysis in adipocytes by engaging a stress kinase, PKA, NF-κB-dependent lipolytic program. Bacterial NOD1 activation is positioned as a component of metabolic endotoxemia that can contribute to hyperlipidemia, systemic inflammation and insulin resistance by acting directly on adipocytes.
Collapse
|
4
|
Bendiksen M, Bischoff R, Randers MB, Mohr M, Rollo I, Suetta C, Bangsbo J, Krustrup P. The Copenhagen Soccer Test: physiological response and fatigue development. Med Sci Sports Exerc 2013; 44:1595-603. [PMID: 22330015 DOI: 10.1249/mss.0b013e31824cc23b] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The aims of the study were 1) to evaluate whether a multifaceted simulated soccer game protocol, entitled the Copenhagen Soccer Test (CST), elicited a similar physiological loading as a competitive game (CG) and 2) to determine muscle metabolites, blood variables, and sprint performance in various phases of CST. METHODS Twelve Danish Second- and Third-Division soccer players participated in the study. On separate days, HR measurements, frequent blood sampling, and physical/technical tests were performed during 60- and 90-min versions of the CST during which repeated musculus vastus lateralis biopsies were collected. A CG was also played, where HR was recorded and pre- and post-game muscle biopsies and blood samples were collected. RESULTS No differences were observed between CST and CG in average HR (85% ± 1% and 86% ± 1% HRmax, P > 0.05) or recovery plasma creatine kinase (24 h: 312 ± 57 and 324 ± 76 U·L, P > 0.05). Muscle glycogen decreased (P < 0.05) from 459 ± 15 to 232 ± 30 mmol·kg dry weight (d.w.) during CST, which was not different from CG (P > 0.05). The rate of glycogen utilization was 4 ± 1 mmol·kg d.w.·min during the warm-up and the first 15 min of CST and 1 ± 1 mmol·kg d.w.·min (P < 0.05) from 60 to 90 min of CST. After 15 min of CST, muscle lactate was elevated (P < 0.05) approximately fivefold (24 ± 3 mmol·kg d.w.), and creatine phosphate was lowered (P < 0.05) by ∼60% (28 ± 4 mmol·kg d.w.). Sprint velocity (2 × 20 m) decreased (P < 0.05) by 7% during CST (5.2 ± 0.6 to 4.9 ± 0.7 m·s). CONCLUSIONS The physiological response to the CST was reproducible and comparable to that of high-level CG. The CST allowed for rapid muscle sampling and revealed high creatine phosphate degradation throughout the test and a lowered glycogen utilization toward the end of the simulated game.
Collapse
Affiliation(s)
- Mads Bendiksen
- Section of Human Physiology, Department of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Maximal voluntary contraction force, SR function and glycogen resynthesis during the first 72 h after a high-level competitive soccer game. Eur J Appl Physiol 2011; 111:2987-95. [PMID: 21448723 DOI: 10.1007/s00421-011-1919-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 03/08/2011] [Indexed: 10/18/2022]
Abstract
The aim of this study was to examine maximal voluntary knee-extensor contraction force (MVC force), sarcoplasmic reticulum (SR) function and muscle glycogen levels in the days after a high-level soccer game when players ingested an optimised diet. Seven high-level male soccer players had a vastus lateralis muscle biopsy and a blood sample collected in a control situation and at 0, 24, 48 and 72 h after a competitive soccer game. MVC force, SR function, muscle glycogen, muscle soreness and plasma myoglobin were measured. MVC force sustained over 1 s was 11 and 10% lower (P < 0.05) after 0 and 24 h, respectively, compared with control. The rate of SR Ca(2+) uptake at 800 nM [Ca(2+)](free) was lower (P < 0.05) after 0 h (2.5 μmol Ca(2+) g prot(-1) min(-1)) than for all other time points (24 h: 5.1 μmol Ca(2+) g prot(-1) min(-1)). However, SR Ca(2+) release rate was not affected. Plasma myoglobin was sixfold higher (P < 0.05) immediately after the game, but normalised 24 h after the game. Quadriceps muscle soreness (0-10 VAS-scale) was higher (P < 0.05) after 0 h (3.6), 24 h (1.8), 48 h (1.1) and 72 h (1.4) compared with control (0.1). Muscle glycogen was 57 and 27% lower (P < 0.001) 0 and 24 h after the game compared with control (193 and 328 vs. 449 mmol kg d w(-1)). In conclusion, maximal voluntary contraction force and SR Ca(2+) uptake were impaired and muscle soreness was elevated after a high-level soccer game, with faster recovery of SR function in comparison with MVC force, soreness and muscle glycogen.
Collapse
|
6
|
Abstract
Skeletal muscle is a malleable tissue capable of altering the type and amount of protein in response to disruptions to cellular homeostasis. The process of exercise-induced adaptation in skeletal muscle involves a multitude of signalling mechanisms initiating replication of specific DNA genetic sequences, enabling subsequent translation of the genetic message and ultimately generating a series of amino acids that form new proteins. The functional consequences of these adaptations are determined by training volume, intensity and frequency, and the half-life of the protein. Moreover, many features of the training adaptation are specific to the type of stimulus, such as the mode of exercise. Prolonged endurance training elicits a variety of metabolic and morphological changes, including mitochondrial biogenesis, fast-to-slow fibre-type transformation and substrate metabolism. In contrast, heavy resistance exercise stimulates synthesis of contractile proteins responsible for muscle hypertrophy and increases in maximal contractile force output. Concomitant with the vastly different functional outcomes induced by these diverse exercise modes, the genetic and molecular mechanisms of adaptation are distinct. With recent advances in technology, it is now possible to study the effects of various training interventions on a variety of signalling proteins and early-response genes in skeletal muscle. Although it cannot presently be claimed that such scientific endeavours have influenced the training practices of elite athletes, these new and exciting technologies have provided insight into how current training techniques result in specific muscular adaptations, and may ultimately provide clues for future and novel training methodologies. Greater knowledge of the mechanisms and interaction of exercise-induced adaptive pathways in skeletal muscle is important for our understanding of the aetiology of disease, maintenance of metabolic and functional capacity with aging, and training for athletic performance. This article highlights the effects of exercise on molecular and genetic mechanisms of training adaptation in skeletal muscle.
Collapse
Affiliation(s)
- Vernon G Coffey
- School of Medical Sciences, Exercise Metabolism Group, RMIT University, Melbourne, Victoria, Australia
| | | |
Collapse
|
7
|
Duhamel TA, Green HJ, Stewart RD, Foley KP, Smith IC, Ouyang J. Muscle metabolic, SR Ca2+-cycling responses to prolonged cycling, with and without glucose supplementation. J Appl Physiol (1985) 2007; 103:1986-98. [DOI: 10.1152/japplphysiol.01440.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study investigated the effects of prolonged exercise, with and without glucose supplementation, on metabolism and sarcoplasmic reticulum (SR) Ca2+-handling properties in working vastus lateralis muscle. Fifteen untrained volunteers [peak O2consumption (V̇o2peak) = 3.45 ± 0.17 l/min; mean ± SE] cycled at ∼60% V̇o2peakon two occasions, during which they were provided with either an artificially sweetened placebo beverage (NG) or a 6% glucose (G) beverage (∼1.00 g carbohydrate/kg body mass). Beverage supplementation started at 30 min of exercise and continued every 15 min thereafter. SR Ca2+handling, metabolic, and substrate responses were assessed in tissue extracted from the vastus lateralis at rest, after 30 min and 90 min of exercise, and at fatigue in both conditions. Plasma glucose during G was 15–23% higher ( P < 0.05) than those observed during NG following 60 min of exercise until fatigue. Cycle time to fatigue was increased ( P < 0.05) by ∼19% during G (137 ± 7 min) compared with NG (115 ± 6 min). Prolonged exercise reduced ( P < 0.05) maximal Ca2+-ATPase activity (−18.4%), SR Ca2+uptake (−27%), and both Phase 1 (−22.2%) and Phase 2 (−34.2%) Ca2+-release rates during NG. The exercise-induced reductions in SR Ca2+-cycling properties were not altered during G. The metabolic responses to exercise were all unaltered by glucose supplementation, since no differences in respiratory exchange ratios, carbohydrate and lipid oxidation rates, and muscle metabolite and glycogen contents were observed between NG and G. These results indicate that the maintenance of blood glucose homeostasis by glucose supplementation is without effect in modifying the muscle metabolic, endogenous glycogen, or SR Ca2+-handling responses.
Collapse
|
8
|
Nielsen JS, Sahlin K, Ørtenblad N. Reduced sarcoplasmic reticulum content of releasable Ca2+ in rat soleus muscle fibres after eccentric contractions. Acta Physiol (Oxf) 2007; 191:217-28. [PMID: 17635412 DOI: 10.1111/j.1748-1716.2007.01732.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM The purpose was to evaluate the effects of fatiguing eccentric contractions (EC) on calcium (Ca2+) handling properties in mammalian type I muscles. We hypothesized that EC reduces both endogenous sarcoplasmic reticulum (SR) content of releasable Ca2+ (eSRCa2+) and myofibrillar Ca2+ sensitivity. METHODS Isolated rat soleus muscles performed 30 EC bouts. Single fibres were isolated from the muscle and after mechanical removal of sarcolemma used to measure eSRCa2+, rate of SR Ca2+ loading and myofibrillar Ca2+ sensitivity. RESULTS Following EC maximal force in whole muscle was reduced by 30% and 16/100 Hz force ratio by 33%. The eSRCa2+ in fibres from non-stimulated muscles was 45 +/- 5% of the maximal loading capacity. After EC, eSRCa2+ per fibre CSA decreased by 38% (P = 0.05), and the maximal capacity of SR Ca2+ loading was depressed by 32%. There were no effects of EC on either myofibrillar Ca2+ sensitivity, maximal Ca2+ activated force per cross-sectional area and rate of SR Ca2+ loading, or in SR vesicle Ca2+ uptake and release. CONCLUSIONS We conclude that EC reduces endogenous SR content of releasable Ca2+ but that myofibrillar Ca2+ sensitivity and SR vesicle Ca2+ kinetics remain unchanged. The present data suggest that the long-lasting fatigue induced by EC, which was more pronounced at low frequencies (low frequency fatigue), is caused by reduced Ca2+ release occurring secondary to reduced SR content of releasable Ca2+.
Collapse
Affiliation(s)
- J S Nielsen
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | | | | |
Collapse
|
9
|
Coffey VG, Hawley JA. The molecular bases of training adaptation. SPORTS MEDICINE (AUCKLAND, N.Z.) 2007. [PMID: 17722947 DOI: 10.2165/00007256-200737090-00001.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Skeletal muscle is a malleable tissue capable of altering the type and amount of protein in response to disruptions to cellular homeostasis. The process of exercise-induced adaptation in skeletal muscle involves a multitude of signalling mechanisms initiating replication of specific DNA genetic sequences, enabling subsequent translation of the genetic message and ultimately generating a series of amino acids that form new proteins. The functional consequences of these adaptations are determined by training volume, intensity and frequency, and the half-life of the protein. Moreover, many features of the training adaptation are specific to the type of stimulus, such as the mode of exercise. Prolonged endurance training elicits a variety of metabolic and morphological changes, including mitochondrial biogenesis, fast-to-slow fibre-type transformation and substrate metabolism. In contrast, heavy resistance exercise stimulates synthesis of contractile proteins responsible for muscle hypertrophy and increases in maximal contractile force output. Concomitant with the vastly different functional outcomes induced by these diverse exercise modes, the genetic and molecular mechanisms of adaptation are distinct. With recent advances in technology, it is now possible to study the effects of various training interventions on a variety of signalling proteins and early-response genes in skeletal muscle. Although it cannot presently be claimed that such scientific endeavours have influenced the training practices of elite athletes, these new and exciting technologies have provided insight into how current training techniques result in specific muscular adaptations, and may ultimately provide clues for future and novel training methodologies. Greater knowledge of the mechanisms and interaction of exercise-induced adaptive pathways in skeletal muscle is important for our understanding of the aetiology of disease, maintenance of metabolic and functional capacity with aging, and training for athletic performance. This article highlights the effects of exercise on molecular and genetic mechanisms of training adaptation in skeletal muscle.
Collapse
Affiliation(s)
- Vernon G Coffey
- School of Medical Sciences, Exercise Metabolism Group, RMIT University, Melbourne, Victoria, Australia
| | | |
Collapse
|
10
|
Chen W, Ruell PA, Ghoddusi M, Kee A, Hardeman EC, Hoffman KM, Thompson MW. Ultrastructural changes and sarcoplasmic reticulum Ca2+ regulation in red vastus muscle following eccentric exercise in the rat. Exp Physiol 2006; 92:437-47. [PMID: 17138618 DOI: 10.1113/expphysiol.2006.036442] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study examined the effects of a bout of low-intensity, prolonged downhill exercise on sarcoplasmic reticulum (SR) Ca(2+)-ATPase activity, Ca(2+) uptake and release in rat red vastus muscle. Ionophore stimulation was determined to assess vesicle integrity by measuring the ratio of Ca(2+)-ATPase activities in the presence and absence of A23187. Observations of the muscle ultrastructure were made to evaluate muscle damage at the level of the myofibrils and SR. Adult male Sprague-Dawley rats (weight, 395 +/- 5.9 g) were either assigned as non-exercise controls or subjected to 90 min of downhill treadmill exercise (-16 deg; 15 m min(-1)), and then killed immediately, 4, 24, 48, 72 or 144 h after exercise (n = 7). Calcium uptake was significantly lower (P < 0.05) compared with control values (19.25 +/- 1.38 nmol min(-1) (mg protein)(-1)), by 29 and 36% immediately and 4 h postexercise, respectively, and remained depressed (P < 0.05) 24 h postexercise. Calcium release was also significantly lower (P < 0.05) compared with control values (31.06 +/- 2.36 nmol min(-1) (mg protein)(-1)), by 37 and 39% immediately and 4 h postexercise, respectively, and remained depressed (P < 0.05) 24 h postexercise. Ca(2+)-ATPase activity measured with ionophore was 31% lower (P < 0.05) 4 h postexercise, and remained lower (P < 0.05) 24 h postexercise. The ratio of Ca(2+)-ATPase activities in the presence and absence of A23187 was not significantly changed after exercise, indicating that membrane integrity was not altered by the exercise. Focal dilatations of the SR were observed immediately and 4 h following exercise, implying that SR may be susceptible to damage in the localized regions of overstretched sarcomeres. The results demonstrate that a bout of low-intensity, prolonged downhill exercise results in a long-lasting depression of SR function that is not fully restored after 2 days of recovery, which may underlie some functional impairments induced by eccentric exercise.
Collapse
Affiliation(s)
- Wan Chen
- School of Exercise & Sport Science, The University of Sydney, Sydney, NSW 1825, Australia
| | | | | | | | | | | | | |
Collapse
|
11
|
Duhamel TA, Green HJ, Perco JG, Ouyang J. Comparative effects of a low-carbohydrate diet and exercise plus a low-carbohydrate diet on muscle sarcoplasmic reticulum responses in males. Am J Physiol Cell Physiol 2006; 291:C607-17. [PMID: 16707551 DOI: 10.1152/ajpcell.00643.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We employed a glycogen-depleting session of exercise followed by a low-carbohydrate (CHO) diet to investigate modifications that occur in muscle sarcoplasmic reticulum (SR) Ca2+-cycling properties compared with low-CHO diet alone. SR properties were assessed in nine untrained males [peak aerobic power (V̇o2 peak) = 43.6 ± 2.6 (SE) ml·kg−1·min−1] during prolonged cycle exercise to fatigue performed at ∼58% V̇o2 peakafter 4 days of low-CHO diet (Lo CHO) and after glycogen-depleting exercise plus 4 days of low-CHO (Ex+Lo CHO). Compared with Lo CHO, Ex+Lo CHO resulted in 12% lower ( P < 0.05) resting maximal Ca2+-ATPase activity ( Vmax= 174 ± 12 vs. 153 ± 10 μmol·g protein−1·min−1) and smaller reduction in Vmaxinduced during exercise. A similar effect was observed for Ca2+uptake. The Hill coefficient, defined as slope of the relationship between cytosolic free Ca2+concentration and Ca2+-ATPase activity, was higher ( P < 0.05) at rest (2.07 ± 0.15 vs. 1.90 ± 0.10) with Ex+Lo CHO, an effect that persisted throughout the exercise. The coupling ratio, defined as the ratio of Ca2+uptake to Vmax, was 23–30% elevated ( P < 0.05) at rest and during the first 60 min of exercise with Ex+Lo CHO. The ∼27 and 34% reductions ( P < 0.05) in phase 1 and phase 2 Ca2+release, respectively, observed during exercise with Lo CHO were not altered by Ex+Lo CHO. These results indicate that when prolonged exercise precedes a short-term Lo CHO diet, Ca2+sequestration properties and efficiency are improved compared with those during Lo CHO alone.
Collapse
Affiliation(s)
- T A Duhamel
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | | |
Collapse
|
12
|
Duhamel TA, Green HJ, Perco JG, Ouyang J. Effects of prior exercise and a low-carbohydrate diet on muscle sarcoplasmic reticulum function during cycling in women. J Appl Physiol (1985) 2006; 101:695-706. [PMID: 16709650 DOI: 10.1152/japplphysiol.00052.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of exercise and diet on sarcoplasmic reticulum Ca(2+)-cycling properties in female vastus lateralis muscle were investigated in two groups of women following four different conditions. The conditions were 4 days of a low-carbohydrate (Lo CHO) and glycogen-depleting exercise plus a Lo CHO diet (Ex + Lo CHO) (experiment 2) and 4 days of normal CHO (Norm CHO) and glycogen-depleting exercise plus Norm CHO (Ex + Norm CHO) (experiment 1). Peak aerobic power (Vo2peak)) was 38.1 +/- 1.4 (SE); n = 9 and 35.6 +/- 1.4 ml.kg(-1).min(-1); n = 9, respectively. Sarcoplasmic reticulum properties measured in vitro in homogenates (micromol.g protein(-1).min(-1)) indicated exercise-induced reductions (P < 0.05) in maximal Ca(2+)-ATPase activity (0 > 30, 60 min > fatigue), Ca(2+) uptake (0 > 30 > 60 min, fatigue), and Ca(2+) release, both phase 1 (0, 30 > 60 min, fatigue) and phase 2 (0 > 30, 60 min, fatigue; 30 min > fatigue) in Norm CHO. Exercise was without effect in altering the Hill slope (n(H)), defined as the slope of relationship between Ca(2+)-ATPase activity and Ca(2+) concentration. No differences were observed between Norm CHO and Ex+Norm CHO. Compared with Norm CHO, Lo CHO resulted in a lower (P < 0.05) Ca(2+) uptake, phase 1 Ca(2+) release (30 min), and n(H). Ex + Lo CHO resulted in a greater (P < 0.05) Ca(2+) uptake and n(H) compared with Lo CHO. The results demonstrate that Lo CHO alone can disrupt SR Ca(2+) cycling and that, with the exception of Ca(2+) release, a glycogen-depleting session of exercise before Lo CHO can reverse the effects.
Collapse
Affiliation(s)
- T A Duhamel
- Dept. of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | |
Collapse
|
13
|
Duhamel TA, Perco JG, Green HJ. Manipulation of dietary carbohydrates after prolonged effort modifies muscle sarcoplasmic reticulum responses in exercising males. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1100-10. [PMID: 16690765 DOI: 10.1152/ajpregu.00858.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hypothesis tested was that disturbances in the sarcoplasmic reticulum (SR) Ca2+-cycling responses to exercise would associate with muscle glycogen reserves. Ten untrained males [peak O2 consumption (VO2 peak) = 3.41 +/- 0.20 (SE) l/min] performed a standardized cycle test (approximately 70% VO2 peak) on two occasions, namely, following 4 days of a high (Hi CHO)- and 4 days of a low (Lo CHO)-carbohydrate diet. Both Hi CHO and Lo CHO were preceded by a session of prolonged exercise designed to deplete muscle glycogen. SR Ca2+ cycling in crude homogenates prepared from vastus lateralis samples indicated higher (P < 0.05) Ca2+ uptake (microM x g protein(-1) x min(-1)) in Hi CHO compared with Lo CHO at 30 min (2.93 +/- 0.10 vs. 2.23 +/- 0.12) and at 67 min (2.77 +/- 0.16 vs. 2.10 +/- 0.12) of exercise, the point of fatigue in Lo CHO. Similar effects (P < 0.05) were noted between conditions for maximal Ca2+-ATPase (microM x g protein(-1) x min(-1)) at 30 min (142 +/- 8.5 vs. 107 +/- 5.0) and at 67 min (130 +/- 4.5 vs. 101 +/- 4.7). Both phase 1 and phase 2 Ca2+ release were 23 and 37% higher (P < 0.05) at 30 min of exercise and 15 and 34% higher (P < 0.05), at 67 min during Hi CHO compared with Lo CHO, respectively. No differences between conditions were observed at rest for any of these SR properties. Total muscle glycogen (mmol glucosyl units/kg dry wt) was higher (P < 0.05) in Hi CHO compared with Lo CHO at rest (+36%), 30 min (+53%), and at 67 min (+44%) of cycling. These results indicate that exercise-induced reductions in SR Ca2+-cycling properties occur earlier in exercise during low glycogen states compared with high glycogen states.
Collapse
Affiliation(s)
- T A Duhamel
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | |
Collapse
|
14
|
Holloway GP, Green HJ, Tupling AR. Differential effects of repetitive activity on sarcoplasmic reticulum responses in rat muscles of different oxidative potential. Am J Physiol Regul Integr Comp Physiol 2005; 290:R393-404. [PMID: 16179493 DOI: 10.1152/ajpregu.00006.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the hypothesis that muscles of different oxidative potential would display differences in sarcoplasmic reticulum (SR) Ca2+ handling responses to repetitive contractile activity and recovery. Repetitive activity was induced in two muscles of high oxidative potential, namely, soleus (SOL) and red gastrocnemius (RG), and in white gastrocnemius (WG), a muscle of low oxidative potential, by stimulation in adult male rats. Measurements of SR properties, performed in crude homogenates, were made on control and stimulated muscles at the start of recovery (R0) and at 25 min of recovery (R25). Maximal Ca2+-ATPase activity (Vmax, micromol x g protein(-1) x min(-1)) at R0 was lower in stimulated SOL (105 +/- 9 vs. 135 +/- 7) and RG (269 +/- 22 vs. 317 +/- 26) and higher (P < 0.05) in WG (795 +/- 32 vs. 708 +/- 34). At R25, Vmax remained lower (P < 0.05) in SOL and RG but recovered in WG. Ca2+ uptake, measured at 2,000 nM, was depressed (P < 0.05) in SOL and RG by 34 and 13%, respectively, in stimulated muscles at R0 and remained depressed (P < 0.05) at R25. In contrast, Ca2+ uptake was elevated (P < 0.05) in stimulated WG at R0 by 9% and remained elevated (P < 0.05) at R25. Ca2+ release, unaltered in SOL and RG at both R0 and R25, was increased (P < 0.05) in stimulated WG at both R0 and R25. We conclude that SR Ca2+-handling responses to repetitive contractile activity and recovery are related to the oxidative potential of muscle.
Collapse
Affiliation(s)
- G P Holloway
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | | | | |
Collapse
|
15
|
Duhamel TA, Green HJ, Perco JG, Ouyang J. Metabolic and sarcoplasmic reticulum Ca2+cycling responses in human muscle 4 days following prolonged exercise. Can J Physiol Pharmacol 2005; 83:643-55. [PMID: 16091790 DOI: 10.1139/y05-049] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the effects of prolonged exercise on muscle sarcoplasmic reticulum (SR) Ca2+cycling properties and the metabolic responses with and without a session of exercise designed to reduce muscle glycogen reserves while on a normal carbohydrate (CHO) diet. Eight untrained males (VO2peak = 3.81 ± 0.12 L/min, mean ± SE) performed a standardized cycle-to-fatigue at 55% VO2peakwhile on a normal CHO diet (Norm CHO) and 4 days following prolonged exercise while on a normal CHO diet (Ex+Norm CHO). Compared to rest, exercise in Norm CHO to fatigue resulted in significant reductions (p < 0.05) in Ca2+uptake (3.17 ± 0.21 vs. 2.47 ± 0.12 µmol·(g protein)–1·min–1), maximal Ca2+ATPase activity (Vmax, 152 ± 12 vs. 119 ± 9 µmol·(g protein)–1·min–1) and both phase 1 (15.1 ± 0.98 vs. 13.1 ± 0.28 µmol·(g protein)–1·min–1) and phase 2 (6.56 ± 0.33 vs. 4.91 ± 0.28 µmol·(g protein)–1·min–1) Ca2+release in vastus lateralis muscle. No differences were observed between Norm CHO and Ex-Norm CHO in the response of these properties to exercise. Compared with Norm CHO, Ex+Norm CHO resulted in higher (p < 0.05) resting Ca2+uptake (3.17 ± 0.21 vs. 3.49 ± 0.24 µmol·(g protein)·min–1and higher ionophore ratio, defined as the ratio of Vmaxmeasured with and without the Ca2+-ionophore A23187, (2.3 ± 0.3 vs. 4.4 ± 0.3 µmol·(g protein)·min–1) at fatigue. No differences were observed between conditions in the concentration of muscle glycogen, the high-energy phosphates (ATP and PCr), or metabolites (Pi, Cr, and lactate). Ex+Norm CHO also failed to modify the exercise-induced changes in CHO and fat oxidation. We conclude that prolonged exercise to fatigue performed 4 days following glycogen-depleting exercise while on a normal CHO diet elevates resting Ca2+uptake and prevents increases in SR membrane permeability to Ca2+as measured by the ionophore ratio. Key words: Ca2+cycling, glycogen depletion, contractile activity, recovery.
Collapse
Affiliation(s)
- T A Duhamel
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | |
Collapse
|
16
|
Holloway GP, Green HJ, Duhamel TA, Ferth S, Moule JW, Ouyang J, Tupling AR. Muscle sarcoplasmic reticulum Ca2+ cycling adaptations during 16 h of heavy intermittent cycle exercise. J Appl Physiol (1985) 2005; 99:836-43. [PMID: 15860679 DOI: 10.1152/japplphysiol.01407.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The repetition-dependent effects of a repetitive heavy exercise protocol previously shown to alter muscle mechanic behavior (Green HJ, Duhamel TA, Ferth S, Holloway GP, Thomas MM, Tupling AR, Rich SM, and Yau JE. J Appl Physiol 97: 2166-2175, 2004) on muscle sarcoplasmic reticulum (SR) Ca2+-transport properties, measured in vitro, were examined in 12 untrained volunteers [peak aerobic power (VO2(peak)) = 44.3 +/- 0.66 ml x kg(-1) x min(-1)]. The protocol involved 6 min of cycle exercise performed at approximately 91% VO2(peak) once per hour for 16 h. Tissue samples were obtained from the vastus lateralis before (B) and after (A) exercise at repetitions 1 (R1), 2 (R2), 9 (R9), and 16 (R16). Reductions (P < 0.05) in maximal Ca2+-ATPase activity (Vmax) of 26 and 12% with exercise were only observed at R1 and R16, respectively. Vmax remained depressed (P < 0.05) at R2 (B) but not at R9 (B) and R16 (B). No changes were observed in two other kinetic properties of the enzyme, namely the Hill coefficient (defined as the slope of the relationship between Ca2+-ATPase activity and free Ca2+ concentration) and the Ca50 (defined as the free Ca2+ concentration needed to elicit 50% Vmax). Changes in Ca2+ uptake (measured at 2,000 nM) with exercise and recovery generally paralleled Vmax. The apparent coupling ratio, defined as the ratio between Ca2+ uptake and Vmax, was unaffected by the intermittent protocol. Reductions (P < 0.05) in phase 1 Ca2+ release (32%) were only observed at R1. No differences were observed between B and A for R2, R9, and R16 or between B and B for R1, R2, R9, and R16. The changes in phase 2 Ca2+ release were as observed for phase 1 Ca2+ release. It is concluded that the SR Ca2+-handling properties, in general, display rapid adaptations to repetitive exercise.
Collapse
Affiliation(s)
- G P Holloway
- Dept. of Kinesiology, Univ. of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | | | | | |
Collapse
|
17
|
Schertzer JD, Plant DR, Ryall JG, Beitzel F, Stupka N, Lynch GS. Beta2-agonist administration increases sarcoplasmic reticulum Ca2+-ATPase activity in aged rat skeletal muscle. Am J Physiol Endocrinol Metab 2005; 288:E526-33. [PMID: 15479951 DOI: 10.1152/ajpendo.00399.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aging is associated with a slowing of skeletal muscle contractile properties, including a decreased rate of relaxation. In rats, the age-related decrease in the maximal rate of relaxation is reversed after 4-wk administration with the beta2-adrenoceptor agonist (beta2-agonist) fenoterol. Given the critical role of the sarcoplasmic reticulum (SR) in regulating intracellular Ca2+ transients and ultimately the time course of muscle contraction and relaxation, we tested the hypothesis that the mechanisms of action of fenoterol are mediated by alterations in SR proteins. Sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) kinetic properties were assessed in muscle homogenates and enriched SR membranes isolated from the red (RG) and white (WG) portions of the gastrocnemius muscle in adult (16 mo) and aged (28 mo) F344 rats that had been administered fenoterol for 4 wk (1.4 mg/kg/day ip, in saline) or vehicle only. Aging was associated with a 29% decrease in the maximal activity (Vmax) of SERCA in the RG but not in the WG muscles. Fenoterol treatment increased the Vmax of SERCA and SERCA1 protein levels in RG and WG. In the RG, fenoterol administration reversed an age-related selective nitration of the SERCA2a isoform. Our findings demonstrate that the mechanisms underlying age-related changes in contractile properties are fiber type dependent, whereas the effects of fenoterol administration are independent of age and fiber type.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Aging/metabolism
- Animals
- Blotting, Western
- Calcium/metabolism
- Calcium-Transporting ATPases/chemistry
- Calcium-Transporting ATPases/metabolism
- Cell Fractionation
- Fenoterol/pharmacology
- Kinetics
- Male
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle Fibers, Fast-Twitch/drug effects
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/physiology
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle Fibers, Slow-Twitch/physiology
- Muscle Relaxation/drug effects
- Muscle Relaxation/physiology
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Myosin Heavy Chains/analysis
- Protein Isoforms/analysis
- Protein Isoforms/chemistry
- Protein Isoforms/metabolism
- Rats
- Rats, Inbred F344
- Sarcoplasmic Reticulum/drug effects
- Sarcoplasmic Reticulum/metabolism
- Sarcoplasmic Reticulum Calcium-Transporting ATPases
- Spectrometry, Fluorescence
- Tyrosine/analogs & derivatives
- Tyrosine/analysis
Collapse
|