1
|
Ko CW, Qu J, Liu M, Black DD, Tso P. Use of Isotope Tracers to Assess Lipid Absorption in Conscious Lymph Fistula Mice. CURRENT PROTOCOLS IN MOUSE BIOLOGY 2019; 9:e60. [PMID: 30801996 PMCID: PMC6401309 DOI: 10.1002/cpmo.60] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This protocol provides a comprehensive reference for the evolution of the lymph fistula model, the mechanism of lipid absorption, the detailed procedure for studying lipid absorption using the lymph fistula model, the interpretation of the results, and consideration of the experimental design. The lymph fistula model is an approach to assess the concentration and rate of a range of molecules transported by the lymph by cannulating lymph duct in animals. In this protocol, mice first undergo surgery with the implantation of cannulae in the duodenum and mesenteric lymph duct and are allowed to recover overnight in Bollman restraining cages housed in a temperature-regulated environment. To study in vivo lipid absorption, a lipid emulsion is prepared with labeled tracers, including [3 H]-triolein and [14 C]-cholesterol. On the day of the experiment, mice are continuously infused with lipid emulsion via the duodenum for 6 hr, and lymph is usually collected hourly. At the end of the study, gastrointestinal segments and their luminal contents are collected separately for determination of the digestion, uptake, and transport of exogenous lipids. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Chih-Wei Ko
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237
| | - Jie Qu
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237
| | - Dennis D Black
- Children’s Foundation Research Institute at Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, Tennessee 38103
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237
| |
Collapse
|
2
|
Turek M, Szczęsna D, Koprowski M, Bałczewski P. Synthesis of 1-indanones with a broad range of biological activity. Beilstein J Org Chem 2017; 13:451-494. [PMID: 28382183 PMCID: PMC5355963 DOI: 10.3762/bjoc.13.48] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/13/2017] [Indexed: 12/03/2022] Open
Abstract
This comprehensive review describes methods for the preparation of 1-indanones published in original and patent literature from 1926 to 2017. More than 100 synthetic methods utilizing carboxylic acids, esters, diesters, acid chlorides, ketones, alkynes, alcohols etc. as starting materials, have been performed. This review also covers the most important studies on the biological activity of 1-indanones and their derivatives which are potent antiviral, anti-inflammatory, analgesic, antimalarial, antibacterial and anticancer compounds. Moreover, they can be used in the treatment of neurodegenerative diseases and as effective insecticides, fungicides and herbicides.
Collapse
Affiliation(s)
- Marika Turek
- Institute of Chemistry, Environmental Protection and Biotechnology, The Faculty of Mathematics and Natural Sciences, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa, 42-201, Poland
| | - Dorota Szczęsna
- Department of Structural Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Łódź, Żeligowskiego 7/9, 90-752, Łódź, Poland
- Department of Heteroorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Łódź, 90-363, Poland
| | - Marek Koprowski
- Department of Heteroorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Łódź, 90-363, Poland
| | - Piotr Bałczewski
- Institute of Chemistry, Environmental Protection and Biotechnology, The Faculty of Mathematics and Natural Sciences, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa, 42-201, Poland
- Department of Heteroorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Łódź, 90-363, Poland
| |
Collapse
|
3
|
Comparison of Glucose and Glycerol as Carbon Sources for ε-Poly-l-Lysine Production by Streptomyces sp. M-Z18. Appl Biochem Biotechnol 2013; 170:185-97. [DOI: 10.1007/s12010-013-0167-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 02/24/2013] [Indexed: 10/27/2022]
|
4
|
Norrgård MA, Mannervik B. Engineering GST M2-2 for High Activity with Indene 1,2-Oxide and Indication of an H-Site Residue Sustaining Catalytic Promiscuity. J Mol Biol 2011; 412:111-20. [DOI: 10.1016/j.jmb.2011.07.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 07/05/2011] [Accepted: 07/19/2011] [Indexed: 11/28/2022]
|
5
|
Stewart BJ, Navid A, Turteltaub KW, Bench G. Yeast dynamic metabolic flux measurement in nutrient-rich media by HPLC and accelerator mass spectrometry. Anal Chem 2010; 82:9812-7. [PMID: 21062031 DOI: 10.1021/ac102065f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metabolic flux, the flow of metabolites through networks of enzymes, represents the dynamic productive output of cells. Improved understanding of intracellular metabolic fluxes will enable targeted manipulation of metabolic pathways of medical and industrial importance to a greater degree than is currently possible. Flux balance analysis (FBA) is a constraint-based approach to modeling metabolic fluxes, but its utility is limited by a lack of experimental measurements. Incorporation of experimentally measured fluxes as system constraints will significantly improve the overall accuracy of FBA. We applied a novel, two-tiered approach in the yeast Saccharomyces cerevisiae to measure nutrient consumption rates (extracellular fluxes) and a targeted intracellular flux using a (14)C-labeled precursor with HPLC separation and flux quantitation by accelerator mass spectrometry (AMS). The use of AMS to trace the intracellular fate of (14)C-glutamine allowed the calculation of intracellular metabolic flux through this pathway, with glutathione as the metabolic end point. Measured flux values provided global constraints for the yeast FBA model which reduced model uncertainty by more than 20%, proving the importance of additional constraints in improving the accuracy of model predictions and demonstrating the use of AMS to measure intracellular metabolic fluxes. Our results highlight the need to use intracellular fluxes to constrain the models. We show that inclusion of just one such measurement alone can reduce the average variability of model predicted fluxes by 10%.
Collapse
Affiliation(s)
- Benjamin J Stewart
- Lawrence Livermore National Laboratory, Center for Accelerator Mass Spectrometry, 7000 East Avenue P.O. Box 808, L-397 Livermore, California 94551, USA.
| | | | | | | |
Collapse
|
6
|
Wu Q, Xu H, Shi N, Yao J, Li S, Ouyang P. Improvement of poly(γ-glutamic acid) biosynthesis and redistribution of metabolic flux with the presence of different additives in Bacillus subtilis CGMCC 0833. Appl Microbiol Biotechnol 2008; 79:527-35. [DOI: 10.1007/s00253-008-1462-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 03/16/2008] [Accepted: 03/18/2008] [Indexed: 10/22/2022]
|
7
|
Matsuda F, Wakasa K, Miyagawa H. Metabolic flux analysis in plants using dynamic labeling technique: application to tryptophan biosynthesis in cultured rice cells. PHYTOCHEMISTRY 2007; 68:2290-301. [PMID: 17512026 DOI: 10.1016/j.phytochem.2007.03.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/23/2007] [Accepted: 03/27/2007] [Indexed: 05/15/2023]
Abstract
The concept and methodology of using dynamic labeling for the MFA of plant metabolic pathways are described, based on a case study to develop a method for the MFA of the tryptophan biosynthetic pathway in cultured rice cells. Dynamic labeling traces the change in the labeling level of a metabolite in a metabolic pathway after the application of a stable isotope-labeled compound. In this study, [1-(13)C] l-serine was fed as a labeling precursor and the labeling level of Trp was determined by using the LC-MS/MS. The value of metabolic flux is determined by fitting a model describing the labeling dynamics of the pathway to the observed labeling data. The biosynthetic flux of Trp in rice suspension cultured cell was determined to be 6.0+/-1.1 nmol (gFWh)(-1). It is also demonstrated that an approximately sixfold increase in the biosynthetic flux of Trp in transgenic rice cells expressing the feedback-insensitive version of anthranilate synthase alpha-subunit gene (OASA1D) resulted in a 45-fold increase in the level of Trp. In this article, the basic workflow for the experiment is introduced and the details of the actual experimental procedures are explained. Future perspectives are also discussed by referring recent advances in the dynamic labeling approach.
Collapse
Affiliation(s)
- Fumio Matsuda
- Plant Functions and Their Control, CREST, Japan Science and Technology Agency, 3-4-5 Nihonbashi, Chuo, Tokyo 103-0027, Japan
| | | | | |
Collapse
|
8
|
Okazaki Y, Isobe T, Iwata Y, Matsukawa T, Matsuda F, Miyagawa H, Ishihara A, Nishioka T, Iwamura H. Metabolism of avenanthramide phytoalexins in oats. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:560-572. [PMID: 15272874 DOI: 10.1111/j.1365-313x.2004.02163.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Oat leaves produce phytoalexins, avenanthramides, in response to infection by pathogens or treatment with elicitors. The metabolism of avenanthramides was investigated using low molecular weight, partially deacetylated chitin as an elicitor. When oat leaf segments are floated on the elicitor solution, avenanthramides accumulate in the solution. The transfer of elicited oat leaves to solutions containing stable-isotope-labeled avenanthramides resulted in a rapid decrease in the labeled avenanthramides, suggesting the metabolism of avenanthramides. The rate of decrease was enhanced by elicitor treatment, and was dependent on the species of avenanthramides, with avenanthramide B decreasing most rapidly. The rates of biosynthesis and metabolism of avenanthramides A and B were measured using a model of isotope-labeling dynamics. Avenanthramide B was found to be more actively biosynthesized and metabolized than avenanthramide A. Radiolabeled avenanthramide B was incorporated into the cell wall fraction and 99% of incorporated activity was released by alkaline treatment. Gel filtration indicated that high-molecular-weight compounds derived from avenanthramide B were released by alkaline treatment. The decrease in stable-isotope-labeled avenanthramides was suppressed by catalase, salicylhydroxamic acid, and sodium ascorbate, suggesting the involvement of peroxidase in the metabolism. Consistent with this, peroxidase activity that accepts avenanthramide B as a substrate was induced in apoplastic fractions by elicitor treatment. The appearance of multiple basic isoperoxidases was observed by activity staining with 3-amino-9-ethylcarbazole coupled with isoelectric focusing of proteins from elicitor-treated leaves. These findings suggest that accumulated avenanthramides are further metabolized in apoplasts in oat leaves by inducible isoperoxidases.
Collapse
Affiliation(s)
- Yozo Okazaki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Inverse metabolic engineering (IME) is a powerful framework for engineering cellular phenotypes. Progress in this field has been limited by a lack of comprehensive methods for efficiently identifying the genetic basis of relevant phenotypes. Advances in genomics technologies, including DNA microarrays and gene sequencing, have dramatically improved our ability to relate changes in phenotype with associated changes in genotype. When applied in the context of IME, these tools should enable the integration of "evolutionary" and "direct" approaches to engineering cell physiology, which should improve our understanding of the complex interactions affecting the expression, evolution and engineering of traits in natural and industrial hosts.
Collapse
Affiliation(s)
- Ryan T Gill
- Department of Chemical and Biological Engineering, UCB 424/ECCH120, University of Colorado, Boulder, CO 80304, USA.
| |
Collapse
|
10
|
Segrè D, Zucker J, Katz J, Lin X, D'haeseleer P, Rindone WP, Kharchenko P, Nguyen DH, Wright MA, Church GM. From annotated genomes to metabolic flux models and kinetic parameter fitting. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2004; 7:301-16. [PMID: 14583118 DOI: 10.1089/153623103322452413] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significant advances in system-level modeling of cellular behavior can be achieved based on constraints derived from genomic information and on optimality hypotheses. For steady-state models of metabolic networks, mass conservation and reaction stoichiometry impose linear constraints on metabolic fluxes. Different objectives, such as maximization of growth rate or minimization of flux distance from a reference state, can be tested in different organisms and conditions. In particular, we have suggested that the metabolic properties of mutant bacterial strains are best described by an algorithm that performs a minimization of metabolic adjustment (MOMA) upon gene deletion. The increasing availability of many annotated genomes paves the way for a systematic application of these flux balance methods to a large variety of organisms. However, such a high throughput goal crucially depends on our capacity to build metabolic flux models in a fully automated fashion. Here we describe a pipeline for generating models from annotated genomes and discuss the current obstacles to full automation. In addition, we propose a framework for the integration of flux modeling results and high throughput proteomic data, which can potentially help in the inference of whole-cell kinetic parameters.
Collapse
Affiliation(s)
- Daniel Segrè
- Lipper Center for Computational Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Priefert H, O'Brien XM, Lessard PA, Dexter AF, Choi EE, Tomic S, Nagpal G, Cho JJ, Agosto M, Yang L, Treadway SL, Tamashiro L, Wallace M, Sinskey AJ. Indene bioconversion by a toluene inducible dioxygenase of Rhodococcus sp. I24. Appl Microbiol Biotechnol 2004; 65:168-76. [PMID: 15069586 DOI: 10.1007/s00253-004-1589-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 01/29/2004] [Accepted: 02/06/2004] [Indexed: 10/26/2022]
Abstract
Rhodococcus sp. I24 can oxygenate indene via at least three independent enzyme activities: (i) a naphthalene inducible monooxygenase (ii) a naphthalene inducible dioxygenase, and (iii) a toluene inducible dioxygenase (TID). Pulsed field gel analysis revealed that the I24 strain harbors two megaplasmids of approximately 340 and approximately 50 kb. Rhodococcus sp. KY1, a derivative of the I24 strain, lacks the approximately 340 kb element as well as the TID activity. Southern blotting and sequence analysis of an indigogenic, I24-derived cosmid suggested that an operon encoding a TID resides on the approximately 340 kb element. Expression of the tid operon was induced by toluene but not by naphthalene. In contrast, naphthalene did induce expression of the nid operon, encoding the naphthalene dioxygenase in I24. Cell free protein extracts of Escherichia coli cells expressing tidABCD were used in HPLC-based enzyme assays to characterize the indene bioconversion of TID in vitro. In addition to 1-indenol, indene was transformed to cis-indandiol with an enantiomeric excess of 45.2% of cis-(1S,2R)-indandiol over cis-(1R,2S)-indandiol, as revealed by chiral HPLC analysis. The Km of TID for indene was 380 microM. The enzyme also dioxygenated naphthalene to cis-dihydronaphthalenediol with an activity of 78% compared to the formation of cis-indandiol from indene. The Km of TID for naphthalene was 28 microM. TID converted only trace amounts of toluene to 1,2-dihydro-3-methylcatechol after prolonged incubation time. The results indicate the role of the tid operon in the bioconversion of indene to 1-indenol and cis-(1S,2R)-indandiol by Rhodococcus sp. I24.
Collapse
Affiliation(s)
- Horst Priefert
- Department of Biology, 68-370, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Stafford DE, Yanagimachi KS, Lessard PA, Rijhwani SK, Sinskey AJ, Stephanopoulos G. Optimizing bioconversion pathways through systems analysis and metabolic engineering. Proc Natl Acad Sci U S A 2002; 99:1801-6. [PMID: 11854482 PMCID: PMC122274 DOI: 10.1073/pnas.032681699] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We demonstrate a general approach for metabolic engineering of biocatalytic systems comprising the uses of a chemostat for strain improvement and radioisotopic tracers for the quantification of pathway fluxes. Flux determination allows the identification of target pathways for modification as validated by subsequent overexpression of the corresponding gene. We demonstrate this method in the indene bioconversion network of Rhodococcus modified for the overproduction of 1,2-indandiol, a key precursor for the AIDS drug Crixivan.
Collapse
Affiliation(s)
- Daniel E Stafford
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
14
|
Stafford DE, Yanagimachi KS, Stephanopoulos G. Metabolic engineering of indene bioconversion in Rhodococcus sp. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2002; 73:85-101. [PMID: 11816813 DOI: 10.1007/3-540-45300-8_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
We have applied the methodology of metabolic engineering in the investigation of the enzymatic bioreaction network in Rhodococcus sp. that catalyzes the bioconversion of indene to (2R)-indandiol suitable for the synthesis of cis-1-amino-2-indanol, a precursor of the HIV protease inhibitor, Crixivan. A chemostat with a novel indene air delivery system was developed to facilitate the study of steady state physiology of Rhodococcus sp. 124. Prolonged cultivation of this organism in a continuous flow system led to the evolution of a mutant strain, designated KY1, with improved bioconversion properties, in particular a twofold increase in yield of (2R)-indandiol relative to 124. Induction studies with both strains indicated that KY1 lacked a toluene-inducible dioxygenase activity present in 124 and responsible for the formation of undesired byproducts. Flux analysis of indene bioconversion in KY1 performed using steady state metabolite balancing and labeling with [14C]-tracers revealed that at least 94% of the indene is oxidized by a monooxygenase to indan oxide that is subsequently hydrolyzed to trans-(1R,2R)-indandiol and cis-(1S,2R)-indandiol. This analysis identified several targets in KY1 for increasing (2R)-indandiol product yield. Most promising among them is the selective hydrolysis of indan oxide to trans-(1R,2R)-indandiol through expression of an epoxide hydrolase or modification of culture conditions.
Collapse
Affiliation(s)
- D E Stafford
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|