1
|
Sennett C, Jia W, Khalil JS, Hindle MS, Coupland C, Calaminus SDJ, Langer JD, Frost S, Naseem KM, Rivero F, Ninkina N, Buchman V, Aburima A. α-Synuclein Deletion Impairs Platelet Function: A Role for SNARE Complex Assembly. Cells 2024; 13:2089. [PMID: 39768180 PMCID: PMC11674906 DOI: 10.3390/cells13242089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Granule secretion is an essential platelet function that contributes not only to haemostasis but also to wound healing, inflammation, and atherosclerosis. Granule secretion from platelets is facilitated, at least in part, by Soluble N-ethylmaleimide-Sensitive Factor (NSF) Attachment Protein Receptor (SNARE) complex-mediated granule fusion. Although α-synuclein is a protein known to modulate the assembly of the SNARE complex in other cells, its role in platelet function remains poorly understood. In this study, we provide evidence that α-synuclein is critical for haemostasis using α-synuclein-deficient (-/-) mice. The genetic deletion of α-synuclein resulted in impaired platelet aggregation, secretion, and adhesion in vitro. In vivo haemostasis models showed that α-synuclein-/- mice had prolonged bleeding times and activated partial thromboplastin times (aPTTs). Mechanistically, platelet activation induced α-synuclein serine (ser) 129 phosphorylation and re-localisation to the platelet membrane, accompanied by an increased association with VAMP 8, syntaxin 4, and syntaxin 11. This phosphorylation was calcium (Ca2+)- and RhoA/ROCK-dependent and was inhibited by prostacyclin (PGI2). Our data suggest that α-synuclein regulates platelet secretion by facilitating SNARE complex formation.
Collapse
Affiliation(s)
- Christopher Sennett
- Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull HU6 7RX, UK (W.J.)
| | - Wanzhu Jia
- Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull HU6 7RX, UK (W.J.)
| | - Jawad S. Khalil
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (J.S.K.)
| | - Matthew S. Hindle
- Centre for Biomedical Science Research, School of Health, Leeds Beckett University, Leeds LS1 3HE, UK;
| | - Charlie Coupland
- Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull HU6 7RX, UK (W.J.)
| | - Simon D. J. Calaminus
- Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull HU6 7RX, UK (W.J.)
| | - Julian D. Langer
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany;
| | - Sean Frost
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; (S.F.); (F.R.)
| | - Khalid M. Naseem
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (J.S.K.)
| | - Francisco Rivero
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; (S.F.); (F.R.)
| | - Natalia Ninkina
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; (N.N.)
| | - Vladimir Buchman
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; (N.N.)
| | - Ahmed Aburima
- Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull HU6 7RX, UK (W.J.)
| |
Collapse
|
2
|
Oh EB, Shin HJ, Yu H, Jang J, Park JW, Chang TS. NADPH oxidase 1/4 dual inhibitor setanaxib suppresses platelet activation and thrombus formation. Life Sci 2024; 357:123061. [PMID: 39293714 DOI: 10.1016/j.lfs.2024.123061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
AIMS The production of reactive oxygen species (ROS) by NADPH oxidase (NOX) is able to induce platelet activation, making NOX a promising target for antiplatelet therapy. In this study, we examined the effects of setanaxib, a dual NOX1/4 inhibitor, on human platelet function and ROS-related signaling pathways. MATERIALS AND METHODS In collagen-stimulated human platelets, aggregometry, assessment of ROS and Ca2+, immunoblotting, ELISA, flow cytometry, platelet adhesion assay, and assessment of mouse arterial thrombosis were performed in this study. KEY FINDINGS Setanaxib inhibited both intracellular and extracellular ROS production in collagen-activated platelets. Additionally, setanaxib significantly inhibited collagen-induced platelet aggregation, P-selectin exposure from α-granule release, and ATP release from dense granules. Setanaxib blocked the specific tyrosine phosphorylation-mediated activation of Syk, LAT, Vav1, and Btk within collagen receptor signaling pathways, leading to reduced activation of PLCγ2, PKC, and Ca2+ mobilization. Setanaxib also inhibited collagen-induced activation of integrin αIIbβ3, which is linked to increased cGMP levels and VASP phosphorylation. Furthermore, setanaxib suppressed collagen-induced p38 MAPK activation, resulting in decreased phosphorylation of cytosolic PLA2 and reduced TXA2 generation. Setanaxib also inhibited ERK5 activation, affecting the exposure of procoagulant phosphatidylserine. Setanaxib reduced thrombus formation under shear conditions by preventing platelet adhesion to collagen. Finally, in vivo administration of setanaxib in animal models led to the inhibition of arterial thrombosis. SIGNIFICANCE This study is the first to show that setanaxib suppresses ROS generation, platelet activation, and collagen-induced thrombus formation, suggesting its potential use in treating thrombotic or cardiovascular diseases.
Collapse
Affiliation(s)
- Eun Bee Oh
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Hye Ji Shin
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Hyunseong Yu
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Joara Jang
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Ji Won Park
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Tong-Shin Chang
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Bleeding diathesis in mice lacking JAK2 in platelets. Blood Adv 2021; 5:2969-2981. [PMID: 34342643 DOI: 10.1182/bloodadvances.2020003032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
The tyrosine kinase JAK2 is a critical component of intracellular JAK/STAT cytokine signaling cascades that is prevalent in hematopoietic cells, such as hematopoietic stem cells and megakaryocytes (MKs). Individuals expressing the somatic JAK2 V617F mutation commonly develop myeloproliferative neoplasms (MPNs) associated with venous and arterial thrombosis, a leading cause of mortality. The role of JAK2 in hemostasis remains unclear. We investigated the role of JAK2 in platelet hemostatic function using Jak2fl/fl Pf4-Cre (Jak2Plt-/-) mice lacking JAK2 in platelets and MKs. Jak2Plt-/- mice developed MK hyperplasia and splenomegaly associated with severe thrombocytosis and bleeding. This notion was supported by failure to occlude in a ferric chloride carotid artery injury model and by a cremaster muscle laser-induced injury assay, in which Jak2Plt-/- platelets failed to form stable thrombi. Jak2Plt-/- platelets formed thrombi poorly after adhesion to type 1 collagen under arterial shear rates. Jak2Plt-/- platelets spread poorly on collagen under static conditions or on fibrinogen in response to the collagen receptor GPVI-specific agonist, collagen-related peptide (CRP). After activation with collagen, CRP, or the CLEC-2 agonist rhodocytin, Jak2Plt-/- platelets displayed decreased α-granule secretion and integrin αIIbβ3 activation or aggregation, but showed normal responses to thrombin. Jak2Plt-/- platelets had impaired intracellular signaling when activated via GPVI, as assessed by tyrosine phosphorylation. Together, the results show that JAK2 deletion impairs platelet immunoreceptor tyrosine-based activation motif signaling and hemostatic function in mice and suggest that aberrant JAK2 signaling in patients with MPNs affects GPVI signaling, leading to hemostatic platelet function.
Collapse
|
4
|
Cho JH, Wool GD, Tjota MY, Gutierrez J, Mikrut K, Miller JL. Functional Assessment of Platelet Dense Granule ATP Release. Am J Clin Pathol 2021; 155:863-872. [PMID: 33386737 DOI: 10.1093/ajcp/aqaa196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES This study was undertaken to explore the feasibility of assessing platelet dense granule release in response to platelet stimuli, using less than 1 mL of whole blood (WB). METHODS Optimization of the luciferin-luciferase (LL) assay for ATP release, together with additional modifications, was applied to 1:10 diluted WB. RESULTS LL assay optimization using nonstirred 1:10 diluted WB resulted in dense granule ATP release in response to thrombin receptor-activating peptide (TRAP) of similar magnitude to that observed using stirred platelet-rich plasma. Stirring of the 1:10 diluted WB restored collagen-induced dense granule secretion. Addition of lyophilized, formalin-fixed platelets, together with stirring, restored dense granule secretion responsiveness to ADP. TRAP, ADP, and collagen all stimulated ATP release in 1:10 diluted WB under the optimized conditions of this study at levels close to those observed using platelet-rich plasma. Blood sample reconstitution experiments offer hope that this assay may prove robust down to WB platelet counts as low as 50 × 103/μL. CONCLUSIONS Platelet dense granule release in response to a number of classic stimuli, including ADP, was accomplished from less than 1 mL WB with minimal specimen processing, using widely available reagents and instrumentation.
Collapse
Affiliation(s)
- Joseph H Cho
- Department of Pathology, University of Chicago, Chicago, IL
| | | | | | | | | | | |
Collapse
|
5
|
Aliotta A, Bertaggia Calderara D, Alberio L. Flow Cytometric Monitoring of Dynamic Cytosolic Calcium, Sodium, and Potassium Fluxes Following Platelet Activation. Cytometry A 2020; 97:933-944. [DOI: 10.1002/cyto.a.24017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Alessandro Aliotta
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory Lausanne University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
| | - Debora Bertaggia Calderara
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory Lausanne University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
| | - Lorenzo Alberio
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory Lausanne University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
| |
Collapse
|
6
|
Li Y, Wang B, Li B. The in vitro bioavailability of anti-platelet peptides in collagen hydrolysate from silver carp (Hypophthalmichthys molitrix) skin. J Food Biochem 2020; 44:e13226. [PMID: 32266991 DOI: 10.1111/jfbc.13226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 11/29/2022]
Abstract
Previous animal experiments indicated collagen hydrolysates (CHs) intake decreased platelet release indicators in plasma and highlight potential applications as healthcare supplements to combat cardiovascular disease. The oligopeptides (GPR, GPRG, and GPRGP) have anti-platelet activities. However, it is still unclear whether they are bioactive compounds in CHs from silver carp skin. We investigated the bioavailability of oligopeptides using simulated gastrointestinal digestion and Caco-2 model. Anti-thrombotic activities, in vitro platelet aggregation and formation of platelet thrombus, were evaluated. They resisted gastrointestinal digestion and could be absorbed by Caco-2. Oligopeptides inhibited platelet aggregation induced by adenosine diphosphate and thrombin with IC50 of 0.160, 0.283, 0.251 mg/ml and 0.714, 1.008, 0.917 mg/ml for GPR, GPRG, and GPRGP, respectively. Oligopeptides prolonged the time of platelet thrombus and inhibited coagulation cascades, but CHs performed no bleeding side effect. These results confirmed that oligopeptides could be used as bioactive compounds of dietary supplements for pre-thrombotic to prevent thrombosis. PRACTICAL APPLICATIONS: Oligopeptides, GPR, GPRG, and GPRGP, derived from silver carp (Hypophthalmichthys molitrix) skin collagen, performed anti-thrombotic activities from their anti-platelet aggregation and anticoagulation activities. But the collagen hydrolysates containing these peptides had no side effect of bleeding in the mice model. Furthermore, this study investigated the bioavailability of these three bioactive peptides by the Caco-2 cells model. Thus, oligopeptides GPR, GPRG, and GPRGP are a potential index of bioactive compounds in the preparation of anti-thrombotic functional foods or healthcare supplements for people at the pre-thrombotic state.
Collapse
Affiliation(s)
- Yuqi Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Bo Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Bo Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, Ministry of Education, Beijing, China
| |
Collapse
|
7
|
Rosa JG, de Albuquerque CZ, Mattaraia VGDM, Santoro ML. Comparative study of platelet aggregation and secretion induced by Bothrops jararaca snake venom and thrombin. Toxicon 2019; 159:50-60. [PMID: 30677414 DOI: 10.1016/j.toxicon.2019.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/04/2019] [Accepted: 01/10/2019] [Indexed: 12/28/2022]
Abstract
Victims of Bothrops jararaca snakebites manifest bleedings, blood incoagulability, platelet dysfunction, and thrombocytopenia, and the latter has been directly implicated in the genesis of hemorrhagic diathesis. We addressed herein the direct effects of B. jararaca venom (BjV) on ex vivo platelet aggregation and granule secretion in washed human and mouse platelets. BjV directly aggregated platelets, but the extent of platelet aggregation was lower in human than mouse platelets. On the other hand, BjV (24.4 μg/mL) and thrombin (0.1 U/mL) induced a similar extent of ATP and platelet factor 4 (PF4) secretion in both species. BjV-induced platelet aggregation was independent of the platelet dense body content, as in pearl mouse (Ap3b1-/-) platelets, whose dense bodies are deficient in adenine nucleotides and serotonin, the extent of platelet aggregation was superior to that induced in BALB/c or C57BL/6 mice. BjV-induced β-hexosaminidase secretion in human platelets was less intense than that evoked by thrombin, and the contrary was observed in mouse platelets. Irreversible inactivation of platelet cyclooxygenase 1 by acetylsalicylic acid did not reduce BjV-induced platelet aggregation. BjV exerted no cytotoxic activity in human and mouse platelets, as evaluated by lactate dehydrogenase loss. Eptifibatide, which inhibits the binding of fibrinogen to platelet glycoprotein complex GPIIb-IIIa, differently blocked BjV-induced platelet aggregation in mice and humans. BjV-induced platelet aggregation did not depend on snake venom serine proteinases nor metalloproteinases in mice, whilst serine proteinases were rather important for platelet aggregation in humans. Our results show that BjV induces direct activation, aggregation, and secretion in human and mouse platelets, but it exerts diverse responses in them, which should be considered in comparative studies to understand pathophysiological events during Bothrops envenomation.
Collapse
Affiliation(s)
- Jaqueline Gomes Rosa
- Instituto Butantan, Laboratório de Fisiopatologia, Av. Dr. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | - Marcelo Larami Santoro
- Instituto Butantan, Laboratório de Fisiopatologia, Av. Dr. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Costas T, Costas-Lago MC, Vila N, Besada P, Cano E, Terán C. New platelet aggregation inhibitors based on pyridazinone moiety. Eur J Med Chem 2015; 94:113-22. [DOI: 10.1016/j.ejmech.2015.02.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/27/2015] [Accepted: 02/28/2015] [Indexed: 11/28/2022]
|
9
|
Fälker K, Klarström-Engström K, Bengtsson T, Lindahl TL, Grenegård M. The Toll-like receptor 2/1 (TLR2/1) complex initiates human platelet activation via the src/Syk/LAT/PLCγ2 signalling cascade. Cell Signal 2014; 26:279-86. [DOI: 10.1016/j.cellsig.2013.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/06/2013] [Indexed: 11/16/2022]
|
10
|
Walsh TG, Berndt MC, Carrim N, Cowman J, Kenny D, Metharom P. The role of Nox1 and Nox2 in GPVI-dependent platelet activation and thrombus formation. Redox Biol 2014; 2:178-86. [PMID: 24494191 PMCID: PMC3909778 DOI: 10.1016/j.redox.2013.12.023] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 02/07/2023] Open
Abstract
Background Activation of the platelet-specific collagen receptor, glycoprotein (GP) VI, induces intracellular reactive oxygen species (ROS) production; however the relevance of ROS to GPVI-mediated platelet responses remains unclear. Objective The objective of this study was to explore the role of the ROS-producing NADPH oxidase (Nox)1 and 2 complexes in GPVI-dependent platelet activation and collagen-induced thrombus formation. Methods and results ROS production was measured by quantitating changes in the oxidation-sensitive dye, H2DCF-DA, following platelet activation with the GPVI-specific agonist, collagen related peptide (CRP). Using a pharmacological inhibitor specific for Nox1, 2-acetylphenothiazine (ML171), and Nox2 deficient mice, we show that Nox1 is the key Nox homolog regulating GPVI-dependent ROS production. Nox1, but not Nox2, was essential for CRP-dependent thromboxane (Tx)A2 production, which was mediated in part through p38 MAPK signaling; while neither Nox1 nor Nox2 was significantly involved in regulating CRP-induced platelet aggregation/integrin αIIbβ3 activation, platelet spreading, or dense granule and α-granule release (ATP release and P-selectin surface expression, respectively). Ex-vivo perfusion analysis of mouse whole blood revealed that both Nox1 and Nox2 were involved in collagen-mediated thrombus formation at arterial shear. Conclusion Together these results demonstrate a novel role for Nox1 in regulating GPVI-induced ROS production, which is essential for optimal p38 activation and subsequent TxA2 production, providing an explanation for reduced thrombus formation following Nox1 inhibition. Nox1, but not Nox2 mediates GPVI-induced ROS production. GPVI-specific, CRP-activated platelet aggregation, spreading, secretion and αIIbβ3 activation is Nox1/2-independent. GPVI-induced thromboxane A2 production is ROS-dependent, which is mediated by p38 signaling. Collagen-induced ROS production and aggregation is Nox1-dependent. Both Nox1 and Nox2 regulate collagen-induced thrombus formation at arterial shear.
Collapse
Affiliation(s)
- T G Walsh
- Department of Experimental Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - M C Berndt
- Department of Experimental Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland ; Faculty of Health Sciences, Curtin University, Perth, Australia
| | - N Carrim
- Department of Experimental Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - J Cowman
- Department of Molecular Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - D Kenny
- Department of Molecular Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - P Metharom
- Department of Experimental Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland ; Faculty of Health Sciences, Curtin University, Perth, Australia
| |
Collapse
|
11
|
Inhibition of platelet aggregation by chlorogenic acid via cAMP and cGMP-dependent manner. Blood Coagul Fibrinolysis 2013; 23:629-35. [PMID: 22885765 DOI: 10.1097/mbc.0b013e3283570846] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this study, we investigated the effect of chlorogenic acid, a phenolic acid, on collagen (10 μg/ml)-stimulated platelet aggregation. Chlorogenic acid dose-dependently inhibited collagen-induced platelet aggregation, and suppressed the production of thromboxane A2 (TXA2), an intracellular Ca-agonist as an aggregation-inducing autacoidal molecule, which was associated with the strong inhibition of cyclooxygenase (COX)-1 in platelet microsomes having cytochrome c reductase activity. In addition, chlorogenic acid increased significantly the formation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), intracellular Ca-antagonists as aggregation-inhibiting molecules. These results suggest that chlorogenic acid has antiplatelet activity through the reduction of TXA2 and the increase of cAMP and cGMP levels. Therefore, our data demonstrate that chlorogenic acid is a potent inhibitor of collagen-stimulated platelet aggregation, and may be a crucial tool for a negative regulator during platelet activation in thrombotic diseases.
Collapse
|
12
|
Shiraishi M, Tamura K, Egoshi M, Miyamoto A. Cholesterol enrichment of rabbit platelets enhances the Ca(2+) entry pathway induced by platelet-derived secondary feedback agonists. Life Sci 2013; 92:838-44. [PMID: 23499558 DOI: 10.1016/j.lfs.2013.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 02/18/2013] [Accepted: 02/25/2013] [Indexed: 01/15/2023]
Abstract
AIMS Hypersensitivity of platelets due to increased platelet cholesterol levels has been reported in hypercholesterolemia. However, the signaling pathways linking increased platelet reactivity and cholesterol contents are not fully understood. This study aims to determine the direct effect of cholesterol enrichment of platelets on the pathways including Ca(2+) mobilization and secondary feedback agonists such as adenosine diphosphate (ADP) and thromboxane A2 (TXA2). MAIN METHODS In vitro cholesterol enrichment of rabbit platelets was performed by incubation with cholesterol complexed with methyl-β-cyclodextrin. Ca(2+) mobilization was monitored using platelets loaded with fura-PE3/AM, a fluorescent calcium indicator. Released ATP and TXB2 from platelets were measured by a luciferin-luciferase ATP assay system and a TXB2 ELISA Kit, respectively. KEY FINDINGS Cholesterol enrichment of rabbit platelets significantly enhanced Ca(2+) mobilization induced by thrombin, accompanying an augmented Ca(2+) entry. The augmentation of Ca(2+) entry by cholesterol enrichment was significantly suppressed by treatment with inhibitors for secondary feedback agonists. In cholesterol-enriched platelets, the amount of released ATP or TXB2 induced by thrombin was not significantly altered in comparison with control platelets, whereas an increase in [Ca(2+)]i induced by ADP or U46619, a TXA2 mimetic, was significantly enhanced. SIGNIFICANCE These results suggest that cholesterol enrichment of rabbit platelets results in enhanced Ca(2+) mobilization via ADP/TXA2-dependent augmentation of the Ca(2+) entry pathway. The results reveal a novel mechanism by which platelet hypersensitivity is regulated by cholesterol contents.
Collapse
Affiliation(s)
- Mitsuya Shiraishi
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | | | | | | |
Collapse
|
13
|
Elvers M, Grenegård M, Khoshjabinzadeh H, Münzer P, Borst O, Tian H, Di Paolo G, Lang F, Gawaz M, Lindahl TL, Fälker K. A novel role for phospholipase D as an endogenous negative regulator of platelet sensitivity. Cell Signal 2012; 24:1743-52. [DOI: 10.1016/j.cellsig.2012.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 04/25/2012] [Indexed: 02/01/2023]
|
14
|
Ma D, Assumpção TCF, Li Y, Andersen JF, Ribeiro J, Francischetti IMB. Triplatin, a platelet aggregation inhibitor from the salivary gland of the triatomine vector of Chagas disease, binds to TXA(2) but does not interact with glycoprotein PVI. Thromb Haemost 2011; 107:111-23. [PMID: 22159626 DOI: 10.1160/th11-10-0685] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 10/26/2011] [Indexed: 02/05/2023]
Abstract
Salivary glands from haematophagous animals express a notable diversity of negative modulators of platelet function. Triplatin is an inhibitor of collagen-induced platelet aggregation which has been described as an antagonist of glycoprotein VI (GPVI). Because triplatin displays sequence homology to members of the lipocalin family of proteins, we investigated whether triplatin mechanism of action could be explained by interaction with pro-haemostatic prostaglandins. Our results demonstrate that triplatin inhibits platelet aggregation induced by low doses of collagen, thromboxane A2 (TXA(2)) mimetic (U46619), and arachidonic acid (AA). On the other hand, it does not inhibit platelet aggregation by convulxin, PMA, or low-dose ADP. Isothermal titration calorimetry (ITC) revealed that triplatin binds AA, cTXA(2), TXB(2), U46619 or prostaglandin (PG)H(2) mimetic (U51605). Consistent with its ligand specificity, triplatin induces relaxation of rat aorta contracted with U46619. Triplatin also interacts with PGF(2α) and PGJ(2), but not with leukotrienes, AA or biogenic amines. Surface plasmon resonance experiments failed to demonstrate interaction of triplatin with GPVI; it also did to inhibit platelet adhesion to fibrillar or soluble collagen. Because triplatin displays sequence similarity to apolipoprotein D (ApoD) - a lipocalin associated with high-density lipoprotein, ApoD was tested as a putative TXA(2)-binding molecule. ITC failed to demonstrate binding of ApoD to all prostanoids described above, or to AA. Furthermore, ApoD was devoid of inhibitory properties towards platelets activation by AA, collagen, or U46619. In conclusion, triplatin mechanism of action has been elucidated without ambiguity as a novel TXA(2)- and PGF(2α)- binding protein. It conceivably blocks platelet aggregation and vasoconstriction, thus contributing to successful blood feeding at the vector-host interface.
Collapse
Affiliation(s)
- Dongying Ma
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | | | |
Collapse
|
15
|
Protein kinase C-theta in platelet activation. FEBS Lett 2011; 585:3208-15. [DOI: 10.1016/j.febslet.2011.09.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/20/2011] [Accepted: 09/12/2011] [Indexed: 02/05/2023]
|
16
|
Abstract
Vascular endothelium is a key regulator of homeostasis. In physiological conditions it mediates vascular dilatation, prevents platelet adhesion, and inhibits thrombin generation. However, endothelial dysfunction caused by physical injury of the vascular wall, for example during balloon angioplasty, acute or chronic inflammation, such as in atherothrombosis, creates a proinflammatory environment which supports leukocyte transmigration toward inflammatory sites. At the same time, the dysfunction promotes thrombin generation, fibrin deposition, and coagulation. The serine protease thrombin plays a pivotal role in the coagulation cascade. However, thrombin is not only the key effector of coagulation cascade; it also plays a significant role in inflammatory diseases. It shows an array of effects on endothelial cells, vascular smooth muscle cells, monocytes, and platelets, all of which participate in the vascular pathophysiology such as atherothrombosis. Therefore, thrombin can be considered as an important modulatory molecule of vascular homeostasis. This review summarizes the existing evidence on the role of thrombin in vascular inflammation.
Collapse
|
17
|
Unsworth AJ, Smith H, Gissen P, Watson SP, Pears CJ. Submaximal inhibition of protein kinase C restores ADP-induced dense granule secretion in platelets in the presence of Ca2+. J Biol Chem 2011; 286:21073-82. [PMID: 21489985 PMCID: PMC3122168 DOI: 10.1074/jbc.m110.187138] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Protein kinase C (PKC) is a family of serine/threonine kinases that play isoform-specific inhibitory and stimulatory roles in platelet activation. We show here that the pan-PKC inhibitor Ro31-8220 can be used to dissect these events following platelet activation by ADP. Submaximal concentrations of Ro31-8220 potentiated aggregation and dense granule secretion to ADP in plasma anticoagulated with citrate, in d-Phe-Pro-Arg-chloromethyl ketone-anticoagulated plasma, which has physiological levels of Ca2+, and in washed platelets. Potentiation was retained on inhibition of cyclooxygenase and was associated with an increase in intracellular Ca2+. Potentiation of aggregation and secretion was abolished by a maximally effective concentration of Ro31-8220, consistent with a critical role of PKC in secretion. ADP-induced secretion was potentiated in the presence of an inhibitor of PKCβ but not in the presence of available inhibitors of other PKC isoforms in human and mouse platelets. ADP-induced secretion was also potentiated in mouse platelets deficient in PKCϵ but not PKCθ. These results demonstrate that partial blockade of PKC potentiates aggregation and dense granule secretion by ADP in association with increased Ca2+. This provides a molecular explanation for the inability of ADP to induce secretion in plasma in the presence of physiological Ca2+ concentrations, and it reveals a novel role for PKC in inhibiting platelet activation by ADP in vivo. These results also demonstrate isoform-specific inhibitory effects of PKC in platelets.
Collapse
Affiliation(s)
- Amanda J Unsworth
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | |
Collapse
|
18
|
Mahaut-Smith MP, Jones S, Evans RJ. The P2X1 receptor and platelet function. Purinergic Signal 2011; 7:341-56. [PMID: 21484087 PMCID: PMC3166991 DOI: 10.1007/s11302-011-9224-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 02/22/2011] [Indexed: 12/17/2022] Open
Abstract
Extracellular nucleotides are ubiquitous signalling molecules, acting via the P2 class of surface receptors. Platelets express three P2 receptor subtypes, ADP-dependent P2Y1 and P2Y12 G-protein-coupled receptors and the ATP-gated P2X1 non-selective cation channel. Platelet P2X1 receptors can generate significant increases in intracellular Ca(2+), leading to shape change, movement of secretory granules and low levels of α(IIb)β(3) integrin activation. P2X1 can also synergise with several other receptors to amplify signalling and functional events in the platelet. In particular, activation of P2X1 receptors by ATP released from dense granules amplifies the aggregation responses to low levels of the major agonists, collagen and thrombin. In vivo studies using transgenic murine models show that P2X1 receptors amplify localised thrombosis following damage of small arteries and arterioles and also contribute to thromboembolism induced by intravenous co-injection of collagen and adrenaline. In vitro, under flow conditions, P2X1 receptors contribute more to aggregate formation on collagen-coated surfaces as the shear rate is increased, which may explain their greater contribution to localised thrombosis in arterioles compared to venules within in vivo models. Since shear increases substantially near sites of stenosis, anti-P2X1 therapy represents a potential means of reducing thrombotic events at atherosclerotic plaques.
Collapse
Affiliation(s)
- Martyn P Mahaut-Smith
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, LE1 9HN, UK,
| | | | | |
Collapse
|
19
|
The human megakaryocytic cell line UT-7/TPO expresses functional platelet agonist signals mediated through GPVI and thromboxane receptor. Cell Biol Int 2010; 34:943-9. [DOI: 10.1042/cbi20090491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Pears CJ, Thornber K, Auger JM, Hughes CE, Grygielska B, Protty MB, Pearce AC, Watson SP. Differential roles of the PKC novel isoforms, PKCdelta and PKCepsilon, in mouse and human platelets. PLoS One 2008; 3:e3793. [PMID: 19030108 PMCID: PMC2583049 DOI: 10.1371/journal.pone.0003793] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 11/05/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Increasing evidence suggests that individual isoforms of protein kinase C (PKC) play distinct roles in regulating platelet activation. METHODOLOGY/PRINCIPAL FINDINGS In this study, we focus on the role of two novel PKC isoforms, PKCdelta and PKCepsilon, in both mouse and human platelets. PKCdelta is robustly expressed in human platelets and undergoes transient tyrosine phosphorylation upon stimulation by thrombin or the collagen receptor, GPVI, which becomes sustained in the presence of the pan-PKC inhibitor, Ro 31-8220. In mouse platelets, however, PKCdelta undergoes sustained tyrosine phosphorylation upon activation. In contrast the related isoform, PKCepsilon, is expressed at high levels in mouse but not human platelets. There is a marked inhibition in aggregation and dense granule secretion to low concentrations of GPVI agonists in mouse platelets lacking PKCepsilon in contrast to a minor inhibition in response to G protein-coupled receptor agonists. This reduction is mediated by inhibition of tyrosine phosphorylation of the FcRgamma-chain and downstream proteins, an effect also observed in wild-type mouse platelets in the presence of a PKC inhibitor. CONCLUSIONS These results demonstrate a reciprocal relationship in levels of the novel PKC isoforms delta and epsilon in human and mouse platelets and a selective role for PKCepsilon in signalling through GPVI.
Collapse
Affiliation(s)
- Catherine J Pears
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Bakdash N, Williams MS. Spatially distinct production of reactive oxygen species regulates platelet activation. Free Radic Biol Med 2008; 45:158-66. [PMID: 18452718 DOI: 10.1016/j.freeradbiomed.2008.03.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/24/2008] [Accepted: 03/28/2008] [Indexed: 11/22/2022]
Abstract
Platelets play a key role in hemostasis and changes in redox balance are known to alter platelet activation and aggregation. Interestingly, activation of platelets leads to production of reactive oxygen species (ROS), but the role(s) of these ROS remain unclear. Using flow cytometry and chemiluminescence, agonist-induced ROS generation was found to be spatially distinct with stimulation through the major collagen receptor GPVI inducing only intraplatelet ROS while thrombin induced production of extracellular ROS. Platelet activation by either the GPVI-selective agonist convulxin or thrombin was differentially regulated by ROS generation. Thus, surface expression of CD62P, CD40L, or activated integrin alphaIIbbeta3 was abrogated by pharmacologic antioxidants but externalization of phosphatidylserine was not inhibited. Furthermore, extracellular antioxidants SOD/catalase markedly inhibited thrombin-, but not convulxin-, induced CD62P expression and alphaIIbbeta3 activation. The data suggest that ROS selectively regulate biochemical steps in platelet activation and that distinct source(s) of ROS and discrete redox-sensitive pathway(s) may control platelet activation in response to GPVI or thrombin stimulation. Thus, targeting ROS with site-specific antioxidants may differentially regulate platelet activation via thrombin or collagen.
Collapse
Affiliation(s)
- Nadia Bakdash
- Center for Vascular and Inflammatory Diseases, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
22
|
Surin WR, Barthwal MK, Dikshit M. Platelet collagen receptors, signaling and antagonism: Emerging approaches for the prevention of intravascular thrombosis. Thromb Res 2008; 122:786-803. [DOI: 10.1016/j.thromres.2007.10.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 10/17/2007] [Accepted: 10/21/2007] [Indexed: 02/02/2023]
|
23
|
Serrano FA, El-Shahawy M, Solomon RJ, Sobel BE, Schneider DJ. Increased platelet expression of FcGammaRIIa and its potential impact on platelet reactivity in patients with end stage renal disease. Thromb J 2007; 5:7. [PMID: 17547762 PMCID: PMC1894958 DOI: 10.1186/1477-9560-5-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 06/04/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increased platelet reactivity has been implicated in cardiovascular disease - the major cause of death in patients with end stage renal disease (ESRD). FcGammaRIIA is a component of glycoprotein VI and Ib-IX-V that mediate activation of platelets by collagen and von Willebrand factor. To determine whether expression of FcGammaRIIA impacts platelet reactivity we quantified its expression and platelet reactivity in 33 patients with ESRD who were undergoing hemodialysis. METHODS Blood samples were obtained from patients immediately before hemodialysis and before administration of heparin. Platelet expression of FcGammaRIIA and the activation of platelets in response to low concentrations of convulxin (1 ng/ml, selected to mimic effects of collagen), thrombin (1 nM), adenosine diphosphate (ADP, 0.2 microM), or platelet activating factor (PAF, 1 nM) were determined with the use of flow cytometry in samples of whole blood anticoagulated with corn trypsin inhibitor (a specific inhibitor of Factor XIIa). RESULTS Patients were stratified with respect to the median expression of FcGammaRIIA. Patients with high platelet expression of FcGammaRIIA exhibited 3-fold greater platelet reactivity compared with that in those with low expression in response to convulxin (p < 0.01) and 2-fold greater activation in response to thrombin, ADP, and PAF (p < 0.05 for each). For each agonist, expression of FcGammaRIIA correlated modestly but positively with platelet reactivity. The strongest correlation was with thrombin-induced activation (r = 0.6, p < 0.001). CONCLUSION Increased platelet reactivity in response to low concentrations of diverse agonists is associated with high expression of FcGammaRIIA and may contribute to an increased risk of thrombosis in patients with ESRD.
Collapse
Affiliation(s)
| | - Mohamed El-Shahawy
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Richard J Solomon
- Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Burton E Sobel
- Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - David J Schneider
- Department of Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
24
|
Fung CYE, Cendana C, Farndale RW, Mahaut-Smith MP. Primary and secondary agonists can use P2X(1) receptors as a major pathway to increase intracellular Ca(2+) in the human platelet. J Thromb Haemost 2007; 5:910-7. [PMID: 17362227 PMCID: PMC1974791 DOI: 10.1111/j.1538-7836.2007.02525.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 03/06/2007] [Indexed: 01/06/2023]
Abstract
In the platelet, it is well established that many G-protein- and tyrosine kinase-coupled receptors stimulate phospholipase-C-dependent Ca(2+) mobilization; however, the extent to which secondary activation of adenosine 5'-triphosphate (ATP)-gated P2X(1) receptors contributes to intracellular Ca(2+) responses remains unclear. We now show that selective inhibition of P2X(1) receptors substantially reduces the [Ca(2+)](i) increase evoked by several important agonists in human platelets; for collagen, thromboxane A(2), thrombin, and adenosine 5'-diphoshate (ADP) the maximal effect was a reduction to 18%, 34%, 52%, and 69% of control, respectively. The direct contribution of P2X(1) to the secondary Ca(2+) response was far greater than that of either P2Y receptors activated by co-released ADP, or via synergistic P2X(1):P2Y interactions. The relative contribution of P2X(1) to the peak Ca(2+) increase varied with the strength of the initial stimulus, being greater at low compared to high levels of stimulation for both glycoprotein VI and PAR-1, whereas P2X(1) contributed equally at both low and high levels of stimulation of thromboxane A(2) receptors. In contrast, only strong stimulation of P2Y receptors resulted in significant P2X(1) receptor activation. ATP release was detected by soluble luciferin:luciferase in response to all agonists that stimulated secondary P2X(1) receptor activation. However, P2X(1) receptors were stimulated earlier and to a greater extent than predicted from the average ATP release, which can be accounted for by a predominantly autocrine mechanism of activation. Given the central role of [Ca(2+)](i) increases in platelet activation, these studies indicate that ATP should be considered alongside ADP and thromboxane A(2) as a significant secondary platelet agonist.
Collapse
Affiliation(s)
- C Y E Fung
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
25
|
Hughan SC, Watson SP. Differential regulation of adapter proteins Dok2 and Dok1 in platelets, leading to an association of Dok2 with integrin alphaIIbbeta3. J Thromb Haemost 2007; 5:387-94. [PMID: 17092301 DOI: 10.1111/j.1538-7836.2007.02307.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND We previously demonstrated that Dok2 is rapidly phosphorylated on tyrosine residues in platelets in response to thrombin, the immunoreceptor tyrosine-based activation motif-coupled collagen receptor glycoprotein (GP) VI, and by integrin alphaIIbbeta3. OBJECTIVES AND METHODS In this study we further delineate the regulation of phosphorylation of Dok2 and compare this to the related adapter Dok1. RESULTS We demonstrate expression of Dok1 in platelets and the unexpected observation that the adapter protein undergoes tyrosine phosphorylation in response to thrombin but not to GPVI or integrin alphaIIbbeta3. Furthermore, Dok1 phosphorylation is transient, peaking at 30 s and returning to basal by 5 min, whereas Dok2 phosphorylation is delayed but sustained. Dok2 phosphorylation, but not that of Dok1, is inhibited by Src kinase inhibitors and by chelation of intracellular calcium. Further, phosphorylation of Dok2 by thrombin and integrin alphaIIbbeta3 in mouse platelets is independent of Syk and phospholipase Cgamma2. Additionally, Dok2 coimmunoprecipitates with integrin alphaIIbbeta3 downstream of Src kinases. CONCLUSIONS These results demonstrate differential modes of regulation of Dok1 and Dok2 in platelets. Further, they raise the interesting possibility that Dok2 plays an important role in integrin outside-in signaling through a physical and functional interaction with integrin alphaIIbbeta3.
Collapse
Affiliation(s)
- S C Hughan
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, UK.
| | | |
Collapse
|
26
|
Wang WJ. Purification and functional characterization of AAV1, a novel P-III metalloproteinase, from Formosan Agkistrodon acutus venom. Biochimie 2007; 89:105-15. [PMID: 17029743 DOI: 10.1016/j.biochi.2006.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2006] [Accepted: 08/31/2006] [Indexed: 11/29/2022]
Abstract
AAV1, an alkaline glycoprotein (GP), was purified from Agkistrodon acutus venom by two chromatographic steps on successive DEAE-Sephadex A-50 and Superdex 75 FPLC columns. AAV1 on SDS-PAGE under non-reducing conditions migrated as a monomeric and a polymeric forms with apparent molecular mass of 57 and 180 kDa, respectively. Upon reduction, it appeared as a single broad band with a mass of 50.3 kDa corresponding to the size of a typical P-III metalloproteinase acurhagin. The N-terminal sequence of an autoproteolytical 30 kDa-fragment of AAV1 showed a high homology to that of venom proteins with Metalloproteinase, Disintegrin-like, and Cysteine-rich (MDC) domains. Although it was devoid of cleaving activity toward gelatin, fibronectin and prothrombin, AAV1 preferentially digested the Aalpha chain of fibrinogen and followed by the Bbeta chain, leading to the inhibition of fibrinogen-induced platelet aggregation in elastase-treated human platelets. However, the proteolytic activity of AAV1 was completely inactivated by the chelating agent but not serine proteinase inhibitor. Furthermore, AAV1 could concentration-dependently inhibit platelet aggregation and suppress tyrosine phosphorylation of intracellular proteins in collagen- and convulxin-stimulated platelets, respectively. The interaction of MDC domains in AAV1 molecule with platelet GPVI was responsible for the inhibitory effect of AAV1 on collagen- and convulxin-induced platelet aggregation. Taken together, these pieces of evidence suggest that AAV1 from Formosan viper venom belongs to a new member of high-molecular mass metalloproteinase family and functions as a GPVI antagonist.
Collapse
Affiliation(s)
- Wen-Jeng Wang
- Chang-Gung Institute of Technology, Room A810, No. 261 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 33303, Taiwan.
| |
Collapse
|
27
|
Morgan NV, Pasha S, Johnson CA, Ainsworth JR, Eady RAJ, Dawood B, McKeown C, Trembath RC, Wilde J, Watson SP, Maher ER. A germline mutation in BLOC1S3/reduced pigmentation causes a novel variant of Hermansky-Pudlak syndrome (HPS8). Am J Hum Genet 2006; 78:160-6. [PMID: 16385460 PMCID: PMC1380215 DOI: 10.1086/499338] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 10/20/2005] [Indexed: 11/03/2022] Open
Abstract
Hermansky-Pudlak syndrome (HPS) is genetically heterogeneous, and mutations in seven genes have been reported to cause HPS. Autozygosity mapping studies were undertaken in a large consanguineous family with HPS. Affected individuals displayed features of incomplete oculocutaneous albinism and platelet dysfunction. Skin biopsy demonstrated abnormal aggregates of melanosomes within basal epidermal keratinocytes. A homozygous germline frameshift mutation in BLOC1S3 (p.Gln150ArgfsX75) was identified in all affected individuals. BLOC1S3 mutations have not been previously described in patients with HPS, but BLOC1S3 encodes a subunit of the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Mutations in other BLOC-1 subunits have been associated with an HPS phenotype in humans and/or mouse, and a nonsense mutation in the murine orthologue of BLOC1S3 causes the reduced pigmentation (rp) model of HPS. Interestingly, eye pigment formation is reported to be normal in rp, but we found visual defects (nystagmus, iris transilluminancy, foveal hypoplasia, reduced visual acuity, and evidence of optic pathway misrouting) in affected individuals. These findings define a novel form of human HPS (HPS8) and extend genotype-phenotype correlations in HPS.
Collapse
Affiliation(s)
- Neil V Morgan
- Section of Medical and Molecular Genetics, Division of Medical Sciences, Institute of Biomedical Research, University of Birmingham, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Maurice P, Legrand C, Fauvel-Lafeve F. Platelet adhesion and signaling induced by the octapeptide primary binding sequence (KOGEOGPK) from type III collagen. FASEB J 2005; 18:1339-47. [PMID: 15333577 DOI: 10.1096/fj.03-1151com] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Platelet adhesion to vascular collagens is an essential step in the initiation of hemostasis and thrombosis. Several platelet receptors interact with type I and type III collagens, including GP Ia/IIa and GP VI. We recently described a new platelet receptor (TIIICBP) specific for a type III collagen-related primary binding sequence, the KOGEOGPK octapeptide. Here, we characterize platelet adhesion to the immobilized octapeptide and demonstrate that this adhesion 1) is Ca2+ and Mg2+ independent, suggesting a noninvolvement of GP Ia/IIa; 2) is not inhibited by an antibody against GP VI; and 3) triggers platelet protein tyrosine phosphorylation. Whereas TXA2 has minimal effects, released ADP via only P2Y12 potentiates platelet adhesion to the octapeptide. Octapeptide-induced platelet adhesion triggers platelet signaling through tyrosine phosphorylation of the 68 kDa subunit of TIIICBP, Syk, PLCgamma2, and FAK. Tyrosine phosphorylation of the FcR gamma-chain and LAT is also observed but to a lesser extent than with type III collagen, suggesting the requirement of GP VI for full tyrosine phosphorylation of FcR gamma-chain and LAT. The present study provides evidence for a critical role for the type III collagen-related KOGEOGPK octapeptide in mediating platelet adhesion and signaling, and consequently in platelet-collagen interactions.-
Collapse
Affiliation(s)
- Pascal Maurice
- U553 INSERM: Hémostase, Endothélium et Angiogénèse, Institut d'Hématologie, Université Paris VII-Denis Diderot, IFR Saint-Louis, Hôpital Saint-Louis, Paris Cedex, France
| | | | | |
Collapse
|
29
|
Jarvis GE, Best D, Watson SP. Differential roles of integrins alpha2beta1 and alphaIIbbeta3 in collagen and CRP-induced platelet activation. Platelets 2005; 15:303-13. [PMID: 15370101 DOI: 10.1080/09537100410001710254] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Collagen and collagen-related peptide (CRP) activate platelets by interacting with glycoprotein (GP)VI. In addition, collagen binds to integrin alpha2beta1 and possibly to other receptors. In this study, we have compared the role of integrins alpha2beta1 and alphaIIbbeta3 in platelet activation induced by collagen and CRP. Inhibitors of ADP and thromboxane A2 (TxA2) substantially attenuated collagen-induced platelet aggregation and dense granule release, whereas CRP-induced responses were only partially inhibited. Under these conditions, a proportion of platelets adhered to the collagen fibres resulting in dense granule release and alphaIIbbeta3 activation. This adhesion was substantially mediated by alpha2beta1. The alphaIIbbeta3 antagonist lotrafiban potentiated CRP-induced dense granule release, suggesting that alphaIIbbeta3 outside-in signalling may attenuate GPVI signals. By contrast, lotrafiban inhibited collagen-induced dense granule release. These results emphasise the differential roles of alpha2beta1 and alphaIIbbeta3 in platelet activation induced by collagen and CRP. Further, they show that although ADP and TxA2 greatly facilitate collagen-induced platelet activation, collagen can induce full activation of those platelets to which it binds in the absence of these mediators, via a mechanism that is dependent on adhesion to alpha2beta1.
Collapse
|
30
|
Riondino S, Lotti LV, Cutini L, Pulcinelli FM. Collagen-induced platelet shape change is not affected by positive feedback pathway inhibitors and cAMP-elevating agents. J Biol Chem 2004; 280:6504-10. [PMID: 15598663 DOI: 10.1074/jbc.m407854200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Shape change is the earliest response of platelets to stimuli; it is mainly dependent upon Ca(2+)/calmodulin interaction subsequent to Ca(2+) mobilization and is mediated by myosin light chain kinase (MLCK) activation. It has been recently suggested that collagen itself is not able to elicit platelet shape change in the absence of ADP and thromboxane A(2) costimulation but is capable of inducing MLCK activation. Since we hypothesize that the morphological changes of the few platelets that adhere to collagen might not be revealed by turbidimetry, the aim of this study was to assess platelet shape change using transmission electron microscopy, in the absence of the amplificatory feedback pathways of ADP and thromboxane A(2). Our results demonstrated that only the platelets in contact with insoluble collagen fibers underwent a typical shape change, whereas those further away remained quiescent. Moreover, since cAMP enhances Ca(2+) mobilization in response to collagen, in the present study, we also investigated whether cAMP is involved in the inhibition of collagen-induced platelet shape change and MLC phosphorylation. Platelets were thus treated with iloprost (28 nm) prior to stimulation. Electron microscopy studies demonstrated that iloprost did not modify collagen-induced shape change, whereas immunoblotting studies showed a slight inhibition of MLC phosphorylation in the presence of enhanced cAMP levels. We can thus conclude that collagen is able to cause platelet shape change through activation of Ca(2+)/calmodulin-dependent MLCK, without the involvement of amplificatory pathways. Enhanced cytosolic cAMP levels do not inhibit collagen-induced platelet shape change but exert a weak inhibitory action on MLCK.
Collapse
Affiliation(s)
- Silvia Riondino
- Department of Experimental Medicine and Pathology, University La Sapienza, Roma, Italy.
| | | | | | | |
Collapse
|
31
|
Abstract
The platelet surface membrane possesses three P2 receptors activated by extracellular adenosine nucleotides; one member of the ionotropic receptor family (P2X(1)) and two members of the G-protein-coupled receptor family (P2Y(1) and P2Y(12)). P2Y(1) and P2Y(12) receptors have firmly established roles in platelet activation during thrombosis and haemostasis, whereas the importance of the P2X(1) receptor has been more controversial. However, recent studies have demonstrated that P2X(1) receptors can generate significant functional platelet responses alone and in synergy with other receptor pathways. In addition, studies in transgenic animals indicate an important role for P2X(1) receptors in platelet activation, particularly under conditions of shear stress and thus during arterial thrombosis. This review discusses the background behind discovery of P2X(1) receptors in platelets and their precursor cell, the megakaryocyte, and how signalling via these ion channels may participate in platelet activation.
Collapse
Affiliation(s)
- Martyn P Mahaut-Smith
- Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| | | | | |
Collapse
|
32
|
Dorsam RT, Kim S, Murugappan S, Rachoor S, Shankar H, Jin J, Kunapuli SP. Differential requirements for calcium and Src family kinases in platelet GPIIb/IIIa activation and thromboxane generation downstream of different G-protein pathways. Blood 2004; 105:2749-56. [PMID: 15546949 DOI: 10.1182/blood-2004-07-2821] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
G(12/13) or G(q) signaling pathways activate platelet GPIIb/IIIa when combined with G(i) signaling. We tested whether combined G(i) and G(z) pathways also cause GPIIb/IIIa activation and compared the signaling requirements of these events. Platelet aggregation occurred by combined stimulation of G(i) and G(z) pathways in human platelets and in P2Y1-deficient and G alpha(q)-deficient mouse platelets, confirming that the combination of G(i) and G(z) signaling causes platelet aggregation. When G(i) stimulation was combined with G(z) stimulation, there was a small mobilization of intracellular calcium. Chelation of intracellular calcium decreased the extent of this platelet aggregation, whereas it abolished the G(q) plus G(i)-mediated platelet aggregation. Costimulation of G(i) plus G(z) pathways also caused thromboxane generation that was dependent on outside-in signaling and was inhibited by PP2, a Src family tyrosine kinase inhibitor. Src family tyrosine kinase inhibitors also inhibited platelet aggregation and decreased the PAC-1 binding caused by costimulation of G(i) and G(z) signaling pathways in aspirin-treated platelets. However, Src family kinase inhibitors did not affect G(q) plus G(i)-mediated platelet aggregation. We conclude that the combination of G(i) plus G(z) pathways have different requirements than G(q) plus G(i) pathways for calcium and Src family kinases in GPIIb/IIIa activation and thromboxane production.
Collapse
Affiliation(s)
- Robert T Dorsam
- Department of Pharmacology, and The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Nofer JR, Herminghaus G, Brodde M, Morgenstern E, Rust S, Engel T, Seedorf U, Assmann G, Bluethmann H, Kehrel BE. Impaired platelet activation in familial high density lipoprotein deficiency (Tangier disease). J Biol Chem 2004; 279:34032-7. [PMID: 15163665 DOI: 10.1074/jbc.m405174200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP binding cassette transporter A1 (ABCA1) is involved in regulation of intracellular lipid trafficking and export of cholesterol from cells to high density lipoproteins. ABCA1 defects cause Tangier disease, a disorder characterized by absence of high density lipoprotein and thrombocytopenia. In the present study we have demonstrated that ABCA1 is expressed in human platelets and that fibrinogen binding and CD62 surface expression in response to collagen and low concentrations of thrombin, but not to ADP, are defective in platelets from Tangier patients and ABCA1-deficient animals. The expression of platelet membrane receptors such as GPVI, alpha2beta1 integrin, and GPIIb/IIIa, the collagen-induced changes in phosphatidylserine and cholesterol distribution, and the collagen-induced signal transduction examined by phosphorylation of LAT and p72syk and by intracellular Ca2+ mobilization were unaltered in Tangier platelets. The electron microscopy of Tangier platelets revealed reduced numbers of dense bodies and the presence of giant granules typically encountered in platelets from Chediak-Higashi syndrome. Further studies demonstrated impaired release of dense body content in platelets from Tangier patients and ABCA1-deficient animals. In addition, Tangier platelets were characterized by defective surface exposure of dense body and lysosomal markers (CD63, LAMP-1, LAMP-2, CD68) during collagen- and thrombin-induced stimulation and by abnormally high lysosomal pH. We conclude that intact ABCA1 function is necessary for proper maturation of dense bodies in platelets. The impaired release of the content of dense bodies may explain the defective activation of Tangier platelets by collagen and low concentrations of thrombin, but not by ADP.
Collapse
Affiliation(s)
- Jerzy-Roch Nofer
- Institut für Klinische Chemie und Laboratoriumsmedizin, Westfälische Wilhelms-Universität, D-48129 Münster, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Roger S, Pawlowski M, Habib A, Jandrot-Perrus M, Rosa JP, Bryckaert M. Costimulation of the Gi-coupled ADP receptor and the Gq-coupled TXA2 receptor is required for ERK2 activation in collagen-induced platelet aggregation. FEBS Lett 2004; 556:227-35. [PMID: 14706855 DOI: 10.1016/s0014-5793(03)01430-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The stimulation of platelets by low doses of collagen induces extracellular signal-regulated kinase 2 (ERK2) activation. In this report, we demonstrate that collagen-induced ERK2 activation depends on thromboxane A(2) (TXA(2)) formation and ADP release. The collagen-induced ERK2 activation was inhibited by indomethacin (88%) and by AR-C69931MX (70%), a specific antagonist of P2Y12, a Gi-coupled ADP receptor. AR-C69931MX (10 microM) inhibition was overcome by epinephrine (1 microM), an agonist of the Gi-coupled alpha(2A)-adrenergic receptor, suggesting that the Gi-coupled receptor was necessary for ERK2 activation by collagen. By contrast, MRS 2179 (10 microM), a specific antagonist of P2Y1, a Gq-coupled ADP receptor, did not affect collagen-induced ERK2 activation. Little or no ERK2 activation was observed with ADP alone (10 microM). By contrast, U46619 (10 microM), a stable analog of TXA(2), induced ERK2 activation in an ADP-dependent manner, via the P2Y12 receptor. These results suggest that the Gi-dependent signaling pathway, stimulated by ADP or epinephrine, was not the only pathway required for ERK2 activation by collagen. Costimulation of the specific G(12/13)-coupled TXA(2) receptor with a low dose of U46619 (10 nM) and of Gi- and Gq-coupled ADP receptor (10 microM) induced very low levels of ERK2 activation, similar to those observed with ADP alone, suggesting that G(12/13) is not involved or not sufficient to induce the additional pathway necessary for ERK2 activation. The Gq-coupled TXA(2) receptor was required for ERK2 activation by U46619 (10 microM) and low doses of collagen, clearly showing that a coordinated pathway through both Gq from TXA(2) and Gi from ADP was necessary for ERK2 activation. Finally, we demonstrate that ERK2 activation is involved in collagen-induced aggregation and secretion.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/metabolism
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Adenosine Diphosphate/analogs & derivatives
- Adenosine Diphosphate/pharmacology
- Adenosine Monophosphate/analogs & derivatives
- Adenosine Monophosphate/pharmacology
- Animals
- Cattle
- Collagen/metabolism
- Collagen/pharmacology
- Enzyme Activation/drug effects
- Epinephrine/pharmacology
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Humans
- Integrin alpha2beta1/metabolism
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/metabolism
- Mitogen-Activated Protein Kinase 1/metabolism
- Phosphorylation
- Platelet Aggregation/drug effects
- Platelet Membrane Glycoproteins/metabolism
- Protein Kinase C/metabolism
- Purinergic P2 Receptor Antagonists
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2Y12
- Receptors, Thromboxane A2, Prostaglandin H2/antagonists & inhibitors
- Receptors, Thromboxane A2, Prostaglandin H2/metabolism
- Signal Transduction
- Thromboxane A2/metabolism
- Thromboxane A2/pharmacology
Collapse
Affiliation(s)
- Séverine Roger
- U348 INSERM, IFR 6 Circulation Lariboisière, Hôpital Lariboisière, 41 Bd de la Chapelle, 75475 Cedex 10, Paris, France
| | | | | | | | | | | |
Collapse
|
35
|
Conley PB, Delaney SM. Scientific and therapeutic insights into the role of the platelet P2Y12 receptor in thrombosis. Curr Opin Hematol 2003; 10:333-8. [PMID: 12913786 DOI: 10.1097/00062752-200309000-00002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Platelets are important mediators of thrombosis in both healthy and diseased vessels. When platelets become activated by various soluble agonists or by adhesion to subendothelium under high shear, they release adenosine-5'-diphosphate that acts in a positive feedback mechanism on two different G-protein coupled receptors (P2Y(12), P2Y(1)) on platelets. This released adenosine-5'-diphosphate, acting through P2Y(12), is critical for sustained aggregation and stabilization of thrombi. P2Y(12) is the target of antithrombotic drugs (ticlopidine, clopidogrel), whereas the role of P2Y(1) in thrombosis remains to be fully established. Recent studies using either inhibitors of key components of signaling pathways or genetically engineered mice have contributed to our understanding of the signaling mechanisms in platelets mediated by adenosine-5'-diphosphate through the P2Y(12) receptor. Studies of patients with defective adenosine-5'-diphosphate mediated aggregation, as well as P2Y(12)-null mice, have revealed the importance of this receptor in mediating platelet activation and aggregation. Recent clinical trials using approved P2Y(12) blockers have extended the use of these drugs to additional patient populations. Recent data demonstrating the role of P2Y(12) in mediating platelet adhesion to thrombogenic surfaces (collagen, von Willebrand factor) provide further rationale as to the clinical efficacy of P2Y(12) blockers. P2Y(12) antagonists in combination with anticoagulants (thrombin inhibitors, factor Xa inhibitors) act synergistically in inhibiting thrombus formation (similar to aspirin) ex vivo. These findings suggest the potential for combination therapies (P2Y(12) antagonists with inhibitors of GPIIb-IIIa, thrombin or Factor Xa, etc.) to provide additional clinical benefit to patients with various cardiovascular diseases, especially those who may be aspirin-resistant.
Collapse
Affiliation(s)
- Pamela B Conley
- Department of Cardiovascular Biology, Millennium Pharmaceuticals Inc., 256 East Grand Avenue, South San Francisco, CA 94080, USA.
| | | |
Collapse
|
36
|
Suzuki-Inoue K, Inoue O, Frampton J, Watson SP. Murine GPVI stimulates weak integrin activation in PLCgamma2-/- platelets: involvement of PLCgamma1 and PI3-kinase. Blood 2003; 102:1367-73. [PMID: 12730118 DOI: 10.1182/blood-2003-01-0029] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Collagen stimulates platelet activation through a tyrosine kinase-based pathway downstream of the glycoprotein VI (GPVI)-Fc receptor (FcR) gamma-chain complex. Genetic ablation of FcR gamma-chain results in a complete inhibition of aggregation to collagen. In contrast, a steady increase in light transmission is induced by collagen in phospholipase Cgamma2-deficient (PLCgamma2-/-) platelets in a Born aggregometer, indicating a weak level of activation. This increase is inhibited partially in the presence of an alpha2beta1-blocking antibody or an alphaIIbbeta3 antagonist and completely by a combination of the 2 inhibitors. It is also abolished by the Src kinase inhibitor PP1 and reduced in the presence of the phosphatidylinositol (PI) 3-kinase inhibitor wortmannin. The GPVI-specific agonists convulxin and collagen-related peptide (CRP) also stimulate weak aggregation in PLCgamma2-/- platelets, which is inhibited by wortmannin and PP1. Collagen and CRP stimulate tyrosine phosphorylation of PLCgamma1 at its regulatory site, Tyr 783, in murine but not in human platelets through a Src kinase-dependent pathway. Adhesion of PLCgamma2-/- platelets to a collagen monolayer is severely reduced at a shear rate of 800 s-1, relative to controls, whereas it is abolished in FcR gamma-chain-/- platelets. These results provide strong evidence that engagement of GPVI stimulates limited integrin activation in PLCgamma2-/- platelets via PLCgamma1 and PI3-kinase.
Collapse
|
37
|
Abstract
At sites of vascular injury, platelets come into contact with subendothelial collagen, which triggers their activation and the formation of a hemostatic plug. Besides glycoprotein Ib (GPIb) and alphaIIbbeta3 integrin, which indirectly interact with collagen via von Willebrand factor (VWF), several collagen receptors have been identified on platelets, most notably alpha2beta1 integrin and the immunoglobulin (Ig) superfamily member GPVI. Within the last few years, major advances have been made in understanding platelet-collagen interactions including the molecular cloning of GPVI, the generation of mouse strains lacking individual collagen receptors, and the development of collagen receptor-specific antibodies and synthetic peptides. It is now recognized that platelet adhesion to collagen requires prior activation of integrins through "inside-out" signals generated by GPVI and reinforced by released second-wave mediators adenosine diphosphate (ADP) and thromboxane A2. These developments have led to revision of the original "2-site, 2-step" model, which now places GPVI in a central position in the complex processes of platelet tethering, activation, adhesion, aggregation, degranulation, and procoagulant activity on collagen. This review discusses these recent developments and proposes possible mechanisms for how GPVI acts in concert with other receptors and signaling pathways to initiate hemostasis and arterial thrombosis.
Collapse
Affiliation(s)
- Bernhard Nieswandt
- Department of Vascular Biology, Rudolf Virchow Center for Experimental Biomedicine Versbacher, Würzburg, Germany.
| | | |
Collapse
|
38
|
Larson MK, Chen H, Kahn ML, Taylor AM, Fabre JE, Mortensen RM, Conley PB, Parise LV. Identification of P2Y12-dependent and -independent mechanisms of glycoprotein VI-mediated Rap1 activation in platelets. Blood 2003; 101:1409-15. [PMID: 12393417 DOI: 10.1182/blood-2002-05-1533] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoprotein (GP) VI is a critical platelet collagen receptor, yet the steps involved in GPVI-mediated platelet activation remain incompletely understood. Because activation of Rap1, an abundant small guanosine triphosphatase (GTPase) in platelets, contributes to integrin alpha(IIb)beta(3) activation, we asked whether and how GPVI signaling activates Rap1 in platelets. Here we show that platelet Rap1 is robustly activated upon addition of convulxin, a GPVI-specific agonist. Using a reconstituted system in RBL-2H3 cells, we found that GPVI-mediated Rap1 activation is dependent on FcRgamma but independent of another platelet collagen receptor, alpha(2)beta(1). Interestingly, GPVI-mediated Rap1 activation in human platelets is largely dependent on adenosine diphosphate (ADP) signaling through the P2Y(12) and not the P2Y(1) receptor. However, experiments with specific ADP receptor antagonists and platelets from knockout mice deficient in P2Y(1) or the P2Y(12)-associated G-protein, Galphai(2), indicate that human and murine platelets also have a significant P2Y(12)-independent component of GPVI-mediated Rap1 activation. The P2Y(12)-independent component is dependent on phosphatidylinositol 3-kinase and is augmented by epinephrine-mediated signaling. P2Y(12)-dependent and -independent components are also observed in GPVI-mediated platelet aggregation, further supporting a role for Rap1 in aggregation. These results define mechanisms of GPVI-mediated platelet activation and implicate Rap1 as a key signaling protein in GPVI-induced platelet signaling.
Collapse
MESH Headings
- Adenosine Diphosphate/metabolism
- Animals
- Blood Platelets/enzymology
- Blood Platelets/physiology
- Crotalid Venoms/pharmacology
- Enzyme Activation/drug effects
- Epinephrine/physiology
- GTP-Binding Protein alpha Subunit, Gi2
- GTP-Binding Protein alpha Subunits, Gi-Go/blood
- GTP-Binding Protein alpha Subunits, Gi-Go/deficiency
- Humans
- Integrin alpha2beta1/blood
- Lectins, C-Type
- Membrane Proteins
- Mice
- Mice, Knockout
- Phosphatidylinositol 3-Kinases/blood
- Platelet Aggregation
- Platelet Membrane Glycoproteins/physiology
- Proto-Oncogene Proteins/blood
- Proto-Oncogene Proteins/deficiency
- Purinergic P2 Receptor Antagonists
- Receptors, IgG/blood
- Receptors, Purinergic P2/blood
- Receptors, Purinergic P2/deficiency
- Receptors, Purinergic P2/physiology
- Receptors, Purinergic P2Y1
- Receptors, Purinergic P2Y12
- Signal Transduction
- rap1 GTP-Binding Proteins/blood
Collapse
Affiliation(s)
- Mark K Larson
- Department of Pharmacology, Center for Thrombosis and Hemostasis and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Protein kinase D (PKD, also known as PKCmu) is closely related to the protein kinase C superfamily but is differentially regulated and has a distinct catalytic domain that shares homology with Ca(2+)-dependent protein kinases. PKD is highly expressed in hematopoietic cells and undergoes rapid and sustained activation upon stimulation of immune receptors. PKD is regulated through phosphorylation by protein kinase C (PKC). In the present study, we show that PKD is expressed in human platelets and that it is rapidly activated by receptors coupled to heterotrimeric G-proteins or tyrosine kinases. Activation of PKD is mediated downstream of PKC. Strong agonists such as convulxin, which acts on GPVI, and thrombin cause sustained activation of PKC and PKD, whereas the thromboxane mimetic U46619 gives rise to transient activation of PKC and PKD. Activation of PKD by submaximal concentrations of phospholipase C-coupled receptor agonists is potentiated by G(i)-coupled receptors (eg, adenosine diphosphate and epinephrine). This study shows that PKD is rapidly activated by a wide variety of platelet agonists through a PKC-dependent pathway. Activation of PKD enables phosphorylation of a distinct set of substrates to those targeted by PKC in platelets.
Collapse
|
40
|
Quinton TM, Kim S, Dangelmaier C, Dorsam RT, Jin J, Daniel JL, Kunapuli SP. Protein kinase C- and calcium-regulated pathways independently synergize with Gi pathways in agonist-induced fibrinogen receptor activation. Biochem J 2002; 368:535-43. [PMID: 12215172 PMCID: PMC1223015 DOI: 10.1042/bj20020226] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2002] [Revised: 07/18/2002] [Accepted: 09/05/2002] [Indexed: 11/17/2022]
Abstract
Platelet fibrinogen receptor activation is a critical step in platelet plug formation. The fibrinogen receptor (integrin alphaIIbbeta3) is activated by agonist-mediated G(q) stimulation and resultant phospholipase C activation. We investigated the role of downstream signalling events from phospholipase C, namely the activation of protein kinase C (PKC) and rise in intracellular calcium, in agonist-induced fibrinogen receptor activation using Ro 31-8220 (a PKC inhibitor) or dimethyl BAPTA [5,5'-dimethyl-bis-(o-aminophenoxy)ethane-N,N,N', N'-tetra-acetic acid], a high-affinity calcium chelator. All the experiments were performed with human platelets treated with aspirin, to avoid positive feedback from thromboxane A2. In the presence of Ro 31-8220, platelet aggregation caused by U46619 was completely inhibited while no effect or partial inhibition was seen with ADP and the thrombin-receptor-activating peptide SFLLRN, respectively. In the presence of intracellular dimethyl BAPTA, ADP- and U46619-induced aggregation and anti-alphaIIbbeta3 antibody PAC-1 binding were completely abolished. However, similar to the effects of Ro 31-8220, dimethyl BAPTA only partially inhibited SFLLRN-induced aggregation, and was accompanied by diminished dense-granule secretion. When either PKC activation or intracellular calcium release was abrogated, aggregation and fibrinogen receptor activation with U46619 or SFLLRN was partially restored by additional selective activation of the G(i) signalling pathway. In contrast, when both PKC activity and intracellular calcium increase were simultaneously inhibited, the complete inhibition of aggregation that occurred in response to either U46619 or SFLLRN could not be restored with concomitant G(i) signalling. We conclude that, while the PKC- and calcium-regulated signalling pathways are capable of inducing activating fibrinogen receptor independently and that each can synergize with G(i) signalling to cause irreversible fibrinogen receptor activation, both pathways act synergistically to effect irreversible fibrinogen receptor activation.
Collapse
Affiliation(s)
- Todd M Quinton
- Department of Physiology, Temple University Medical School, 3420 N. Broad Street, Philadelphia, PA 19140, U.S.A
| | | | | | | | | | | | | |
Collapse
|
41
|
Snell DC, Schulte V, Jarvis GE, Arase K, Sakurai D, Saito T, Watson SP, Nieswandt B. Differential effects of reduced glycoprotein VI levels on activation of murine platelets by glycoprotein VI ligands. Biochem J 2002; 368:293-300. [PMID: 12117414 PMCID: PMC1222953 DOI: 10.1042/bj20020335] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2002] [Revised: 06/10/2002] [Accepted: 07/15/2002] [Indexed: 11/17/2022]
Abstract
We have investigated the effects of decreased levels of the complex between glycoprotein VI (GPVI) and the Fc receptor gamma-chain (FcRgamma) on responses to collagen and GPVI-specific ligands in murine platelets. We show that levels of GPVI-FcRgamma of the order of 50% and 20% of wild-type levels caused 2- and 5-fold shifts to the right respectively in the dose-response curve for aggregation in response to collagen, the snake toxin convulxin and the monoclonal antibody JAQ1. In addition, there is a delay in the onset of aggregation in response to collagen. In contrast, the stimulation of protein tyrosine phosphorylation by collagen (as measured after 150 s) and adhesion to a collagen-coated surface under static conditions were unaffected in platelets with 50% and 20% of wild-type levels of GPVI. In contrast, responses to a collagen-related peptide (CRP), made up of repeat glycine-proline-hydroxyproline motifs, were markedly inhibited and abolished in platelets expressing 50% and 20% of wild-type levels of GPVI respectively. We suggest that the marked effect of a reduction in GPVI levels on the CRP-induced activation of platelets is due to the multivalent nature of CRP and the fact that GPVI is its sole receptor on platelets. Thus it appears that the interaction of CRP with GPVI is determined by a combination of affinity and avidity. The observation that collagen does not behave like CRP in platelets expressing reduced levels of GPVI, even in the combined presence of blocking antibodies against integrin alpha2beta1 and GPV, suggests that collagen has a greater affinity than CRP for GPVI, and/or that other receptors are involved in its binding to platelets. The clinical significance of these results is discussed.
Collapse
Affiliation(s)
- Daniel C Snell
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Jarvis GE, Atkinson BT, Snell DC, Watson SP. Distinct roles of GPVI and integrin alpha(2)beta(1) in platelet shape change and aggregation induced by different collagens. Br J Pharmacol 2002; 137:107-17. [PMID: 12183336 PMCID: PMC1573462 DOI: 10.1038/sj.bjp.0704834] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Various platelet membrane glycoproteins have been proposed as receptors for collagen, in some cases as receptors for specific collagen types. In this study we have compared the ability of a range of collagen types to activate platelets. 2. Bovine collagen types I-V, native equine tendon collagen fibrils and collagen-related peptide (CRP) all induced platelet aggregation and shape change. 3. Responses were abolished in FcRgamma chain-deficient platelets, which also lack GPVI, indicating a critical dependence on the GPVI/FcRgamma chain complex. 4. Responses to all collagens were unaffected in CD36-deficient platelets. 5. A monoclonal antibody (6F1) which binds to the alpha(2) integrin subunit of human platelets had a minimal effect on the rate and extent of aggregation induced by the collagens; however, it delayed the onset of aggregation following addition of all collagens. For shape change, 6F1 abolished the response induced by collagen types I and IV, substantially attenuated that to collagen types II, III and V, but only partially inhibited Horm collagen. 6. Simultaneous blockade of the P2Y(1) and P2Y(12) receptors, and inhibition of cyclo-oxygenase demonstrated that CRP can activate platelets independently of ADP and TxA(2); however, responses to the collagens were dependent on these mediators. 7. This study confirms the importance of the GPVI/FcRgamma chain complex in platelet responses induced by a range of collagen agonists, while providing no evidence for collagen type-specific receptors. It also provides evidence for a modulatory role of alpha(2)beta(1), the significance of which depends on the collagen preparation.
Collapse
Affiliation(s)
- Gavin E Jarvis
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT.
| | | | | | | |
Collapse
|
43
|
Berlanga O, Tulasne D, Bori T, Snell DC, Miura Y, Jung S, Moroi M, Frampton J, Watson SP. The Fc receptor gamma-chain is necessary and sufficient to initiate signalling through glycoprotein VI in transfected cells by the snake C-type lectin, convulxin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2951-60. [PMID: 12071959 DOI: 10.1046/j.1432-1033.2002.02969.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is extensive evidence that FcR gamma-chain couples to the collagen receptor glycoprotein VI (GPVI) and becomes phosphorylated on tyrosines upon receptor cross-linking. However, it is not established whether this receptor complex is sufficient to initiate the signalling cascade. We transfected GPVI and the FcR gamma-chain into the human erythroleukaemia cell line K562, which lacks detectable expression of GPVI and the FcR gamma-chain. The results show that GPVI is unable to signal when expressed alone, despite its surface expression, upon stimulation with the snake C-type lectin, convulxin. Coexpression of the FcR gamma-chain confers signalling properties on the receptor. Furthermore, cotransfection of the FcR gamma-chain and two mutant versions of GPVI shows that the transmembrane arginine and cytoplasmic tail of GPVI are necessary for association with the FcR gamma-chain. These results demonstrate that reconstitution of the GPVI-FcR gamma-chain complex in cells expressing the necessary signalling network is sufficient to initiate signalling events in response to convulxin and collagen-related peptide.
Collapse
|
44
|
Quinton TM, Ozdener F, Dangelmaier C, Daniel JL, Kunapuli SP. Glycoprotein VI-mediated platelet fibrinogen receptor activation occurs through calcium-sensitive and PKC-sensitive pathways without a requirement for secreted ADP. Blood 2002; 99:3228-34. [PMID: 11964287 DOI: 10.1182/blood.v99.9.3228] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Collagen activates platelets by transducing signals through glycoprotein VI (GPVI). It is not clear whether collagen can directly activate fibrinogen receptors on the adherent platelets without a role for positive feedback agonists. We investigated the contribution of secondary G protein signaling to the mechanism of GPVI-stimulated platelet aggregation using the GPVI-selective agonists, convulxin and collagen-related peptide (CRP) as well as collagen. Adenosine diphosphate (ADP) scavengers or ADP receptor antagonists shifted the concentration-response curve slightly to the right at low concentrations of convulxin, whereas platelet aggregation at higher concentrations of convulxin was unaffected by these agents. ADP receptor antagonists shifted the concentration-response curve of collagen- or CRP-induced platelet aggregation to the right at all the concentrations. Protein kinase C inhibitor, Ro 31-8220, or a calcium chelator 5,5'-dimethyl-BAPTA shifted the concentration-response curve of convulxin-induced platelet aggregation to the right. In addition, pretreatment with both Ro 31-8220 and dimethyl-BAPTA resulted in total inhibition of convulxin-mediated aggregation. Blockade of either the calcium- or protein kinase C-regulated pathway leads to inhibition of fibrinogen receptor activation on platelets adherent to collagen, but inhibition of both pathways leads to abolished fibrinogen receptor activation. We conclude that collagen-induced activation of fibrinogen receptor on adherent platelets through GPVI signaling occurs without any significant role for secreted ADP or thromboxane A(2). Furthermore, protein kinase C- and calcium-regulated pathways independently contribute to GPVI-mediated platelet aggregation.
Collapse
Affiliation(s)
- Todd M Quinton
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|