1
|
Kamata T, Yamada S, Sekijima T. Differential AMPK-mediated metabolic regulation observed in hibernation-style polymorphisms in Siberian chipmunks. Front Physiol 2023; 14:1220058. [PMID: 37664438 PMCID: PMC10468594 DOI: 10.3389/fphys.2023.1220058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Hibernation is a unique physiological phenomenon allowing extreme hypothermia in endothermic mammals. Hypometabolism and hypothermia tolerance in hibernating animals have been investigated with particular interest; recently, studies of cultured cells and manipulation of the nervous system have made it possible to reproduce physiological states related to hypothermia induction. However, much remains unknown about the periodic regulation of hibernation. In particular, the physiological mechanisms facilitating the switch from an active state to a hibernation period, including behavioral changes and the acquisition of hypothermia tolerance remain to be elucidated. AMPK is a protein known to play a central role not only in feeding behavior but also in metabolic regulation in response to starvation. Our previous research has revealed that chipmunks activate AMPK in the brain during hibernation. However, whether AMPK is activated during winter in non-hibernating animals is unknown. Previous comparative studies between hibernating and non-hibernating animals have often been conducted between different species, consequently it has been impossible to account for the effects of phylogenetic differences. Our long-term monitoring of siberian chipmunks, has revealed intraspecific variation between those individuals that hibernate annually and those that never become hypothermic. Apparent differences were found between hibernating and non-hibernating types with seasonal changes in lifespan and blood HP levels. By comparing seasonal changes in AMPK activity between these polymorphisms, we clarified the relationship between hibernation and AMPK regulation. In hibernating types, phosphorylation of p-AMPK and p-ACC was enhanced throughout the brain during hibernation, indicating that AMPK-mediated metabolic regulation is activated. In non-hibernating types, AMPK and ACC were not seasonally activated. In addition, AMPK activation in the hypothalamus had already begun during high Tb before hibernation. Changes in AMPK activity in the brain during hibernation may be driven by circannual rhythms, suggesting a hibernation-regulatory mechanism involving AMPK activation independent of Tb. The differences in brain AMPK regulation between hibernators and non-hibernators revealed in this study were based on a single species thus did not involve phylogenetic differences, thereby supporting the importance of brain temperature-independent AMPK activation in regulating seasonal metabolism in hibernating animals.
Collapse
Affiliation(s)
- Taito Kamata
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
- Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Shintaro Yamada
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
- Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | | |
Collapse
|
2
|
Horii Y, Shiina T, Shimizu Y. The Mechanism Enabling Hibernation in Mammals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:45-60. [PMID: 30288703 DOI: 10.1007/978-981-13-1244-1_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Some rodents including squirrels and hamsters undergo hibernation. During hibernation, body temperature drops to only a few degrees above ambient temperature. The suppression of whole-body energy expenditure is associated with regulated, but not passive, reduction of cellular metabolism. The heart retains the ability to beat constantly, although body temperature drops to less than 10 °C during hibernation. Cardiac myocytes of hibernating mammals are characterized by reduced Ca2+ entry into the cell membrane and a concomitant enhancement of Ca2+ release from and reuptake by the sarcoplasmic reticulum. These adaptive changes would help in preventing excessive Ca2+ entry and its overload and in maintaining the resting levels of intracellular Ca2+. Adaptive changes in gene expression in the heart prior to hibernation may be indispensable for acquiring cold resistance. In addition, protective effects of cold-shock proteins are thought to have an important role. We recently reported the unique expression pattern of cold-inducible RNA-binding protein (CIRP) in the hearts of hibernating hamsters. The CIRP mRNA is constitutively expressed in the heart of a nonhibernating euthermic hamster with several different forms probably due to alternative splicing. The short product contained the complete open reading frame for full-length CIRP, while the long product had inserted sequences containing a stop codon, suggesting production of a C-terminal deletion isoform of CIRP. In contrast to nonhibernating hamsters, only the short product was found in hibernating animals. Thus, these results indicate that CIRP expression in the hamster heart is regulated at the level of alternative splicing, which would permit a rapid increment of functional CIRP when entering hibernation. We will summarize the current understanding of the cold-resistant property of the heart in hibernating animals.
Collapse
Affiliation(s)
- Yuuki Horii
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Takahiko Shiina
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Yasutake Shimizu
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan.
| |
Collapse
|
3
|
Seldin MM, Byerly MS, Petersen PS, Swanson R, Balkema-Buschmann A, Groschup MH, Wong GW. Seasonal oscillation of liver-derived hibernation protein complex in the central nervous system of non-hibernating mammals. ACTA ACUST UNITED AC 2015; 217:2667-79. [PMID: 25079892 DOI: 10.1242/jeb.095976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mammalian hibernation elicits profound changes in whole-body physiology. The liver-derived hibernation protein (HP) complex, consisting of HP-20, HP-25 and HP-27, was shown to oscillate circannually, and this oscillation in the central nervous system (CNS) was suggested to play a role in hibernation. The HP complex has been found in hibernating chipmunks but not in related non-hibernating tree squirrels, leading to the suggestion that hibernation-specific genes may underlie the origin of hibernation. Here, we show that non-hibernating mammals express and regulate the conserved homologous HP complex in a seasonal manner, independent of hibernation. Comparative analyses of cow and chipmunk HPs revealed extensive biochemical and structural conservations. These include liver-specific expression, assembly of distinct heteromeric complexes that circulate in the blood and cerebrospinal fluid, and the striking seasonal oscillation of the HP levels in the blood and CNS. Central administration of recombinant HPs affected food intake in mice, without altering body temperature, physical activity levels or energy expenditure. Our results demonstrate that HP complex is not unique to the hibernators and suggest that the HP-regulated liver-brain circuit may couple seasonal changes in the environment to alterations in physiology.
Collapse
Affiliation(s)
- Marcus M Seldin
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mardi S Byerly
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pia S Petersen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Roy Swanson
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anne Balkema-Buschmann
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Martin H Groschup
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Fujita S, Okamoto R, Taniguchi M, Ban-Tokuda T, Konishi K, Goto I, Yamamoto Y, Sugimoto K, Takamatsu N, Nakamura M, Shiraki K, Buechler C, Ito M. Identification of bovine hibernation-specific protein complex and evidence of its regulation in fasting and aging. J Biochem 2013; 153:453-61. [PMID: 23389309 DOI: 10.1093/jb/mvt008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hibernation-specific protein (HP) is a plasma protein that regulates hibernation in chipmunks. The HP complex (HP20c) consists of three homologous proteins, HP20, HP25 and HP27, all produced by liver and belonging to the C1q family. To date, HP20c has not been identified in any mammalian species except chipmunk and ground squirrel hibernators. Here, we report a bovine HP20 gene isolated from liver tissue and aortic endothelial cells. Total homology between bovine and chipmunk variants was 63% at the amino acid level. Gene expression was highest in the liver. Western blot revealed HP20 protein in foetal, newborn, calf and adult serum, with highest concentrations in the adult. Similar proteins were detected in sera of other ruminants but not in humans, bears, mice or rats. Bovine HP20 protein was found mainly in ovaries, stomach, heart, kidneys, lungs, testes and prostate, but not in the skeletal muscle. Native HP20 was purified from bovine adult serum as a complex containing 25 and 27 kDa proteins. Mass spectrometry revealed that these proteins are orthologues of chipmunk HP25 and HP27, respectively. Interestingly, bovine HP20 was highly expressed in cattle serum after fasting. Native bovine HP20c may be a useful tool for investigating HP function.
Collapse
Affiliation(s)
- Satoshi Fujita
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kondo N. Endogenous circannual clock and HP complex in a hibernation control system. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2008; 72:607-13. [PMID: 18419320 DOI: 10.1101/sqb.2007.72.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hibernation in mammals is a mysterious biological phenomenon that appears on a seasonal basis for surviving a potentially lethal low body temperature (Tb) near 0 degrees C and protecting organisms from various diseases and harmful events during hibernation. The exact mechanism by which such a unique ability is seasonally developed is still unknown. On the basis of our previous finding that the source of calcium ions for excitation-contraction coupling in myocardium of chipmunks, a rodent hibernator, is seasonally modulated for hibernation, the liver-derived hibernation-specific protein (HP) complex was discovered. Recently, the HP complex was identified as a promising candidate hormone that carries a hibernation signal to the brain independently of Tb and environmental changes for developing a capacity for tolerating low Tb. This finding will promote new approaches to understanding biological hibernation systems, including a circannual clock and its signaling pathway between the brain and the periphery. A new definition of hibernation and a possible model of a hibernation control system are proposed.
Collapse
Affiliation(s)
- N Kondo
- Mitsubishi Kagaku Institute of Life Sciences, Machida, Tokyo 194-8511, Japan
| |
Collapse
|
6
|
Tsukamoto D, Fujii G, Kondo N, Ito M, Shiba T, Takamatsu N. USF is involved in the transcriptional regulation of the chipmunk HP-25 gene. Gene 2007; 396:268-72. [PMID: 17467197 DOI: 10.1016/j.gene.2007.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 03/02/2007] [Accepted: 03/02/2007] [Indexed: 11/15/2022]
Abstract
The hibernation-specific HP-25 gene is expressed specifically in the liver of the chipmunk, a hibernating species of the squirrel family, and exists as a pseudogene in the tree squirrel, a nonhibernating species. Our previous studies have revealed two positively acting transcriptional regulatory regions in the 5'-flanking region of the chipmunk HP-25 gene, one from -260 to -80 and another from -80 to -59, and a pivotal role for hepatocyte nuclear factor-4 (HNF-4), which binds to the proximal regulatory region, in HP-25's liver-specific transcription. A database search for transcription factor binding sites in the distal regulatory region indicated the presence of two potential binding sites for upstream stimulatory factor (USF): one between -161 and -156 and the other between -143 and -138. In an electrophoretic mobility shift assay (EMSA), in vitro-translated USF bound only to the sequence from -143 to -138. USF did not bind the corresponding sequence of the tree squirrel HP-25 gene, which has two base substitutions. Transient transfection studies in COS-7 cells showed that USF could activate the transcription of the chipmunk HP-25 gene, and that tree squirrel-type base substitutions in the USF-binding site aborted the transactivation by USF. By chromatin immunoprecipitation (ChIP) analysis, we confirmed that USF bound to the promoter region of the HP-25 gene in the chipmunk liver, and not in the kidney or heart. These results indicate that USF is involved in the transcriptional regulation of the chipmunk HP-25 gene in the liver, and that the base substitutions in the USF-binding site contribute to the lack of HP-25 gene expression in the tree squirrel.
Collapse
Affiliation(s)
- Daisuke Tsukamoto
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Fujii G, Nakamura Y, Tsukamoto D, Ito M, Shiba T, Takamatsu N. CpG methylation at the USF-binding site is important for the liver-specific transcription of the chipmunk HP-27 gene. Biochem J 2006; 395:203-9. [PMID: 16396632 PMCID: PMC1409699 DOI: 10.1042/bj20051802] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The chipmunk hibernation-specific HP-27 gene is expressed specifically in the liver and has a CpG-poor promoter. To reveal how the liver-specific transcription of the HP-27 gene is regulated, we performed yeast one-hybrid screening of a chipmunk liver cDNA library. A 5'-flanking sequence of the HP-27 gene, extending from -170 to -140 and containing an E-box (5'-CACGTG-3'), is essential for the liver-specific transcription of HP-27. We used this sequence as bait and found that a ubiquitously expressed transcription factor, USF (upstream stimulatory factor), bound to the E-box. In COS-7 cells, USF activated transcription from the HP-27 gene promoter. We then used bisulphite genomic sequencing to analyse the methylation status of the four CpG dinucleotides that lie in the 5'-flanking sequence of the HP-27 gene up to -450, to investigate how the ubiquitously expressed USF activates transcription of the HP-27 gene only in the liver, while its transcription is repressed elsewhere. The only difference in methylation in the tissues tested was in the CpG dinucleotide in the USF-binding site, which was hypomethylated in the liver, but highly methylated in the kidney and heart. The specific methylation of the CpG dinucleotide at the USF-binding site impeded both the binding of USF and its transcriptional activation of the HP-27 gene. Chromatin immunoprecipitation using anti-USF antibodies revealed that USF bound to the HP-27 gene promoter in the liver, but not in the kidney or heart. Thus CpG methylation at the USF-binding site functions in establishing and maintaining tissue-specific transcription from the CpG-poor HP-27 gene promoter.
Collapse
Affiliation(s)
- Gen Fujii
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan
| | - Yuki Nakamura
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan
| | - Daisuke Tsukamoto
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan
| | - Michihiko Ito
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan
| | - Tadayoshi Shiba
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan
| | - Nobuhiko Takamatsu
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
8
|
Kondo N, Sekijima T, Kondo J, Takamatsu N, Tohya K, Ohtsu T. Circannual Control of Hibernation by HP Complex in the Brain. Cell 2006; 125:161-72. [PMID: 16615897 DOI: 10.1016/j.cell.2006.03.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 10/11/2005] [Accepted: 03/13/2006] [Indexed: 10/24/2022]
Abstract
Seasonal hibernation in mammals is under a unique adaptation system that protects organisms from various harmful events, such as lowering of body temperature (Tb), during hibernation. However, the precise factors controlling hibernation remain unknown. We have previously demonstrated a decrease in hibernation-specific protein (HP) complex in the blood of chipmunks during hibernation. Here, HP is identified as a candidate hormone for hibernation. In chipmunks kept in constant cold and darkness, HP is regulated by an individual free-running circannual rhythm that correlates with hibernation. The level of HP complex in the brain increases coincident with the onset of hibernation. Such HP regulation proceeds independently of Tb changes in constant warmth, and Tb decreases only when brain HP is increased in the cold. Blocking brain HP activity using an antibody decreases the duration of hibernation. We suggest that HP, a target of endogenously generated circannual rhythm, carries hormonal signals essential for hibernation to the brain.
Collapse
Affiliation(s)
- Noriaki Kondo
- Mitsubishi Kagaku Institute of Life Sciences, Machida, Tokyo 194-8511, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Kondo N. [The hibernation control system: a new biomedical field developed by hibernation research]. Nihon Yakurigaku Zasshi 2006; 127:97-102. [PMID: 16595980 DOI: 10.1254/fpj.127.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|
10
|
Ono M, Kojima-Kawagoe M, Ito M, Kondo N, Shiba T, Takamatsu N. HNF-1 regulates the promoter activity of the HP-27 gene. Zoolog Sci 2004; 21:393-6. [PMID: 15118226 DOI: 10.2108/zsj.21.393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The hibernation-specific HP-27 gene is expressed specifically in the liver of the chipmunk, a hibernating species of the squirrel family, and exists as a pseudogene in the tree squirrel, a nonhibernating species. In the promoter region, the chipmunk gene has a potential HNF-1 binding site, and the tree squirrel gene has two base substitutions in the corresponding sequence. In this paper, we investigated the role of HNF-1 in the HP-27 gene promoter activity. Gel retardation assays with in vitro-translated HNF-1 and super-shift assays using HepG2 nuclear extracts and an anti-HNF-1 antibody revealed that HNF-1 bound to the chipmunk gene sequence. HNF-1 also bound to the tree squirrel sequence, but with much lower affinity. In HepG2 cells, HNF-1 activated transcription from the chipmunk HP-27 gene, but not from the tree squirrel gene. In addition, the tree squirrel-type base substitutions in the HNF-1 binding site greatly reduced the promoter activity of the chipmunk HP-27 gene. These results indicate that HNF-1 is required for the promoter activity of the chipmunk HP-27 gene, and that the base substitutions in the HNF-1 binding site are involved in the lack of HP-27 gene expression in the tree squirrel.
Collapse
Affiliation(s)
- Motoharu Ono
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Carey HV, Andrews MT, Martin SL. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 2003; 83:1153-81. [PMID: 14506303 DOI: 10.1152/physrev.00008.2003] [Citation(s) in RCA: 792] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mammalian hibernators undergo a remarkable phenotypic switch that involves profound changes in physiology, morphology, and behavior in response to periods of unfavorable environmental conditions. The ability to hibernate is found throughout the class Mammalia and appears to involve differential expression of genes common to all mammals, rather than the induction of novel gene products unique to the hibernating state. The hibernation season is characterized by extended bouts of torpor, during which minimal body temperature (Tb) can fall as low as -2.9 degrees C and metabolism can be reduced to 1% of euthermic rates. Many global biochemical and physiological processes exploit low temperatures to lower reaction rates but retain the ability to resume full activity upon rewarming. Other critical functions must continue at physiologically relevant levels during torpor and be precisely regulated even at Tb values near 0 degrees C. Research using new tools of molecular and cellular biology is beginning to reveal how hibernators survive repeated cycles of torpor and arousal during the hibernation season. Comprehensive approaches that exploit advances in genomic and proteomic technologies are needed to further define the differentially expressed genes that distinguish the summer euthermic from winter hibernating states. Detailed understanding of hibernation from the molecular to organismal levels should enable the translation of this information to the development of a variety of hypothermic and hypometabolic strategies to improve outcomes for human and animal health.
Collapse
Affiliation(s)
- Hannah V Carey
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|
12
|
Ono M, Kojima-Kawagoe M, Kondo N, Shiba T, Takamatsu N. Comparative study of HP-27 gene promoter activities between the chipmunk and tree squirrel. Gene 2003; 302:193-9. [PMID: 12527211 DOI: 10.1016/s0378-1119(02)01152-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The chipmunk hibernation-specific protein HP-27 is a component of the 140-kDa complex that decreases in the blood during hibernation. Although the HP-27 gene is detected in both the chipmunk, a hibernating species of the squirrel family, and the tree squirrel, a nonhibernating species, it is expressed only in the chipmunk, in a liver-specific manner. To understand the difference in HP-27 gene expression between the chipmunk and tree squirrel, we isolated chipmunk and tree squirrel HP-27 genomic clones, and compared their promoter activities. Transient transfection studies in HepG2 cells revealed that the 170 bp 5'-flanking sequence of the chipmunk HP-27 gene was sufficient for liver-specific promoter activity and that deletion of the sequence from -170 to -140 reduced the promoter activity by 90%. Although the corresponding 170 bp 5'-flanking sequence of the tree squirrel HP-27 gene had 89% nucleotide sequence homology to that of the chipmunk, it showed almost no promoter activity in HepG2 cells. In a gel retardation assay using HepG2 or chipmunk liver nuclear extracts, the 5'-flanking sequence of the chipmunk HP-27 gene from -170 to -140 showed a shifted band, but the corresponding tree squirrel sequence did not. Taken together, these data indicate that a transcription factor that binds to this 5'-flanking sequence of the chipmunk HP-27 gene plays an important role in HP-27 gene expression, and the failure of this factor to bind in the case of the tree squirrel HP-27 gene could be responsible for this animal's lack of HP-27 gene expression.
Collapse
Affiliation(s)
- Motoharu Ono
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, 228-8555, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
13
|
Morinaga T, Nakakoshi M, Hirao A, Imai M, Ishibashi K. Mouse aquaporin 10 gene (AQP10) is a pseudogene. Biochem Biophys Res Commun 2002; 294:630-4. [PMID: 12056815 DOI: 10.1016/s0006-291x(02)00536-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AQP10 is the newest member of aquaporins in mammals and expressed selectively in the duodenum and the jejunum in human functioning as aquaglyceroporin. Here we report the cloning of the mouse AQP10 gene. The gene is composed of six exons and spans 5.2 kb. The arrangement of the exons is well conserved between mouse and human. However, the initiator methionine is lost because of the mutation at the translation-initiation site. An insertion of four thymine residues in exon 2 and a deletion of a cytosine residue in exon 5 shift the reading frame. Moreover, aberrant exon/intron junction sequences of introns 2, 3, and 4 also shift the reading frame between exons. Genomic Southern blot revealed the mouse AQP10 gene as a single copy gene. The results indicate that the mouse AQP10 gene is a pseudogene. Furthermore, the mouse AQP10 transcript was not detected in the jejunum where the human AQP10 is strongly expressed.
Collapse
Affiliation(s)
- Tomonori Morinaga
- Department of Pharmacology, Jichi Medical School, 3311-1 Minamikawachi-machi, Yakushiji, Kawachi-gun, Tochigi 329-0498, Japan
| | | | | | | | | |
Collapse
|