1
|
Razar RBBA, Qu Y, Gunaseelan S, Chua JJE. The importance of fasciculation and elongation protein zeta-1 in neural circuit establishment and neurological disorders. Neural Regen Res 2022; 17:1165-1171. [PMID: 34782550 PMCID: PMC8643053 DOI: 10.4103/1673-5374.327327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 06/20/2021] [Indexed: 11/04/2022] Open
Abstract
The human brain contains an estimated 100 billion neurons that must be systematically organized into functional neural circuits for it to function properly. These circuits range from short-range local signaling networks between neighboring neurons to long-range networks formed between various brain regions. Compelling converging evidence indicates that alterations in neural circuits arising from abnormalities during early neuronal development or neurodegeneration contribute significantly to the etiology of neurological disorders. Supporting this notion, efforts to identify genetic causes of these disorders have uncovered an over-representation of genes encoding proteins involved in the processes of neuronal differentiation, maturation, synaptogenesis and synaptic function. Fasciculation and elongation protein zeta-1, a Kinesin-1 adapter, has emerged as a key central player involved in many of these processes. Fasciculation and elongation protein zeta-1-dependent transport of synaptic cargoes and mitochondria is essential for neuronal development and synapse establishment. Furthermore, it acts downstream of guidance cue pathways to regulate axo-dendritic development. Significantly, perturbing its function causes abnormalities in neuronal development and synapse formation both in the brain as well as the peripheral nervous system. Mutations and deletions of the fasciculation and elongation protein zeta-1 gene are linked to neurodevelopmental disorders. Moreover, altered phosphorylation of the protein contributes to neurodegenerative disorders. Together, these findings strongly implicate the importance of fasciculation and elongation protein zeta-1 in the establishment of neuronal circuits and its maintenance.
Collapse
Affiliation(s)
- Rafhanah Banu Bte Abdul Razar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| | - Yinghua Qu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore, Singapore
| | - Saravanan Gunaseelan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore, Singapore
| | - John Jia En Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
2
|
Wirth M, Mouilleron S, Zhang W, Sjøttem E, Princely Abudu Y, Jain A, Lauritz Olsvik H, Bruun JA, Razi M, Jefferies HB, Lee R, Joshi D, O'Reilly N, Johansen T, Tooze SA. Phosphorylation of the LIR Domain of SCOC Modulates ATG8 Binding Affinity and Specificity. J Mol Biol 2021; 433:166987. [DOI: https:/doi.org/10.1016/j.jmb.2021.166987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
|
3
|
Phosphorylation of the LIR Domain of SCOC Modulates ATG8 Binding Affinity and Specificity. J Mol Biol 2021; 433:166987. [PMID: 33845085 PMCID: PMC8202330 DOI: 10.1016/j.jmb.2021.166987] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/27/2021] [Accepted: 04/04/2021] [Indexed: 12/15/2022]
Abstract
Autophagy is a highly conserved degradative pathway, essential for cellular homeostasis and implicated in diseases including cancer and neurodegeneration. Autophagy-related 8 (ATG8) proteins play a central role in autophagosome formation and selective delivery of cytoplasmic cargo to lysosomes by recruiting autophagy adaptors and receptors. The LC3-interacting region (LIR) docking site (LDS) of ATG8 proteins binds to LIR motifs present in autophagy adaptors and receptors. LIR-ATG8 interactions can be highly selective for specific mammalian ATG8 family members (LC3A-C, GABARAP, and GABARAPL1-2) and how this specificity is generated and regulated is incompletely understood. We have identified a LIR motif in the Golgi protein SCOC (short coiled-coil protein) exhibiting strong binding to GABARAP, GABARAPL1, LC3A and LC3C. The residues within and surrounding the core LIR motif of the SCOC LIR domain were phosphorylated by autophagy-related kinases (ULK1-3, TBK1) increasing specifically LC3 family binding. More distant flanking residues also contributed to ATG8 binding. Loss of these residues was compensated by phosphorylation of serine residues immediately adjacent to the core LIR motif, indicating that the interactions of the flanking LIR regions with the LDS are important and highly dynamic. Our comprehensive structural, biophysical and biochemical analyses support and provide novel mechanistic insights into how phosphorylation of LIR domain residues regulates the affinity and binding specificity of ATG8 proteins towards autophagy adaptors and receptors.
Collapse
|
4
|
Hortells L, Meyer EC, Thomas ZM, Yutzey KE. Periostin-expressing Schwann cells and endoneurial cardiac fibroblasts contribute to sympathetic nerve fasciculation after birth. J Mol Cell Cardiol 2021; 154:124-136. [PMID: 33582160 DOI: 10.1016/j.yjmcc.2021.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/12/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND The intracardiac nervous system (ICNS) is composed of neurons, in association with Schwann cells (SC) and endoneurial cardiac fibroblasts (ECF). Besides heart rhythm control, recent studies have implicated cardiac nerves in postnatal cardiac regeneration and cardiomyocyte size regulation, but cardiac SC and ECF remain understudied. During the postnatal period, the ICNS undergoes intense remodeling with nerve fasciculation and elongation throughout the myocardium, partially guided by the extracellular matrix (ECM). Here we report the origins, heterogeneity, and functions of SC and ECF that develop in proximity to neurons during postnatal ICNS maturation. METHODS AND RESULTS Periostin lineage (Postn+) cells include cardiac Remak SC and ECF during the postnatal period in mice. The developmental origins of cardiac SC and ECF were examined using Rosa26eGFP reporter mice bred with Wnt1Cre, expressed in Neural crest (NC)-derived lineages, or tamoxifen-inducible Tcf21MerCreMer, expressed predominantly in epicardial-derived fibroblast lineages. ICNS components are NC-derived with the exceptions of the myelinating Plp1+ SC and the Tcf21+ lineage-derived intramural ventricular ECF. In addition, Postn+ lineage GFAP- Remak SC and ECF are present around the fasciculating cardiac nerves. Whole mount studies of the NC-derived cells confirmed postnatal maturation of the complex ICNS network from P0 to P30. Sympathetic, parasympathetic, and sensory neurons fasciculate from P0 to P7 indicated by co-staining with PSA-NCAM. Ablation of Postn+ cells from P0 to P6 or loss of Periostin leads to reduced fasciculation of cardiac sympathetic nerves. In addition, collagen remodeling surrounding maturing nerves of the postnatal heart is reduced in Postn-null mice. CONCLUSIONS Postn+ cells include cardiac SC and ECF during postnatal nerve maturation, and these cells have different embryonic origins. At P7, the Postn+ cells associated with cardiac nerves are mainly Remak SC and ECF. Ablation of the Postn+ cells from P0 to P6 and also loss of Postn in Postn-null mice leads to reduced fasciculation of cardiac nerves at P7.
Collapse
Affiliation(s)
- Luis Hortells
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Evan C Meyer
- The Confocal Imaging Core, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zachary M Thomas
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Katherine E Yutzey
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
5
|
Teixeira MB, Alborghetti MR, Kobarg J. Fasciculation and elongation zeta proteins 1 and 2: From structural flexibility to functional diversity. World J Biol Chem 2019; 10:28-43. [PMID: 30815230 PMCID: PMC6388297 DOI: 10.4331/wjbc.v10.i2.28] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/02/2019] [Accepted: 01/28/2019] [Indexed: 02/05/2023] Open
Abstract
Fasciculation and elongation zeta/zygin (FEZ) proteins are a family of hub proteins and share many characteristics like high connectivity in interaction networks, they are involved in several cellular processes, evolve slowly and in general have intrinsically disordered regions. In 1985, unc-76 gene was firstly described and involved in axonal growth in C. elegans, and in 1997 Bloom and Horvitz enrolled also the human homologues genes, FEZ1 and FEZ2, in this process. While nematodes possess one gene (unc-76), mammalians have one more copy (FEZ1 and FEZ2). Several animal models have been used to study FEZ family functions like: C. elegans, D. melanogaster, R. novergicus and human cells. Complementation assays were performed and demonstrated the function conservation between paralogues. Human FEZ1 protein is more studied followed by UNC-76 and FEZ2 proteins, respectively. While FEZ1 and UNC-76 shared interaction partners, FEZ2 evolved and increased the number of protein-protein interactions (PPI) with cytoplasmatic partners. FEZ proteins are implicated in intracellular transport, acting as bivalent cargo transport adaptors in kinesin-mediated movement. Especially in light of this cellular function, this family of proteins has been involved in several processes like neuronal development, neurological disorders, viral infection and autophagy. However, nuclear functions of FEZ proteins have been explored as well, due to high content of PPI with nuclear proteins, correlating FEZ1 expression to Sox2 and Hoxb4 gene regulation and retinoic acid signaling. These recent findings open new avenue to study FEZ proteins functions and its involvement in already described processes. This review intends to reunite aspects of evolution, structure, interaction partners and function of FEZ proteins and correlate them to physiological and pathological processes.
Collapse
Affiliation(s)
- Mariana Bertini Teixeira
- Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | | | - Jörg Kobarg
- Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-862, Brazil
| |
Collapse
|
6
|
Xiao W, Xiong Z, Yuan C, Bao L, Liu D, Yang X, Li W, Tong J, Qu Y, Liu L, Xiao H, Yang H, Zhang X, Chen K. Low neighbor of Brca1 gene expression predicts poor clinical outcome and resistance of sunitinib in clear cell renal cell carcinoma. Oncotarget 2017; 8:94819-94833. [PMID: 29212269 PMCID: PMC5706915 DOI: 10.18632/oncotarget.21999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022] Open
Abstract
Objective To study the expression of Neighbor of Brca1 gene (NBR1) in clear cell renal cell carcinoma (ccRCC), renal cancer cells and the chemoresistance cells and to elucidate its clinical prognostic and chemoresistance value. Materials and Methods We screened the NBR1 mRNA in ccRCC from The Cancer Genome Atlas (TCGA) database and examined expression levels of NBR1 mRNA in 48 cases of ccRCC tissues, renal cancer cell lines and chemoresistance cells by qRT-PCR. Then, we extended two additional data sets in oncomine datebase (https://www.oncomine.org) to further confirm the results of the TCGA database. Immunohistochemistry (IHC) assay data performed in ccRCC tissues and normal tissues were downloaded from The Human Protein Atlas. Results The mRNA levels of NBR1 were downregulated in TCGA-KIRC database (n = 533) and ccRCC patient samples (n=48) as well as in RCC cell lines and their chemoresistance cells. Similarly, the protein levels of NBR1 were lower in ccRCC patient samples. NBR1 level was associated with the clinical pathological stage and could discriminate metastasis, recurrence and prognosis in ccRCC patients. Low level of NBR1 mRNA showed a significance poor prognostic of overall survival (OS), disease–free survival (DFS) with univariate and multivariate analyses in ccRCC patients and sunitinib resistance. Conclusions Taken together, our results suggest that low level of NBR1 can predict poor clinical outcome and resistance of sunitinib in patients with ccRCC.
Collapse
Affiliation(s)
- Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiyong Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Changfei Yuan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Bao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Di Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiong Yang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wencheng Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junwei Tong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Qu
- Department of Pathogenic Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lei Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haibing Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
7
|
CIB1 protects against MPTP-induced neurotoxicity through inhibiting ASK1. Sci Rep 2017; 7:12178. [PMID: 28939911 PMCID: PMC5610320 DOI: 10.1038/s41598-017-12379-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
Calcium and integrin binding protein 1 (CIB1) is a calcium-binding protein that was initially identified as a binding partner of platelet integrin αIIb. Although CIB1 has been shown to interact with multiple proteins, its biological function in the brain remains unclear. Here, we show that CIB1 negatively regulates degeneration of dopaminergic neurons in a mouse model of Parkinson's disease using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Genetic deficiency of the CIB1 gene enhances MPTP-induced neurotoxicity in dopaminergic neurons in CIB1-/- mice. Furthermore, RNAi-mediated depletion of CIB1 in primary dopaminergic neurons potentiated 1-methyl-4-phenyl pyrinidium (MPP+)-induced neuronal death. CIB1 physically associated with apoptosis signal-regulating kinase 1 (ASK1) and thereby inhibited the MPP+-induced stimulation of the ASK1-mediated signaling cascade. These findings suggest that CIB1 plays a protective role in MPTP/MPP+-induced neurotoxicity by blocking ASK1-mediated signaling.
Collapse
|
8
|
Leisner TM, Freeman TC, Black JL, Parise LV. CIB1: a small protein with big ambitions. FASEB J 2016; 30:2640-50. [PMID: 27118676 DOI: 10.1096/fj.201500073r] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/05/2016] [Indexed: 12/11/2022]
Abstract
Calcium- and integrin-binding protein 1 (CIB1) is a small, ubiquitously expressed protein that was first identified as an intracellular binding partner of a platelet-specific α-integrin cytoplasmic tail. Although early studies revealed a role for CIB1 in regulating platelet integrin activity, recent studies have indicated a more diverse role for CIB1 in many different cell types and processes, including calcium signaling, migration, adhesion, proliferation, and survival. Increasing evidence also points to a novel role for CIB1 in cancer and cardiovascular disease. In addition, an array of CIB1 binding partners has been identified that provide important insight into how CIB1 may regulate these processes. Some of these binding partners include the serine/threonine kinases, p21-activated kinase 1 (PAK1), apoptosis signal-regulating kinase 1 (ASK1), and polo-like kinase 3 (PLK3). Structural and mutational studies indicate that CIB1 binds most or all of its partners via a well-defined hydrophobic cleft. Although CIB1 itself lacks known enzymatic activity, it supports the PI3K/AKT and MEK/ERK oncogenic signaling pathways, in part, by directly modulating enzymes in these pathways. In this review, we discuss our current understanding of CIB1 and key questions regarding structure and function and how this seemingly diminutive protein impacts important signaling pathways and cellular processes in human health and disease.-Leisner, T. M., Freeman, T. C., Black, J. L., Parise, L. V. CIB1: a small protein with big ambitions.
Collapse
Affiliation(s)
- Tina M Leisner
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Thomas C Freeman
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Justin L Black
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Leslie V Parise
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA; and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Kenific CM, Stehbens SJ, Goldsmith J, Leidal AM, Faure N, Ye J, Wittmann T, Debnath J. NBR1 enables autophagy-dependent focal adhesion turnover. J Cell Biol 2016; 212:577-90. [PMID: 26903539 PMCID: PMC4772495 DOI: 10.1083/jcb.201503075] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 01/19/2016] [Indexed: 12/21/2022] Open
Abstract
The selective autophagy cargo receptor NBR1 enhances the disassembly of cell-matrix focal adhesions during cell migration. Autophagy is a catabolic pathway involving the sequestration of cellular contents into a double-membrane vesicle, the autophagosome. Although recent studies have demonstrated that autophagy supports cell migration, the underlying mechanisms remain unknown. Using live-cell imaging, we uncover that autophagy promotes optimal migratory rate and facilitates the dynamic assembly and disassembly of cell-matrix focal adhesions (FAs), which is essential for efficient motility. Additionally, our studies reveal that autophagosomes associate with FAs primarily during disassembly, suggesting autophagy locally facilitates the destabilization of cell-matrix contact sites. Furthermore, we identify the selective autophagy cargo receptor neighbor of BRCA1 (NBR1) as a key mediator of autophagy-dependent FA remodeling. NBR1 depletion impairs FA turnover and decreases targeting of autophagosomes to FAs, whereas ectopic expression of autophagy-competent, but not autophagy-defective, NBR1 enhances FA disassembly and reduces FA lifetime during migration. Our findings provide mechanistic insight into how autophagy promotes migration by revealing a requirement for NBR1-mediated selective autophagy in enabling FA disassembly in motile cells.
Collapse
Affiliation(s)
- Candia M Kenific
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143
| | - Samantha J Stehbens
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Juliet Goldsmith
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143
| | - Andrew M Leidal
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143
| | - Nathalie Faure
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143
| | - Jordan Ye
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143
| | - Torsten Wittmann
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
10
|
Haridas D, Ponnusamy MP, Chugh S, Lakshmanan I, Seshacharyulu P, Batra SK. MUC16: molecular analysis and its functional implications in benign and malignant conditions. FASEB J 2014; 28:4183-99. [DOI: 10.1096/fj.14-257352] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dhanya Haridas
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Moorthy P. Ponnusamy
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Seema Chugh
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Surinder K. Batra
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Fred and Pamela Buffett Cancer CenterEppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
11
|
Yoshida K, Park AM, Ozaki S, Munakata H. Interaction of calcium- and integrin-binding protein 1 with integrin <i>α</i>11 and its possible involvement in pulmonary fibrosis. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/abc.2014.41009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Odagiri S, Tanji K, Mori F, Kakita A, Takahashi H, Wakabayashi K. Autophagic adapter protein NBR1 is localized in Lewy bodies and glial cytoplasmic inclusions and is involved in aggregate formation in α-synucleinopathy. Acta Neuropathol 2012; 124:173-86. [PMID: 22484440 DOI: 10.1007/s00401-012-0975-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 03/16/2012] [Accepted: 03/19/2012] [Indexed: 12/22/2022]
Abstract
Macroautophagy is a dynamic process whereby cytoplasmic components are initially sequestered within autophagosomes. Recent studies have shown that the autophagosome membrane can selectively recognize ubiquitinated proteins and organelles through interaction with adapter proteins such as p62 and NBR1. Both proteins are structurally similar at the amino acid level, and bind with ubiquitin and ubiquitinated proteins. Although p62 is incorporated into a wide spectrum of pathological inclusions in various neurodegenerative diseases, abnormalities of NBR1 have not been reported in these diseases. Our immunohistochemical examination revealed that the vast majority of Lewy bodies (LBs) in Parkinson's disease and dementia with LBs (DLB) as well as of glial cytoplasmic inclusions in multiple system atrophy (MSA) were positive for NBR1. Neuronal and glial inclusions in tauopathies and TAR DNA-binding protein of 43 kDa proteinopathies were rarely immunolabeled, or were unstained. Using cultured cells bearing LB-like inclusions, formation of α-synuclein aggregates was repressed in cells with NBR1 knockdown. Immunoblot analysis showed that the level of NBR1 was significantly increased by 2.5-fold in MSA, but not in DLB. These findings suggest that NBR1 is involved in the formation of cytoplasmic inclusions in α-synucleinopathy.
Collapse
|
13
|
MAP1B Interaction with the FW Domain of the Autophagic Receptor Nbr1 Facilitates Its Association to the Microtubule Network. Int J Cell Biol 2012; 2012:208014. [PMID: 22654911 PMCID: PMC3357945 DOI: 10.1155/2012/208014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/03/2012] [Accepted: 02/16/2012] [Indexed: 12/13/2022] Open
Abstract
Selective autophagy is a process whereby specific targeted cargo proteins, aggregates, or organelles are sequestered into double-membrane-bound phagophores before fusion with the lysosome for protein degradation. It has been demonstrated that the microtubule network is important for the formation and movement of autophagosomes. Nbr1 is a selective cargo receptor that through its interaction with LC3 recruits ubiquitinated proteins for autophagic degradation. This study demonstrates an interaction between the evolutionarily conserved FW domain of Nbr1 with the microtubule-associated protein MAP1B. Upon autophagy induction, MAP1B localisation is focused into discrete vesicles with Nbr1. This colocalisation is dependent upon an intact microtubule network as depolymerisation by nocodazole treatment abolishes starvation-induced MAP1B recruitment to these vesicles. MAP1B is not recruited to autophagosomes for protein degradation as blockage of lysosomal acidification does not result in significant increased MAP1B protein levels. However, the protein levels of phosphorylated MAP1B are significantly increased upon blockage of autophagic degradation. This is the first evidence that links the ubiquitin receptor Nbr1, which shuttles ubiquitinated proteins to be degraded by autophagy, to the microtubule network.
Collapse
|
14
|
Yamodo IH, Blystone SD. Calcium Integrin Binding Protein Associates with Integrins α Vβ 3 and α IIbβ 3 Independent of β 3 Activation Motifs. ACTA ACUST UNITED AC 2012; 1:30-37. [PMID: 24163826 DOI: 10.4236/cellbio.2012.12004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Calcium Integrin Binding protein (CIB) has been identified as interacting specifically with the cytoplasmic tail of the integrin αIIb domain to induce receptor activation and integrin αIIbβ3 mediated cell adhesion to extracellular proteins. In K562 cells stably expressing mutated integrin αVβ3, or chimeric αVβ3 carrying αIIb cytoplasmic tail, we report that the interaction of CIB with β3 integrins is not αIIbβ3 specific but binds αIIb as well as αV cytoplasmic tail domains. A double mutation of two proline residues to alanine residues in the αIIb cytoplasmic domain, previously shown to disturb its conformation, inhibits chimeric αV/αIIbβ3-CIB interaction. This demonstrates that αIIb cytoplasmic domain loop-like conformation is required for interaction with CIB. Moreover, mutations of β3 cytoplasmic domain residues Tyr-747 and/or Tyr-759 to phenylalanine residues (Y747F, Y759F, and Y747,759F) as well as residues Ser-752 to proline or alanine (S752P and S752A), do not affect the αIIbβ3 or αVβ3 interaction with CIB. Since tyrosine residues Tyr-747 and/or Tyr-759 are the sites of tyrosine phosphorylation of β3 subunit, these results suggest that the β3 integrin-CIB interaction occurs through a β3-phosphorylation independent mechanism. Likewise, ablation of conformation-dependent affinity change in β3 Ser752Pro mutation had no affect on CIB-β3 interaction. In summary, our results demonstrate that the αIIb-subunit integrin and CIB interaction is non-exclusive and requires the loop-like αIIb-cytoplasmic domain conformation. An interaction of CIB with αV-containing integrins provides an additional role for this molecule in keeping with its expression outside of platelets.
Collapse
Affiliation(s)
- Innocent H Yamodo
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, USA
| | | |
Collapse
|
15
|
Gautel M. Cytoskeletal protein kinases: titin and its relations in mechanosensing. Pflugers Arch 2011; 462:119-34. [PMID: 21416260 PMCID: PMC3114093 DOI: 10.1007/s00424-011-0946-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 12/22/2022]
Abstract
Titin, the giant elastic ruler protein of striated muscle sarcomeres, contains a catalytic kinase domain related to a family of intrasterically regulated protein kinases. The most extensively studied member of this branch of the human kinome is the Ca2+–calmodulin (CaM)-regulated myosin light-chain kinases (MLCK). However, not all kinases of the MLCK branch are functional MLCKs, and about half lack a CaM binding site in their C-terminal autoinhibitory tail (AI). A unifying feature is their association with the cytoskeleton, mostly via actin and myosin filaments. Titin kinase, similar to its invertebrate analogue twitchin kinase and likely other “MLCKs”, is not Ca2+–calmodulin-activated. Recently, local protein unfolding of the C-terminal AI has emerged as a common mechanism in the activation of CaM kinases. Single-molecule data suggested that opening of the TK active site could also be achieved by mechanical unfolding of the AI. Mechanical modulation of catalytic activity might thus allow cytoskeletal signalling proteins to act as mechanosensors, creating feedback mechanisms between cytoskeletal tension and tension generation or cellular remodelling. Similar to other MLCK-like kinases like DRAK2 and DAPK1, TK is linked to protein turnover regulation via the autophagy/lysosomal system, suggesting the MLCK-like kinases have common functions beyond contraction regulation.
Collapse
Affiliation(s)
- Mathias Gautel
- King's College London BHF Centre of Research Excellence, Cardiovascular Division, London, SE1 1UL, UK.
| |
Collapse
|
16
|
Alborghetti MR, Furlan AS, Kobarg J. FEZ2 has acquired additional protein interaction partners relative to FEZ1: functional and evolutionary implications. PLoS One 2011; 6:e17426. [PMID: 21408165 PMCID: PMC3050892 DOI: 10.1371/journal.pone.0017426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/04/2011] [Indexed: 12/16/2022] Open
Abstract
Background The FEZ (fasciculation and elongation protein zeta) family designation was purposed by Bloom and Horvitz by genetic analysis of C. elegans unc-76. Similar human sequences were identified in the expressed sequence tag database as FEZ1 and FEZ2. The unc-76 function is necessary for normal axon fasciculation and is required for axon-axon interactions. Indeed, the loss of UNC-76 function results in defects in axonal transport. The human FEZ1 protein has been shown to rescue defects caused by unc-76 mutations in nematodes, indicating that both UNC-76 and FEZ1 are evolutionarily conserved in their function. Until today, little is known about FEZ2 protein function. Methodology/Principal Findings Using the yeast two-hybrid system we demonstrate here conserved evolutionary features among orthologs and non-conserved features between paralogs of the FEZ family of proteins, by comparing the interactome profiles of the C-terminals of human FEZ1, FEZ2 and UNC-76 from C. elegans. Furthermore, we correlate our data with an analysis of the molecular evolution of the FEZ protein family in the animal kingdom. Conclusions/Significance We found that FEZ2 interacted with 59 proteins and that of these only 40 interacted with FEZ1. Of the 40 FEZ1 interacting proteins, 36 (90%), also interacted with UNC-76 and none of the 19 FEZ2 specific proteins interacted with FEZ1 or UNC-76. This together with the duplication of unc-76 gene in the ancestral line of chordates suggests that FEZ2 is in the process of acquiring new additional functions. The results provide also an explanation for the dramatic difference between C. elegans and D. melanogaster unc-76 mutants on one hand, which cause serious defects in the nervous system, and the mouse FEZ1 -/- knockout mice on the other, which show no morphological and no strong behavioural phenotype. Likely, the ubiquitously expressed FEZ2 can completely compensate the lack of neuronal FEZ1, since it can interact with all FEZ1 interacting proteins and additional 19 proteins.
Collapse
Affiliation(s)
- Marcos R. Alborghetti
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
| | - Ariane S. Furlan
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
| | - Jörg Kobarg
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
- * E-mail:
| |
Collapse
|
17
|
Sobczak A, Debowska K, Blazejczyk M, Kreutz MR, Kuznicki J, Wojda U. Calmyrin1 binds to SCG10 protein (stathmin2) to modulate neurite outgrowth. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1025-37. [PMID: 21215777 DOI: 10.1016/j.bbamcr.2010.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/21/2010] [Accepted: 12/28/2010] [Indexed: 02/03/2023]
Abstract
Calmyrin1 (CaMy1) is an EF-hand Ca(2+)-binding protein expressed in several cell types, including brain neurons. Using a yeast two-hybrid screen of a human fetal brain cDNA library, we identified SCG10 protein (stathmin2) as a CaMy1 partner. SCG10 is a microtubule-destabilizing factor involved in neuronal growth during brain development. We found increased mRNA and protein levels of CaMy1 during neuronal development, which paralleled the changes in SCG10 levels. In developing primary rat hippocampal neurons in culture, CaMy1 and SCG10 colocalized in cell soma, neurites, and growth cones. Pull-down, coimmunoprecipitation, and proximity ligation assays demonstrated that the interaction between CaMy1 and SCG10 is direct and Ca(2+)-dependent in vivo and requires the C-terminal domain of CaMy1 (residues 99-192) and the N-terminal domain of SCG10 (residues 1-35). CaMy1 did not interact with stathmin1, a protein that is homologous with SCG10 but lacks the N-terminal domain characteristic of SCG10. CaMy1 interfered with SCG10 inhibitory activity in a microtubule polymerization assay. Moreover, CaMy1 overexpression inhibited SCG10-mediated neurite outgrowth in nerve growth factor (NGF)-stimulated PC12 cells. This CaMy1 activity did not occur when an N-terminally truncated SCG10 mutant unable to interact with CaMy1 was expressed. Altogether, these data suggest that CaMy1 via SCG10 couples Ca(2+) signals with the dynamics of microtubules during neuronal outgrowth in the developing brain. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Adam Sobczak
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
18
|
Nbr1 is a novel inhibitor of ligand-mediated receptor tyrosine kinase degradation. Mol Cell Biol 2010; 30:5672-85. [PMID: 20937771 DOI: 10.1128/mcb.00878-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neighbor of BRCA1 (Nbr1) is a highly conserved multidomain scaffold protein with proposed roles in endocytic trafficking and selective autophagy. However, the exact function of Nbr1 in these contexts has not been studied in detail. Here we investigated the role of Nbr1 in the trafficking of receptor tyrosine kinases (RTKs). We report that ectopic Nbr1 expression inhibits the ligand-mediated lysosomal degradation of RTKs, and this is probably done via the inhibition of receptor internalization. Conversely, the depletion of endogenous NBR1 enhances RTK degradation. Analyses of truncation mutations demonstrated that the C terminus of Nbr1 is essential but not sufficient for this activity. Moreover, the C terminus of Nbr1 is essential but not sufficient for the localization of the protein to late endosomes. We demonstrate that the C terminus of Nbr1 contains a novel membrane-interacting amphipathic α-helix, which is essential for the late endocytic localization of the protein but not for its effect on RTK degradation. Finally, autophagic and late endocytic localizations of Nbr1 are independent of one another, suggesting that the roles of Nbr1 in each context might be distinct. Our results define Nbr1 as a negative regulator of ligand-mediated RTK degradation and reveal the interplay between its various regions for protein localization and function.
Collapse
|
19
|
Neighbor of Brca1 gene (Nbr1) functions as a negative regulator of postnatal osteoblastic bone formation and p38 MAPK activity. Proc Natl Acad Sci U S A 2010; 107:12913-8. [PMID: 20616007 DOI: 10.1073/pnas.0913058107] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The neighbor of Brca1 gene (Nbr1) functions as an autophagy receptor involved in targeting ubiquitinated proteins for degradation. It also has a dual role as a scaffold protein to regulate growth-factor receptor and downstream signaling pathways. We show that genetic truncation of murine Nbr1 leads to an age-dependent increase in bone mass and bone mineral density through increased osteoblast differentiation and activity. At 6 mo of age, despite normal body size, homozygous mutant animals (Nbr1(tr/tr)) have approximately 50% more bone than littermate controls. Truncated Nbr1 (trNbr1) co-localizes with p62, a structurally similar interacting scaffold protein, and the autophagosome marker LC3 in osteoblasts, but unlike the full-length protein, trNbr1 fails to complex with activated p38 MAPK. Nbr1(tr/tr) osteoblasts and osteoclasts show increased activation of p38 MAPK, and significantly, pharmacological inhibition of the p38 MAPK pathway in vitro abrogates the increased osteoblast differentiation of Nbr1(tr/tr) cells. Nbr1 truncation also leads to increased p62 protein expression. We show a role for Nbr1 in bone remodeling, where loss of function leads to perturbation of p62 levels and hyperactivation of p38 MAPK that favors osteoblastogenesis.
Collapse
|
20
|
Waters S, Marchbank K, Solomon E, Whitehouse C, Gautel M. Interactions with LC3 and polyubiquitin chains link nbr1 to autophagic protein turnover. FEBS Lett 2009; 583:1846-52. [PMID: 19427866 DOI: 10.1016/j.febslet.2009.04.049] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 04/18/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
Abstract
Nbr1, a ubiquitous kinase scaffold protein, contains a PB1, and a ubiquitin-associated (UBA) domain. We show here that the nbr1 UBA domain binds to lysine-48 and -63 linked polyubiquitin-B chains. Nbr1 also binds to the autophagic effector protein LC3-A via a novel binding site. Ubiquitin-binding, but not PB1-mediated p62/SQSTM1 interaction, is required to target nbr1 to LC3 and polyubiquitin-positive bodies. Nbr1 binds additionally to proteins implicated in ubiquitin-mediated protein turnover and vesicle trafficking: ubiquitin-specific peptidases USP8, and the endosomal transport regulator p14/Robld3. Nbr1 thus contributes to specific steps in protein turnover regulation disrupted in several hereditary human diseases.
Collapse
Affiliation(s)
- Sarah Waters
- King's College London, Department of Medical and Molecular Genetics, London, UK
| | | | | | | | | |
Collapse
|
21
|
Hennigs JK, Burhenne N, Stähler F, Winnig M, Walter B, Meyerhof W, Schmale H. Sweet taste receptor interacting protein CIB1 is a general inhibitor of InsP3-dependent Ca2+ release in vivo. J Neurochem 2008; 106:2249-62. [PMID: 18627437 DOI: 10.1111/j.1471-4159.2008.05563.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In a search for sweet taste receptor interacting proteins, we have identified the calcium- and integrin-binding protein 1 (CIB1) as specific binding partner of the intracellular carboxyterminal domain of the rat sweet taste receptor subunit Tas1r2. In heterologous human embryonic kidney 293 (HEK293) cells, the G protein chimeras Galpha(16gust44) and Galpha(15i3) link the sweet taste receptor dimer TAS1R2/TAS1R3 to an inositol 1,4,5-trisphosphate (InsP3)-dependent Ca2+ release pathway. To demonstrate the influence of CIB1 on the cytosolic Ca2+ concentration, we used sweet and umami compounds as well as other InsP3-generating ligands in FURA-2-based Ca2+ assays in wild-type HEK293 cells and HEK293 cells expressing functional human sweet and umami taste receptor dimers. Stable and transient depletion of CIB1 by short-hairpin RNA increased the Ca2+ response of HEK293 cells to the InsP3-generating ligands ATP, UTP and carbachol. Over-expression of CIB1 had the opposite effect as shown for the sweet ligand saccharin, the umami receptor ligand monosodium glutamate and UTP. The CIB1 effect was dependent on the thapsigargin-sensitive Ca2+ store of the endoplasmic reticulum (ER) and independent of extracellular Ca2+. The function of CIB1 on InsP3-evoked Ca2+ release from the ER is most likely mediated by its interaction with the InsP3 receptor. Thus, CIB1 seems to be an inhibitor of InsP3-dependent Ca2+ release in vivo.
Collapse
Affiliation(s)
- Jan K Hennigs
- Institut für Biochemie und Molekularbiologie II, Molekulare Zellbiologie, Zentrum für Experimentelle Medizin, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
The Sarcomere and the Nucleus: Functional Links to Hypertrophy, Atrophy and Sarcopenia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 642:176-91. [DOI: 10.1007/978-0-387-84847-1_13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Russo J, Balogh GA, Heulings R, Mailo DA, Moral R, Russo PA, Sheriff F, Vanegas J, Russo IH. Molecular basis of pregnancy-induced breast cancer protection. Eur J Cancer Prev 2007; 15:306-42. [PMID: 16835503 DOI: 10.1097/00008469-200608000-00006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We have postulated that the lifetime protective effect of an early pregnancy against breast cancer is due to the complete differentiation of the mammary gland characterized by a specific genomic signature imprinted by the physiological process of pregnancy. In the present work, we show evidence that the breast tissue of postmenopausal parous women has had a shifting of stem cell 1 to stem cell 2 with a genomic signature different from similar structures derived from postmenopausal nulliparous women that have stem cell 1. Those genes that are significantly different are grouped in major categories on the basis of their putative functional significance. Among them are those gene transcripts related to immune surveillance, DNA repair, transcription, chromatin structure/activators/co-activators, growth factor and signal transduction pathway, transport and cell trafficking, cell proliferation, differentiation, cell adhesion, protein synthesis and cell metabolism. From these data, it was concluded that during pregnancy there are significant genomic changes that reflect profound alterations in the basic physiology of the mammary gland that explain the protective effect against carcinogenesis. The implication of this knowledge is that when the genomic signature of protection or refractoriness to carcinogenesis is acquired by the shifting of stem cell 1 to stem cell 2, the hormonal milieu induced by pregnancy or pregnancy-like conditions is no longer required. This is a novel concept that challenges the current knowledge that a chemopreventive agent needs to be given for a long period to suppress a metabolic pathway or abrogate the function of an organ.
Collapse
Affiliation(s)
- Jose Russo
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yuan W, Leisner TM, McFadden AW, Clark S, Hiller S, Maeda N, O'Brien DA, Parise LV. CIB1 is essential for mouse spermatogenesis. Mol Cell Biol 2006; 26:8507-14. [PMID: 16982698 PMCID: PMC1636792 DOI: 10.1128/mcb.01488-06] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
CIB1 is a 22-kDa calcium binding, regulatory protein with approximately 50% homology to calmodulin and calcineurin B. CIB1 is widely expressed and binds to a number of effectors, such as integrin alphaIIb, PAK1, and polo-like kinases, in different tissues. However, the in vivo functions of CIB1 are not well understood. To elucidate the function of CIB1 in whole animals, we used homologous recombination in embryonic stem cells to generate Cib1(-/-) mice. Although Cib1(-/-) mice grow normally, the males are sterile due to disruption of the haploid phase of spermatogenesis. This is associated with reduced testis size and numbers of germ cells in seminiferous tubules, increased germ cell apoptosis, and the loss of elongated spermatids and sperm. Cib1(-/-) testes also show increased mRNA and protein expression of the cell cycle regulator Cdc2/Cdk1. In addition, mouse embryonic fibroblasts (MEFs) derived from Cib1(-/-) mice exhibit a much slower growth rate compared to Cib1(+/+) MEFs, suggesting that CIB1 regulates the cell cycle, differentiation of spermatogenic germ cells, and/or differentiation of supporting Sertoli cells.
Collapse
Affiliation(s)
- Weiping Yuan
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Lange S, Ehler E, Gautel M. From A to Z and back? Multicompartment proteins in the sarcomere. Trends Cell Biol 2005; 16:11-8. [PMID: 16337382 DOI: 10.1016/j.tcb.2005.11.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 10/03/2005] [Accepted: 11/21/2005] [Indexed: 12/11/2022]
Abstract
Sarcomeres, the smallest contractile units of striated muscle, are conventionally perceived as the most regular macromolecular assemblies in biology, with precisely assigned localizations for their constituent proteins. However, recent studies have revealed complex multiple locations for several sarcomere proteins within the sarcomere and other cellular compartments such as the nucleus. Several of these proteins appear to relocalize in response to mechanical stimuli. Here, we review the emerging role of these protein networks as dynamic information switchboards that communicate between the contractile machinery and the nucleus to central pathways controlling cell survival, protein breakdown, gene expression and extracellular signaling.
Collapse
Affiliation(s)
- Stephan Lange
- King's College London, Muscle Signalling and Development, The Randall Division of Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, UK
| | | | | |
Collapse
|
26
|
Blamey CJ, Ceccarelli C, Naik UP, Bahnson BJ. The crystal structure of calcium- and integrin-binding protein 1: insights into redox regulated functions. Protein Sci 2005; 14:1214-21. [PMID: 15840829 PMCID: PMC2253279 DOI: 10.1110/ps.041270805] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Calcium- and integrin-binding protein 1 (CIB1) is involved in the process of platelet aggregation by binding the cytoplasmic tail of the alpha(IIb) subunit of the platelet-specific integrin alpha(Iib)beta(3). Although poorly understood, it is widely believed that CIB1 acts as a global signaling regulator because it is expressed in many tissues that do not express integrin alpha(Iib)beta(3). We report the structure of human CIB1 to a resolution of 2.3 A, crystallized as a dimer. The dimer interface includes an extensive hydrophobic patch in a crystal form with 80% solvent content. Although the dimer form of CIB1 may not be physiologically relevant, this intersub-unit surface is likely to be linked to alpha(IIb) binding and to the binding of other signaling partner proteins. The C-terminal domain of CIB1 is structurally similar to other EF-hand proteins such as calmodulin and calcineurin B. Despite structural homology to the C-terminal domain, the N-terminal domain of CIB1 lacks calcium-binding sites. The structure of CIB1 revealed a complex with a molecule of glutathione in the reduced state bond to the N-terminal domain of one of the two subunits poised to interact with the free thiol of C35. Glutathione bound in this fashion suggests CIB1 may be redox regulated. Next to the bound GSH, the orientation of residues C35, H31, and S48 is suggestive of a cysteine-type protein phosphatase active site. The potential enzymatic activity of CIB1 is discussed and suggests a mechanism by which it regulates a wide variety of proteins in cells in addition to platelets.
Collapse
Affiliation(s)
- Chad J Blamey
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | | |
Collapse
|
27
|
Yamniuk AP, Vogel HJ. Calcium- and magnesium-dependent interactions between calcium- and integrin-binding protein and the integrin alphaIIb cytoplasmic domain. Protein Sci 2005; 14:1429-37. [PMID: 15883187 PMCID: PMC2253396 DOI: 10.1110/ps.041312805] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Calcium- and integrin-binding protein (CIB) is a small EF-hand calcium-binding protein that is involved in hemostasis through its interaction with the alphaIIb cytoplasmic domain of integrinalphaIIbbeta(3). We have previously demonstrated that CIB lacks structural stability in the absence of divalent metal ions but that it acquires a well-folded conformation upon addition of Ca(2+) or Mg(2+). Here, we have used fluorescence spectroscopy, NMR spectroscopy, and isothermal titration calorimetry to demonstrate that both Ca(2+)-bound CIB (Ca(2+)-CIB) and the Mg(2+)-bound protein (Mg(2+)-CIB) bind with high affinity and through a similar mechanism to alphaIIb cytoplasmic domain peptides, but that metal-free CIB (apo-CIB) binds in a different manner. The interactions are thermodynamically distinct for Ca(2+)-CIB and Mg(2+)-CIB, but involve hydrophobic interactions in each case. Since the Mg(2+) concentration inside the cell is sufficient to saturate CIB at all times, our results imply that CIB would be capable of binding to the alphaIIb cytoplasmic domain independent of an intracellular Ca(2+) stimulus in vivo. This raises the question of whether CIB can act as a Ca(2+) sensor in alphaIIbbeta(3) signaling or if other regulatory mechanisms such as fibrinogen-induced conformational changes in alphaIIbbeta(3), post-translational modifications, or the binding of other accessory proteins mediate the interactions between CIB and alphaIIbbeta(3). Differences in NMR spectra do suggest, however, that Ca(2+)-binding to the Mg(2+)- CIB-alphaIIb complex induces subtle structural changes that could further modulate the activity of alphaIIbbeta(3).
Collapse
Affiliation(s)
- Aaron P Yamniuk
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| | | |
Collapse
|
28
|
Jin H, Selfe J, Whitehouse C, Morris JR, Solomon E, Roberts RG. Structural evolution of the BRCA1 genomic region in primates. Genomics 2005; 84:1071-82. [PMID: 15533724 DOI: 10.1016/j.ygeno.2004.08.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Accepted: 08/25/2004] [Indexed: 11/23/2022]
Abstract
Segmental duplications account for up to 6% of the human genome, and the resulting low-copy repeats (LCRs) are known to be associated with more than 20 genomic disorders. Many such duplication events coincided with the burgeoning of the Alu repeat family during the last 50 million years of primate evolution, and it has been suggested that the two phenomena might be causally related. In tracing the evolution of the BRCA1 17q21 region through the primate clade, we discovered the occurrence over the last 40 million years of a complex set of about eight large gene-conversion-mediated rearrangements in the approximately 4 Mb surrounding the BRCA1 gene. These have resulted in the presence of large and probably recombinogenic LCRs across the region, the creation of the NBR2 gene, the duplication of the BRCA1/NBR1 promoter, the bisection of the highly conserved ARF2 gene, and multiple copies of the KIAA0563 gene. The junctions lie within AluS repeats, members of an Alu subfamily which experienced massive expansion during the time that the rearrangements occurred. We present a detailed history of this region over a critical 40 million-year period of genomic upheaval, including circumstantial evidence for a causal link between Alu family expansion and the rearrangement-mediated destruction and creation of transcription units.
Collapse
Affiliation(s)
- Hong Jin
- Division of Medical & Molecular Genetics, GKT Medical School, King's College, London SE1 9RT, UK
| | | | | | | | | | | |
Collapse
|
29
|
Lee S, Walker CL, Karten B, Kuny SL, Tennese AA, O'Neill MA, Wevrick R. Essential role for the Prader-Willi syndrome protein necdin in axonal outgrowth. Hum Mol Genet 2005; 14:627-37. [PMID: 15649943 DOI: 10.1093/hmg/ddi059] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Necdin and Magel2 are related proteins inactivated in Prader-Willi syndrome (PWS), a sporadic chromosomal deletion disorder. We demonstrate that necdin and Magel2 bind to and prevent proteasomal degradation of Fez1, a fasciculation and elongation protein implicated in axonal outgrowth and kinesin-mediated transport, and also bind to the Bardet-Biedl syndrome (BBS) protein BBS4 in co-transfected cells. The interactions among necdin, Magel2, Fez1 and BBS4 occur at or near centrosomes. Centrosomal or pericentriolar dysfunction has previously been implicated in BBS and may also be important in the features of PWS that overlap with BBS, such as learning disabilities, hypogonadism and obesity. Morphological abnormalities in axonal outgrowth and fasciculation manifest in several regions of the nervous system in necdin null mouse embryos, including axons of sympathetic, retinal ganglion cell, serotonergic and catecholaminergic neurons. These data demonstrate that necdin mediates intracellular processes essential for neurite outgrowth and that loss of necdin impinges on axonal outgrowth. We further suggest that loss of necdin contributes to the neurological phenotype of PWS, and raise the possibility that co-deletion of necdin and the related protein Magel2 may explain the lack of single gene mutations in PWS.
Collapse
Affiliation(s)
- Syann Lee
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Zhu J, Stabler SM, Ames JB, Baskakov I, Monteiro MJ. Calcium binding sequences in calmyrin regulates interaction with presenilin-2. Exp Cell Res 2004; 300:440-54. [PMID: 15475008 DOI: 10.1016/j.yexcr.2004.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 07/13/2004] [Indexed: 11/21/2022]
Abstract
Calmyrin is a myristoylated calcium binding protein that contains four putative EF-hands. Calmyrin interacts with a number of proteins, including presenilin-2 (PS2). However, the biophysical properties of calmyrin, and the molecular mechanisms that regulate its binding to different partners, are not well understood. By site-directed mutagenesis and Ca2+ binding studies, we found that calmyrin binds two Ca2+ ions with a dissociation constant of approximately 53 microM, and that the two C-terminal EF-hands 3 and 4 bind calcium. Using ultraviolet spectroscopy, circular dichroism (CD), and NMR, we found that Ca(2+)-free and -bound calmyrin have substantially different protein conformations. By yeast two-hybrid assays, we found that both EF-hands 3 and 4 of calmyrin must be intact for calmyrin to interact with PS2-loop sequences. Pulse-chase studies of HeLa cells transfected with calmyrin expression constructs indicated that wild-type (Wt) calmyrin has a half-life of approximately 75 min, whereas a mutant defective in myristoylation turns over more rapidly (half-life of 35 min). By contrast, the half-lives of calmyrin mutants with a disrupted EF-hand 3 or EF-hand 4 were 52 and 170 min, respectively. Using immunofluorescence staining of HeLa cells transfected with Wt and mutant calmyrin cDNAs, we found that both calcium binding and myristoylation are important for dynamic intracellular targeting of calmyrin. Double immunofluorescence microscopy indicated that Wt and myristoylation-defective calmyrin proteins colocalize efficiently and to the same extent with PS2, whereas calmyrin mutants defective in calcium binding display less colocalization with PS2. Our results suggest that calmyrin functions as a calcium sensor and that calcium binding sequences in calmyrin are important for interaction with the PS2 loop.
Collapse
Affiliation(s)
- Jingsong Zhu
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
31
|
Whitehouse C, Chambers J, Catteau A, Solomon E. Brca1 expression is regulated by a bidirectional promoter that is shared by the Nbr1 gene in mouse. Gene 2004; 326:87-96. [PMID: 14729266 DOI: 10.1016/j.gene.2003.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The lack of functionally disrupting mutations of BRCA1 in sporadic breast tumours has suggested that other mechanisms, including dysregulation of gene expression, might be important in tumour development. We have analysed the control of expression of murine Brca1 and the adjacent gene, Nbr1, which lie head-to-head and are separated by less than 300 bp. Our results show that the expression of these two genes is under complex regulation, through a bidirectional promoter. Brca1 expression is driven by this single promoter, whereas Nbr1 expression is driven by this and one additional promoter, which generate two distinct transcripts, differing by the alternate use of the first exons. By comparison of mRNA transcription in adult murine tissues and also in the mammary gland during pregnancy and lactation, we show that Brca1 and Nbr1 expression is coordinately regulated in a spatial and temporal manner to produce quite different patterns of expression, even from the same promoter. The analysis of the murine and human syntenic region and its control has important implications for the regulation of human and murine BRCA1/NBR1 expression and the interpretation of animal models of disease.
Collapse
Affiliation(s)
- Caroline Whitehouse
- Department of Medical and Molecular Genetics, Guy's, King's, and St. Thomas' School of Medicine, Guy's Hospital, 8th Floor, Guy's Tower, London SE1 9RT, UK.
| | | | | | | |
Collapse
|
32
|
Yamniuk AP, Nguyen LT, Hoang TT, Vogel HJ. Metal Ion Binding Properties and Conformational States of Calcium- and Integrin-Binding Protein. Biochemistry 2004; 43:2558-68. [PMID: 14992593 DOI: 10.1021/bi035432b] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Calcium- and integrin-binding protein (CIB) is a novel member of the helix-loop-helix family of regulatory calcium-binding proteins which likely has a specific function in hemostasis through its interaction with platelet integrin alphaIIbbeta(3). The significant amino acid sequence homology between CIB and other regulatory calcium-binding proteins such as calmodulin, calcineurin B, and recoverin suggests that CIB may undergo a calcium-induced conformational change; however, the mechanism of calcium binding and the details of a structural change have not yet been investigated. Consequently, we have performed a variety of spectroscopic and microcalorimetric studies of CIB to determine its calcium binding characteristics, and the subsequent conformational changes that occur. Furthermore, we provide the first evidence for magnesium binding to CIB and determine the structural consequences of this interaction. Our results indicate that in the absence of any bound metal ions, apo-CIB adopts a folded yet highly flexible molten globule-like structure. Both calcium and magnesium binding induce conformational changes which stabilize both the secondary and tertiary structure of CIB, resulting in considerable increases in the thermal stability of the proteins. CIB was found to bind two Ca(2+) ions in a sequential manner with dissociation constants (K(d)) near 0.54 and 1.9 microM for sites EF-4 and EF-3, respectively. In contrast, CIB bound only one Mg(2+) ion to EF-3 with a K(d) near 120 microM. Together, our results suggest that CIB may exist in multiple structural and metal ion-bound states in vivo which may play a role in its regulation of target proteins such as platelet integrin.
Collapse
Affiliation(s)
- Aaron P Yamniuk
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive Northwest, Calgary, Alberta, Canada T2N 1N4
| | | | | | | |
Collapse
|
33
|
Yoshinaga S, Kohjima M, Ogura K, Yokochi M, Takeya R, Ito T, Sumimoto H, Inagaki F. The PB1 domain and the PC motif-containing region are structurally similar protein binding modules. EMBO J 2003; 22:4888-97. [PMID: 14517229 PMCID: PMC204459 DOI: 10.1093/emboj/cdg475] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The PC motif is evolutionarily conserved together with the PB1 domain, a binding partner of the PC motif-containing protein. For interaction with the PB1 domain, the PC motif-containing region (PCCR) comprising the PC motif and its flanking regions is required. Because the PB1 domain and the PCCR are novel binding modules found in a variety of signaling proteins, their structural and functional characterization is crucial. Bem1p and Cdc24p interact through the PB1-PCCR interaction and regulate cell polarization in budding yeast. Here, we determined a tertiary structure of the PCCR of Cdc24p by NMR. The tertiary structure of the PCCR is similar to that of the PB1 domain of Bem1p, which is classified into a ubiquitin fold. The PC motif portion takes a compact betabetaalpha-fold, presented on the ubiquitin scaffold. Mutational studies indicate that the PB1-PCCR interaction is mainly electrostatic. Based on the structural information, we group the PB1 domains and the PCCRs into a novel family, named the PB1 family. Thus, the PB1 family proteins form a specific dimer with each other.
Collapse
Affiliation(s)
- Sosuke Yoshinaga
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, N12, W6, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Lamark T, Perander M, Outzen H, Kristiansen K, Øvervatn A, Michaelsen E, Bjørkøy G, Johansen T. Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. J Biol Chem 2003; 278:34568-81. [PMID: 12813044 DOI: 10.1074/jbc.m303221200] [Citation(s) in RCA: 289] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Phox and Bem1p (PB1) domain constitutes a recently recognized protein-protein interaction domain found in the atypical protein kinase C (aPKC) isoenzymes, lambda/iota- and zeta PKC; members of mitogen-activated protein kinase (MAPK) modules like MEK5, MEKK2, and MEKK3; and in several scaffold proteins involved in cellular signaling. Among the last group, p62 and Par6 (partitioning-defective 6) are involved in coupling the aPKCs to signaling pathways involved in cell survival, growth control, and cell polarity. By mutation analyses and molecular modeling, we have identified critical residues at the interaction surfaces of the PB1 domains of aPKCs and p62. A basic charge cluster interacts with an acidic loop and helix both in p62 oligomerization and in the aPKC-p62 interaction. Subsequently, we determined the abilities of mammalian PB1 domain proteins to form heteromeric and homomeric complexes mediated by this domain. We report several novel interactions within this family. An interaction between the cell polarity scaffold protein Par6 and MEK5 was found. Furthermore, p62 interacts both with MEK5 and NBR1 in addition to the aPKCs. Evidence for involvement of p62 in MEK5-ERK5 signaling is presented.
Collapse
Affiliation(s)
- Trond Lamark
- Biochemistry Department, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Naik UP, Naik MU. Association of CIB with GPIIb/IIIa during outside-in signaling is required for platelet spreading on fibrinogen. Blood 2003; 102:1355-62. [PMID: 12714504 DOI: 10.1182/blood-2003-02-0591] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Platelet spreading on immobilized fibrinogen (Fg) involves progression through a number of morphologic stages that, although distinctive, are not well understood mechanistically. Here we demonstrate that an association between GPIIb/IIIa and calcium- and integrin-binding protein (CIB) is required for the process of platelet spreading. Upon platelet adhesion to immobilized Fg, CIB localizes to the transiently formed filopodia and then redistributes diffusely along the membrane periphery of spread platelets. Immunoprecipitation analyses indicate that CIB and glycoprotein IIb/IIIa (GPIIb/IIIa) interact with each other as platelets adhere to immobilized Fg, and together they associate with the platelet cytoskeleton. Introduction of anti-CIB antibody or GPIIb cytoplasmic peptide into platelets blocks lamellipodia but not filopodia formation. GPIIb peptide-induced inhibition of platelet spreading is recovered by the incorporation of recombinant CIB protein, suggesting that interaction between CIB and GPIIb/IIIa is required for progression from filopodial to spread morphologies. Further, anti-CIB- or GPIIb peptide-induced inhibition of platelet spreading can be overcome by the addition of exogenous adenosine diphosphate (ADP). These data suggest that formation of the CIB-GPIIb/IIIa complex may be necessary for initiation of downstream signaling events, such as ADP secretion, that lead to platelet spreading.
Collapse
Affiliation(s)
- Ulhas P Naik
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | | |
Collapse
|
36
|
Chen MH, Citovsky V. Systemic movement of a tobamovirus requires host cell pectin methylesterase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:771-86. [PMID: 12887589 DOI: 10.1046/j.1365-313x.2003.01847.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Systemic movement of plant viruses through the host vasculature, one of the central events of the infection process, is essential for maximal viral accumulation and development of disease symptoms. The host plant proteins involved in this transport, however, remain unknown. Here, we examined whether or not pectin methylesterase (PME), one of the few cellular proteins known to be involved in local, cell-to-cell movement of tobacco mosaic virus (TMV), is also required for the systemic spread of viral infection through the plant vascular system. In a reverse genetics approach, PME levels were reduced in tobacco plants using antisense suppression. The resulting PME antisense plants displayed a significant degree of PME suppression in their vascular tissues but retained the wild-type pattern of phloem loading and unloading of a fluorescent solute. Systemic transport of TMV in these plants, however, was substantially delayed as compared to the wild-type tobacco, suggesting a role for PME in TMV systemic infection. Our analysis of virus distribution in the PME antisense plants suggested that TMV systemic movement may be a polar process in which the virions enter and exit the vascular system by two different mechanisms, and it is the viral exit out of the vascular system that involves PME.
Collapse
Affiliation(s)
- Min-Huei Chen
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | | |
Collapse
|
37
|
Johnson EM, Kinoshita Y, Daniel DC. A new member of the MCM protein family encoded by the human MCM8 gene, located contrapodal to GCD10 at chromosome band 20p12.3-13. Nucleic Acids Res 2003; 31:2915-25. [PMID: 12771218 PMCID: PMC156728 DOI: 10.1093/nar/gkg395] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The MCM8 protein from HeLa cells, a new member of the MCM family, co-isolates through several steps with MCM6 and MCM7, and MCM8 co-immunoprecipitates with MCM4, MCM6 and MCM7, proteins reportedly forming a helicase complex involved in initiation of DNA replication. MCM8 mRNA is expressed in placenta, lung and liver, but is also significantly expressed in adult heart, a tissue with a low percentage of proliferating cells. The MCM8 gene, consisting of 19 exons, is located contrapodal to a gene, consisting of 11 exons, encoding a homolog of the yeast GCD10 gene product. The region between these two transcription units, comprising as few as 62 bp, is TATA-less and highly GC-rich, containing multiple CpG units. MCM8 expression is altered in certain forms of neoplasia. In a case of choriocarcinoma MCM8 mRNA is aberrant, leading to expression of a protein lacking 16 amino acids. In several cases of colon adenocarcinoma MCM8 expression is greatly reduced relative to matched non-cancerous tissue. The potential helicase domain of MCM8 is different from those of other MCM proteins in that it is more homologous to canonical ATP-binding domains of other known helicases. Results suggest that MCM8 may interact with other MCM proteins to alter the function of the replicative MCM protein complex.
Collapse
Affiliation(s)
- Edward M Johnson
- Department of Pathology, Box 1194, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
38
|
Whitehouse C, Solomon E. Current status of the molecular characterization of the ovarian cancer antigen CA125 and implications for its use in clinical screening. Gynecol Oncol 2003; 88:S152-7. [PMID: 12586109 DOI: 10.1006/gyno.2002.6708] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Caroline Whitehouse
- Cancer Genetics Laboratory, Division of Medical and Molecular Genetics, GKT School of Medicine, Guy's Hospital, London
| | | |
Collapse
|