1
|
Kerkour T, Zhou C, Hollestein L, Mooyaart A. Genetic Concordance in Primary Cutaneous Melanoma and Matched Metastasis: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:16281. [PMID: 38003476 PMCID: PMC10671327 DOI: 10.3390/ijms242216281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Studying primary melanoma and its corresponding metastasis has twofold benefits. Firstly, to better understand tumor biology, and secondly, to determine which sample should be examined in assessing drug targets. This study systematically analyzed all the literature on primary melanoma and its matched metastasis. Following PRISMA guidelines, we searched multiple medical databases for relevant publications from January 2000 to December 2022, assessed the quality of the primary-level studies using the QUIPS tool, and summarized the concordance rate of the most reported genes using the random-effects model. Finally, we evaluated the inter-study heterogeneity using the subgroup analysis. Thirty-one studies investigated the concordance of BRAF and NRAS in 1220 and 629 patients, respectively. The pooled concordance rate was 89.4% [95% CI: 84.5; 93.5] for BRAF and 97.8% [95% CI: 95.8; 99.4] for NRAS. When high-quality studies were considered, only BRAF mutation status consistency increased. Five studies reported the concordance status of c-KIT (93%, 44 patients) and TERT promoter (64%, 53 patients). Lastly, three studies analyzed the concordance of cancer genes involved in the signaling pathways, apoptosis, and proliferation, such as CDKN2A (25%, four patients), TP53 (44%, nine patients), and PIK3CA (20%, five patients). Our study found that the concordance of known drug targets (mainly BRAF) during melanoma progression is higher than in previous meta-analyses, likely due to advances in molecular techniques. Furthermore, significant heterogeneity exists in the genes involved in the melanoma genetic makeup; although our results are based on small patient samples, more research is necessary for validation.
Collapse
Affiliation(s)
- Thamila Kerkour
- Department of Dermatology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (T.K.); (C.Z.); (L.H.)
| | - Catherine Zhou
- Department of Dermatology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (T.K.); (C.Z.); (L.H.)
| | - Loes Hollestein
- Department of Dermatology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (T.K.); (C.Z.); (L.H.)
| | - Antien Mooyaart
- Department of Pathology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
2
|
Brănişteanu DE, Porumb-Andrese E, Porumb V, Stărică A, Moraru AD, Nicolescu AC, Zemba M, Brănişteanu CI, Brănişteanu G, Brănişteanu DC. New Treatment Horizons in Uveal and Cutaneous Melanoma. Life (Basel) 2023; 13:1666. [PMID: 37629523 PMCID: PMC10455832 DOI: 10.3390/life13081666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Melanoma is a complex and heterogeneous malignant tumor with distinct genetic characteristics and therapeutic challenges in both cutaneous melanoma (CM) and uveal melanoma (UM). This review explores the underlying molecular features and genetic alterations in these melanoma subtypes, highlighting the importance of employing specific model systems tailored to their unique profiles for the development of targeted therapies. Over the past decade, significant progress has been made in unraveling the molecular and genetic characteristics of CM and UM, leading to notable advancements in treatment options. Genetic mutations in the mitogen-activated protein kinase (MAPK) pathway drive CM, while UM is characterized by mutations in genes like GNAQ, GNA11, BAP1, EIF1AX, and SF3B1. Chromosomal aberrations, including monosomy 3 in UM and monosomy 10 in CM, play significant roles in tumorigenesis. Immune cell infiltration differs between CM and UM, impacting prognosis. Therapeutic advancements targeting these genetic alterations, including oncolytic viruses and immunotherapies, have shown promise in preclinical and clinical studies. Oncolytic viruses selectively infect malignant cells, inducing oncolysis and activating antitumor immune responses. Talimogene laherparepvec (T-VEC) is an FDA-approved oncolytic virus for CM treatment, and other oncolytic viruses, such as coxsackieviruses and HF-10, are being investigated. Furthermore, combining oncolytic viruses with immunotherapies, such as CAR-T cell therapy, holds great potential. Understanding the intrinsic molecular features of melanoma and their role in shaping novel therapeutic approaches provides insights into targeted interventions and paves the way for more effective treatments for CM and UM.
Collapse
Affiliation(s)
- Daciana Elena Brănişteanu
- Department of Medical Specialties (III)-Dermatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Railway Clinical Hospital, 700506 Iasi, Romania;
| | - Elena Porumb-Andrese
- Department of Medical Specialties (III)-Dermatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Railway Clinical Hospital, 700506 Iasi, Romania;
| | - Vlad Porumb
- Department of Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Military Emergency Clinical Hospital “Dr. Iacob Czihac”, 700506 Iasi, Romania
| | | | - Andreea Dana Moraru
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | | | - Mihail Zemba
- Department of Ophthalmology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | | | - George Brănişteanu
- “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.I.B.); (G.B.)
| | - Daniel Constantin Brănişteanu
- Railway Clinical Hospital, 700506 Iasi, Romania;
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
3
|
Oh KS, Mahalingam M. Melanoma and Glioblastoma-Not a Serendipitous Association. Adv Anat Pathol 2023; 30:00125480-990000000-00051. [PMID: 36624550 DOI: 10.1097/pap.0000000000000393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recently, we came across a patient with malignant melanoma and primary glioblastoma. Given this, we parsed the literature to ascertain the relationship, if any, between these 2 malignancies. We begin with a brief overview of melanoma and glioma in isolation followed by a chronologic overview of case reports and epidemiologic studies documenting both neoplasms. This is followed by studies detailing genetic abnormalities common to both malignancies with a view to identifying unifying genetic targets for therapeutic strategies as well as to explore the possibility of a putative association and an inherited cancer susceptibility trait. From a scientific perspective, we believe we have provided evidence favoring an association between melanoma and glioma. Future studies that include documentation of additional cases, as well as a detailed molecular analyses, will lend credence to our hypothesis that the co-occurrence of these 2 conditions is likely not serendipitous.
Collapse
Affiliation(s)
- Kei Shing Oh
- Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL
| | - Meera Mahalingam
- Dermatopathology Section, Department of Pathology and Laboratory Medicine, VA-Integrated-Service-Network-1 (VISN1), West Roxbury, MA
| |
Collapse
|
4
|
Mahumud RA, Shahjalal M. The Emerging Burden of Genetic Instability and Mutation in Melanoma: Role of Molecular Mechanisms. Cancers (Basel) 2022; 14:cancers14246202. [PMID: 36551688 PMCID: PMC9776466 DOI: 10.3390/cancers14246202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Melanoma is a severe skin cancer affecting thousands of people and a growing public health concern worldwide. The potential hallmarks of melanoma are genetic instability and mutation (GIAM), which are driving mechanisms for phenotypic variation and adaptation in melanoma. In metastatic melanoma, DNA repair-associated genes are frequently expressed at higher levels than in primary cancers, suggesting melanoma cells rely on genetic stability to spread distantly. The tumour microenvironment is affected by genomic instability and melanoma mutation (GIMM), which plays significant roles in developing GIMM and their contributions to the overall disease burden. The GIAM is the crucial vulnerability of cancer cells, determining their sensitivity to harmful treatments, including radiation and many chemotherapeutics. The high incidence of melanoma is typically associated with genetic modifications, and several clinical and genetic interventions have been critical in easing the burden.
Collapse
Affiliation(s)
- Rashidul Alam Mahumud
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Correspondence:
| | - Md. Shahjalal
- Department of Public Health, North South University, Dhaka 1229, Bangladesh
| |
Collapse
|
5
|
Dessinioti C, Geller AC, Stratigos AJ. A review of nevus-associated melanoma: What is the evidence? J Eur Acad Dermatol Venereol 2022; 36:1927-1936. [PMID: 35857388 DOI: 10.1111/jdv.18453] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
Cutaneous melanoma may have an adjacent nevus remnant on histological examination in 30% of cases (nevus-associated melanoma, NAM), while it may appear de novo, without a precursor lesion, in the remaining 70% of cases. Nevus-associated melanoma and the concept of acquired melanocytic nevi serving as precursors of melanoma, has long been considered as a controversial topic. This controversy is, in part, due to their overall low rate of transformation to melanoma and scarce data on the natural history of progression. Another matter of debate regarded the possibility that the reported differences of NAM versus de novo melanoma, were due to an underestimation of NAM in thicker lesions due to obliteration of the nevus component by the tumour. During the last few years, several evidence has accumulated in order to address these controversies. In this review, we present a comprehensive synthesis of the epidemiological, clinical, dermoscopic and genetic findings in NAM, including thin NAM, compared to de novo melanoma. Answering the questions on nevus-associated melanoma may provide further insight on the classification of these tumours and disentangle their biology and route of development from that of de novo melanoma.
Collapse
Affiliation(s)
- Clio Dessinioti
- 1st Department of Dermatology-Venereology, National and Kapodistrian University of Athens, Andreas Sygros Hospital, Athens, Greece
| | - Alan C Geller
- Department of Social and Behavioral Sciences, Harvard TH School of Public Health, Boston, MA, United States
| | - Alexander J Stratigos
- 1st Department of Dermatology-Venereology, National and Kapodistrian University of Athens, Andreas Sygros Hospital, Athens, Greece
| |
Collapse
|
6
|
Ognerubov NA, Ezhova EN. Somatic mutations in colorectal cancer: regional experience. CONSILIUM MEDICUM 2022. [DOI: 10.26442/20751753.2022.5.201796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Introduction. Colorectal cancer is one of the most common malignant neoplasms in economically developed countries, ranking 3rd and 2nd in the structure of morbidity and mortality, respectively. Current knowledge about the molecular features of colorectal cancer is necessary to implement the principle of personalized therapy.
Aim. To study regional features of tumor genomic landscape in colorectal cancer.
Materials and methods. The retrospective study from 2019 to 2022 included 153 patients with stage IIV colorectal cancer aged 32 to 80 years, with a median of 63.8 years. DNA samples extracted from paraffin blocks of tumor tissue were analyzed using a real-time polymerase chain reaction. The study patients included 43.8% of males and 56.2% of females.
Results. Somatic mutations were detected in 48.4% of patients. The maximum number of mutations was detected in the KRAS gene 60 (81%). The mutation rate was significantly higher in females versus males. KRAS mutations predominate in the colon compared to the rectum, accounting for 66.7 and 33.3%, respectively. In tumors of the right colon, these mutations were detected in 18.3% of cases, and in the left colon, 48.4%. NRAS mutations were found in 9.5% of cases, mainly in tumors of the left colon. BRAF mutations were diagnosed in 6 patients, 5 of them were women, and the tumors were localized in the right colon. The highest rate of KRAS mutations was observed in codons 12 and 13, accounting for 86.7% of cases. The G12V mutation occurred in the majority of patients (25%), followed by G12D (20%) and G12A (16.6%).
Conclusion. Somatic mutations in RAS and BRAF genes in colorectal cancer were detected in 48.4% of patients in the Tambov region. Among them, there is a predominance of KRAS mutations 81% in females. KRAS oncogenic mutations are predictors of treatment response and prognosis.
Collapse
|
7
|
Zhao J, Galvez C, Beckermann KE, Johnson DB, Sosman JA. Novel insights into the pathogenesis and treatment of NRAS mutant melanoma. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021; 6:281-294. [PMID: 34485698 PMCID: PMC8415440 DOI: 10.1080/23808993.2021.1938545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION NRAS was the first mutated oncogene identified in melanoma and is currently the second most common driver mutation in this malignancy. For patients with NRASmutant advanced stage melanoma refractory to immunotherapy or with contraindications to immune-based regimens, there are few therapeutic options including low-efficacy chemotherapy regimens and binimetinib monotherapy. Here, we review recent advances in preclinical studies of molecular targets for NRAS mutant melanoma as well as the failures and successes of early-phase clinical trials. While there are no targeted therapies for NRAS-driven melanoma, there is great promise in approaches combining MEK inhibition with inhibitors of the focal adhesion kinase (FAK), inhibitors of autophagy pathways, and pan-RAF inhibitors. AREAS COVERED This review surveys new developments in all aspects of disease pathogenesis and potential treatment - including those that have failed, stalled, or progressed through various phases of preclinical and clinical development. EXPERT OPINION There are no currently approved targeted therapies for BRAF wild-type melanoma patients harboring NRAS driver mutations though an array of agents are in early phase clinical trials. The diverse strategies taken exploit combined MAP kinase signaling blockade with inhibition of cell cycle mediators, inhibition of the autophagy pathway, and alteration of kinases involved in actin cytoskeleton signaling. Future advances of developmental therapeutics into late stage trials may yield new options beyond immunotherapy for patients with advanced stage disease and NRAS mutation status.
Collapse
Affiliation(s)
- Jeffrey Zhao
- Northwestern University Feinberg School of Medicine
| | - Carlos Galvez
- Northwestern Medicine, Division of Hematology and Oncology.,Robert H. Lurie Comprehensive Cancer Center
| | - Kathryn Eby Beckermann
- Vanderbilt University Medical Center, Department of Medicine, Division of Hematology and Oncology, 1301 Medical Center Drive, Nashville, 37232, USA
| | - Douglas B Johnson
- Vanderbilt University Medical Center, Department of Medicine, Division of Hematology and Oncology, 1301 Medical Center Drive, Nashville, 37232, USA
| | - Jeffrey A Sosman
- Northwestern Medicine, Division of Hematology and Oncology.,Robert H. Lurie Comprehensive Cancer Center
| |
Collapse
|
8
|
Obeid MA, Aljabali AAA, Rezigue M, Amawi H, Alyamani H, Abdeljaber SN, Ferro VA. Use of Nanoparticles in Delivery of Nucleic Acids for Melanoma Treatment. Methods Mol Biol 2021; 2265:591-620. [PMID: 33704742 DOI: 10.1007/978-1-0716-1205-7_41] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Melanoma accounts for 4% of all skin cancer malignancies, with only 14% of diagnosed patients surviving for more than 5 years after diagnosis. Until now, there is no clear understanding of the detailed molecular contributors of melanoma pathogenesis. Accordingly, more research is needed to understand melanoma development and prognosis.All the treatment approaches that are currently applied have several significant limitations that prevent effective use in melanoma. One major limitation in the treatment of cancer is the acquisition of multidrug resistance (MDR). The MDR results in significant treatment failure and poor clinical outcomes in several cancers, including skin cancer. Treatment of melanoma is especially retarded by MDR. Despite the current advances in targeted and immune-mediated therapy, treatment arms of melanoma are severely limited and stand as a significant clinical challenge. Further, the poor pharmacokinetic profile of currently used chemotherapeutic agents is another reason for treatment failure. Therefore, more research is needed to develop novel drugs and carrier tools for more effective and targeted treatment.Nucleic acid therapy is based on nucleic acids or chemical compounds that are closely related, such as antisense oligonucleotides, aptamers, and small-interfering RNAs that are usually used in situations when a specific gene implicated in a disorder is deemed a therapeutically beneficial target for inhibition. However, the proper application for nucleic acid therapies is hampered by the development of an effective delivery system that can maintain their stability in the systemic circulation and enhance their uptake by the target cells. In this chapter, the prognosis of the different types of melanoma along with the currently used medications is highlighted, and the different types of nucleic acids along with the currently available nanoparticle systems for delivering these nucleic acids into melanoma cells are discussed. We also discuss recently conducted research on the use of different types of nanoparticles for nucleic acid delivery into melanoma cells and highlight the most significant outcomes.
Collapse
Affiliation(s)
- Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan.
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Meriem Rezigue
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Haneen Amawi
- Department of Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Hanin Alyamani
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Shatha N Abdeljaber
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
9
|
Assenmacher CA, Santagostino SF, Oyama MA, Marine JC, Bonvin E, Radaelli E. Classification and Grading of Melanocytic Lesions in a Mouse Model of NRAS-driven Melanomagenesis. J Histochem Cytochem 2020; 69:203-218. [PMID: 33283624 DOI: 10.1369/0022155420977970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mouse line carrying the Tg(Tyr-NRAS*Q61K)1Bee transgene is widely used to model in vivo NRAS-driven melanomagenesis. Although the pathological features of this model are well described, classification and interpretation of the resulting proliferative lesions-including their origin, evolution, grading, and pathobiological significance-are still unclear and not supported by molecular and biological evidence. Focusing on their classification and grading, this work combines histopathology and expression analysis (using both immunohistochemistry [IHC] and quantitative PCR) of selected biomarkers to study the full spectrum of cutaneous and lymph nodal melanocytic proliferations in the Tg(Tyr-NRAS*Q61K)1Bee mouse. The analysis of cutaneous and lymph nodal melanocytic proliferations has demonstrated that a linear correlation exists between tumor grade and Ki-67, microphthalmia-associated transcription factor (MITF), gp100, and nestin IHC, with a significantly increased expression in high-grade lesions compared with low-grade lesions. The accuracy of the assessment of MITF IHC in melanomas was also confirmed by quantitative PCR analysis. In conclusion, we believe the incorporation of MITF, Ki-67, gp100, and nestin analysis into the histopathological classification/grading scheme of melanocytic proliferations described for this model will help to assess with accuracy the nature and evolution of the phenotype, monitor disease progression, and predict response to experimental treatment or other preclinical manipulations.
Collapse
Affiliation(s)
| | | | - Mark A Oyama
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Elise Bonvin
- Laboratory of Cancer Epigenetics, Cancer Research Center, Université Libre de Bruxelles, Brussels, Belgium
| | - Enrico Radaelli
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
10
|
Carpenter EL, Chagani S, Nelson D, Cassidy PB, Laws M, Ganguli-Indra G, Indra AK. Mitochondrial complex I inhibitor deguelin induces metabolic reprogramming and sensitizes vemurafenib-resistant BRAF V600E mutation bearing metastatic melanoma cells. Mol Carcinog 2019; 58:1680-1690. [PMID: 31211467 DOI: 10.1002/mc.23068] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/22/2022]
Abstract
Treatment with vemurafenib, a potent and selective inhibitor of mitogen-activated protein kinase signaling downstream of the BRAFV600E oncogene, elicits dramatic clinical responses in patients with metastatic melanoma. Unfortunately, the clinical utility of this drug is limited by a high incidence of drug resistance. Thus, there is an unmet need for alternative therapeutic strategies to treat vemurafenib-resistant metastatic melanomas. We have conducted high-throughput screening of two bioactive compound libraries (Siga and Spectrum libraries) against a metastatic melanoma cell line (A2058) and identified two structurally analogous compounds, deguelin and rotenone, from a cell viability assay. Vemurafenib-resistant melanoma cell lines, A2058R and A375R (containing the BRAFV600E mutation), also showed reduced proliferation when treated with these two compounds. Deguelin, a mitochondrial complex I inhibitor, was noted to significantly inhibit oxygen consumption in cellular metabolism assays. Mechanistically, deguelin treatment rapidly activates AMPK signaling, which results in inhibition of mTORC1 signaling and differential phosphorylation of mTORC1's downstream effectors, 4E-BP1 and p70S6 kinase. Deguelin also significantly inhibited ERK activation and Ki67 expression without altering Akt activation in the same timeframe in the vemurafenib-resistant melanoma cells. These data posit that treatment with metabolic regulators, such as deguelin, can lead to energy starvation, thereby modulating the intracellular metabolic environment and reducing survival of drug-resistant melanomas harboring BRAF V600E mutations.
Collapse
Affiliation(s)
- Evan L Carpenter
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon.,Department of Dermatology, Oregon Health & Science University, Portland, Oregon
| | - Sharmeen Chagani
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Dylan Nelson
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Pamela B Cassidy
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Madeleine Laws
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon
| | - Gitali Ganguli-Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Arup K Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon.,Department of Dermatology, Oregon Health & Science University, Portland, Oregon.,Department of Biochemistry and Biophysics, OSU, Corvallis, Oregon.,Linus Pauling Institute, Oregon State University, Corvallis, Oregon.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
11
|
Savoia P, Fava P, Casoni F, Cremona O. Targeting the ERK Signaling Pathway in Melanoma. Int J Mol Sci 2019; 20:ijms20061483. [PMID: 30934534 PMCID: PMC6472057 DOI: 10.3390/ijms20061483] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 12/24/2022] Open
Abstract
The discovery of the role of the RAS/RAF/MEK/ERK pathway in melanomagenesis and its progression have opened a new era in the treatment of this tumor. Vemurafenib was the first specific kinase inhibitor approved for therapy of advanced melanomas harboring BRAF-activating mutations, followed by dabrafenib and encorafenib. However, despite the excellent results of first-generation kinase inhibitors in terms of response rate, the average duration of the response was short, due to the onset of genetic and epigenetic resistance mechanisms. The combination therapy with MEK inhibitors is an excellent strategy to circumvent drug resistance, with the additional advantage of reducing side effects due to the paradoxical reactivation of the MAPK pathway. The recent development of RAS and extracellular signal-related kinases (ERK) inhibitors promises to add new players for the ultimate suppression of this signaling pathway and the control of pathway-related drug resistance. In this review, we analyze the pharmacological, preclinical, and clinical trial data of the various MAPK pathway inhibitors, with a keen interest for their clinical applicability in the management of advanced melanoma.
Collapse
Affiliation(s)
- Paola Savoia
- Department of Health Science, University of Eastern Piedmont, via Solaroli 17, 28100 Novara, Italy.
| | - Paolo Fava
- Section of Dermatology, Department of Medical Science, University of Turin, 10124 Turin, Italy.
| | - Filippo Casoni
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 58, 20132 Milano, Italy.
- Università Vita Salute San Raffaele, via Olgettina 58, 20132 Milano, Italy.
| | - Ottavio Cremona
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 58, 20132 Milano, Italy.
- Università Vita Salute San Raffaele, via Olgettina 58, 20132 Milano, Italy.
| |
Collapse
|
12
|
Benito-Jardón L, Díaz-Martínez M, Arellano-Sánchez N, Vaquero-Morales P, Esparís-Ogando A, Teixidó J. Resistance to MAPK Inhibitors in Melanoma Involves Activation of the IGF1R-MEK5-Erk5 Pathway. Cancer Res 2019; 79:2244-2256. [PMID: 30833419 DOI: 10.1158/0008-5472.can-18-2762] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/14/2019] [Accepted: 02/27/2019] [Indexed: 11/16/2022]
Abstract
Combined treatment of metastatic melanoma with BRAF and MEK inhibitors has improved survival, but the emergence of resistance represents an important clinical challenge. Targeting ERK is a suitable strategy currently being investigated in melanoma and other cancers. To anticipate possible resistance to ERK inhibitors (ERKi), we used SCH772984 (SCH) as a model ERKi to characterize resistance mechanisms in two BRAF V600E melanoma cell lines. The ERKi-resistant cells were also resistant to vemurafenib (VMF), trametinib (TMT), and combined treatment with either VMF and SCH or TMT and SCH. Resistance to SCH involved stimulation of the IGF1R-MEK5-Erk5 signaling pathway, which counteracted inhibition of Erk1/2 activation and cell growth. Inhibition of IGF1R with linsitinib blocked Erk5 activation in SCH-resistant cells and decreased their growth in 3D spheroid growth assays as well as in NOD scid gamma (NSG) mice. Cells doubly resistant to VMF and TMT or to VMF and SCH also exhibited downregulated Erk1/2 activation linked to stimulation of the IGF1R-MEK5-Erk5 pathway, which accounted for resistance. In addition, we found that the decreased Erk1/2 activation in SCH-resistant cells involved reduced expression and function of TGFα. These data reveal an escape signaling route that melanoma cells use to bypass Erk1/2 blockade during targeted melanoma treatment and offer several possible targets whose disruption may circumvent resistance. SIGNIFICANCE: Activation of the IGF1R-MEK5-Erk5 signaling pathway opposes pharmacologic inhibition of Erk1/2 in melanoma, leading to the reactivation of cell proliferation and acquired resistance.
Collapse
Affiliation(s)
- Lucía Benito-Jardón
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Marta Díaz-Martínez
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Nohemi Arellano-Sánchez
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Paloma Vaquero-Morales
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Azucena Esparís-Ogando
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, IBSAL, and CIBERONC, Salamanca, Spain
| | - Joaquin Teixidó
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.
| |
Collapse
|
13
|
Wu CE, Koay TS, Esfandiari A, Ho YH, Lovat P, Lunec J. ATM Dependent DUSP6 Modulation of p53 Involved in Synergistic Targeting of MAPK and p53 Pathways with Trametinib and MDM2 Inhibitors in Cutaneous Melanoma. Cancers (Basel) 2018; 11:cancers11010003. [PMID: 30577494 PMCID: PMC6356368 DOI: 10.3390/cancers11010003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 11/16/2022] Open
Abstract
MAPK and p14ARF–MDM2–p53 pathways are critical in cutaneous melanomas. Here, synergistic combination of the MEK inhibitor, trametinib, with MDM2 inhibitors, nutlin-3/RG7388/HDM201, and the mechanistic basis of responses, for BRAFV600E and p53WT melanoma cells, are reported. The combination treatments induced higher levels of p53 target gene transcripts and protein products, resulting in increased cell cycle arrest and apoptosis compared with MDM2 inhibitors alone, suggesting trametinib synergized with MDM2 inhibitors via upregulation of p53-dependent pathways. In addition, DUSP6 phosphatase involvement was indicated by downregulation of its mRNA and protein following pERK reduction by trametinib. Furthermore, suppression of DUSP6 by siRNA, or inhibition with the small molecule inhibitor, BCI, at a dose without cytotoxicity, potentiated the effect of MDM2 inhibitors through increased ATM-dependent p53 phosphorylation, as demonstrated by complete reversal with the ATM inhibitor, KU55933. Trametinib synergizes with MDM2 inhibitors through a novel DUSP6 mechanism in BRAFV600E and p53WT melanoma cells, in which DUSP6 regulation of p53 phosphorylation is mediated by ATM. This provides a new therapeutic rationale for combination treatments involving activation of the ATM/p53 pathway and MAPK pathway inhibition.
Collapse
Affiliation(s)
- Chiao-En Wu
- Northern Institute for Cancer Research, School of Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan.
| | - Tsin Shue Koay
- Northern Institute for Cancer Research, School of Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Arman Esfandiari
- Northern Institute for Cancer Research, School of Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, UK.
| | - Yi-Hsuan Ho
- Northern Institute for Cancer Research, School of Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Penny Lovat
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - John Lunec
- Northern Institute for Cancer Research, School of Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
14
|
van Poppelen NM, Vaarwater J, Mudhar HS, Sisley K, van den Bosch QCC, de Klein A, Kiliç E, Verdijk RM. Reply. Ophthalmology 2018; 125:e79-e80. [PMID: 30318045 DOI: 10.1016/j.ophtha.2018.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/18/2018] [Indexed: 11/25/2022] Open
Affiliation(s)
- Natasha M van Poppelen
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jolanda Vaarwater
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hardeep S Mudhar
- National Specialist Ophthalmic Pathology Service, Department of Histopathology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Karen Sisley
- Department of Oncology & Metabolism, The University of Sheffield, Sheffield, United Kingdom
| | | | - Annelies de Klein
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Emine Kiliç
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Robert M Verdijk
- Ophthalmic Pathology, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
15
|
Wu CE, Esfandiari A, Ho YH, Wang N, Mahdi AK, Aptullahoglu E, Lovat P, Lunec J. Targeting negative regulation of p53 by MDM2 and WIP1 as a therapeutic strategy in cutaneous melanoma. Br J Cancer 2018; 118:495-508. [PMID: 29235570 PMCID: PMC5830592 DOI: 10.1038/bjc.2017.433] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Cutaneous melanoma is the most serious skin malignancy and new therapeutic strategies are needed for advanced melanoma. TP53 mutations are rare in cutaneous melanoma and hence activation of wild-type p53 is a potential therapeutic strategy in cutaneous melanoma. Here, we investigated the WIP1 inhibitor, GSK2830371, and MDM2-p53 binding antagonists (nutlin-3, RG7388 and HDM201) alone and in combination treatment in cutaneous melanoma cell lines and explored the mechanistic basis of these responses in relation to the genotype and induced gene expression profile of the cells. METHODS A panel of three p53WT (A375, WM35 and C8161) and three p53MUT (WM164, WM35-R and CHL-1) melanoma cell lines were used. The effects of MDM2 and WIP1 inhibition were evaluated by growth inhibition and clonogenic assays, immunoblotting, qRT-PCR gene expression profiling and flow cytometry. RESULTS GSK2830371, at doses (⩽10 μM) that alone had no growth-inhibitory or cytotoxic effects on the cells, nevertheless significantly potentiated the growth-inhibitory and clonogenic cell killing effects of MDM2 inhibitors in p53WT but not p53MUT melanoma cells, indicating the potentiation worked in a p53-dependent manner. The siRNA-mediated knockdown of p53 provided further evidence to support the p53 dependence. GSK2830371 increased p53 stabilisation through Ser15 phosphorylation and consequent Lys382 acetylation, and decreased ubiquitination and proteasome-dependent degradation when it was combined with MDM2 inhibitors. These changes were at least partly ATM mediated, shown by reversal with the ATM inhibitor (KU55933). GSK2830371 enhanced the induction of p53 transcriptional target genes, cell cycle arrest and apoptosis. CONCLUSIONS GSK2830371, a WIP1 inhibitor, at doses with no growth-inhibitory activity alone, potentiated the growth-inhibitory and cytotoxic activity of MDM2 inhibitors by increasing phosphorylation, acetylation and stabilisation of p53 in cutaneous melanoma cells in a functional p53-dependent manner.
Collapse
Affiliation(s)
- Chiao-En Wu
- Northern Institute for Cancer Research, School of Medicine, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Arman Esfandiari
- Northern Institute for Cancer Research, School of Medicine, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK
| | - Yi-Hsuan Ho
- Northern Institute for Cancer Research, School of Medicine, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK
| | - Nan Wang
- Arraygen UK Ltd, Devonshire Building, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
| | - Ahmed Khairallah Mahdi
- Northern Institute for Cancer Research, School of Medicine, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK
- Department of Pathology and Forensic Medicine, College of Medicine, Al-Nahrain University, Baghdad 10006, Iraq
| | - Erhan Aptullahoglu
- Northern Institute for Cancer Research, School of Medicine, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK
| | - Penny Lovat
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - John Lunec
- Northern Institute for Cancer Research, School of Medicine, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK
| |
Collapse
|
16
|
NRASQ61R Mutation-specific Immunohistochemistry is Highly Specific for Either NRAS Q61R or KRAS Q61R Mutation in Colorectal Carcinoma. Appl Immunohistochem Mol Morphol 2017; 25:475-480. [DOI: 10.1097/pai.0000000000000333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Pejkova S, Dzokic G, Tudzarova-Gjorgova S, Panov S. Molecular Biology and Genetic Mechanisms in the Progression of the Malignant Skin Melanoma. ACTA ACUST UNITED AC 2017; 37:89-97. [PMID: 27883322 DOI: 10.1515/prilozi-2016-0021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Malignant skin melanoma is a tumor deriving from transformed skin melanocytes as a result of complex interactions between genetic and environmental factors. This melanoma has a potential to metastasize early and very often it is resistant to the existing modalities of the systemic therapy. As in any other neoplasms, certain types of melanoma may skip certain stages of progression. The progression from one stage to another is accompanied by specific biological changes. Several key changes in the melanoma tumorogenesis influence the regulation of the cell proliferation and vitality, including the RAS-RAF-ERK, PI3K-AKT, and p16INK4/CDK4/RB pathways. A key role in the dissreguarity of the RAS-RAF-ERK (MAPK) pathway in the malignant melanoma development have been demonstrated by many studies. To date, the molecular genetic alterations during melanoma development have been partially known. In the pathogenesis of the malignant melanoma, there are mutations of various genes such as NRAS, BRAF, and PTEN and mutations and deletions of CDKN2A. In the past years, great advance has been made in the insights of the molecular aspects of the melanoma pathogenesis. However, this field yet poses a challenge to discover new details about the melanoma molecular characteristics. The research results are focused towards the improvement of the melanoma patients prognosis by introducing personalized targeted therapy.
Collapse
|
18
|
Melanocytic nevi and melanoma: unraveling a complex relationship. Oncogene 2017; 36:5771-5792. [PMID: 28604751 DOI: 10.1038/onc.2017.189] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/11/2022]
Abstract
Approximately 33% of melanomas are derived directly from benign, melanocytic nevi. Despite this, the vast majority of melanocytic nevi, which typically form as a result of BRAFV600E-activating mutations, will never progress to melanoma. Herein, we synthesize basic scientific insights and data from mouse models with common observations from clinical practice to comprehensively review melanocytic nevus biology. In particular, we focus on the mechanisms by which growth arrest is established after BRAFV600E mutation. Means by which growth arrest can be overcome and how melanocytic nevi relate to melanoma are also considered. Finally, we present a new conceptual paradigm for understanding the growth arrest of melanocytic nevi in vivo termed stable clonal expansion. This review builds upon the canonical hypothesis of oncogene-induced senescence in growth arrest and tumor suppression in melanocytic nevi and melanoma.
Collapse
|
19
|
Jhuang JY, Yuan CT, Lin YL, Cheng ML, Liau JY, Tsai JH. NRASQ61R immunohistochemistry detects both NRASQ61R and KRASQ61R mutations in colorectal cancer. Pathology 2017; 49:387-390. [DOI: 10.1016/j.pathol.2017.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/14/2017] [Accepted: 01/19/2017] [Indexed: 12/22/2022]
|
20
|
AHNAK is downregulated in melanoma, predicts poor outcome, and may be required for the expression of functional cadherin-1. Melanoma Res 2017; 26:108-16. [PMID: 26672724 PMCID: PMC4777222 DOI: 10.1097/cmr.0000000000000228] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this study was to further our understanding of the transformation process by identifying differentially expressed proteins in melanocytes compared with melanoma cell lines. Tandem mass spectrometry incorporating iTRAQ reagents was used as a screen to identify and comparatively quantify the expression of proteins in membrane-enriched samples isolated from primary human melanocytes or three melanoma cells lines. Real-time PCR was used to validate significant hits. Immunohistochemistry was used to validate the expression of proteins of interest in melanocytes in human skin and in melanoma-infiltrated lymph nodes. Publically available databases were examined to assess mRNA expression and correlation to patient outcome in a larger cohort of samples. Finally, preliminary functional studies were carried out using siRNAs to reduce the expression of a protein of interest in primary melanocytes and in a keratinocyte cell line. Two proteins, AHNAK and ANXA2, were significantly downregulated in the melanoma cell lines compared with melanocytes. Downregulation was confirmed in tumor cells in a subset of human melanoma-infiltrated human lymph nodes compared with melanocytes in human skin. Examination of Gene Expression Omnibus database data sets suggests that downregulation of AHNAK mRNA and mutation of the AHNAK gene are common in metastatic melanoma and correlates to a poor outcome. Knockdown of AHNAK in primary melanocytes and in a keratinocyte cell line led to a reduction in detectable cadherin-1. This is the first report that we are aware of which correlates a loss of AHNAK with melanoma and poor patient outcome. We hypothesize that AHNAK is required for the expression of functional cadherin-1.
Collapse
|
21
|
Roh MR, Eliades P, Gupta S, Tsao H. Genetics of melanocytic nevi. Pigment Cell Melanoma Res 2016; 28:661-72. [PMID: 26300491 DOI: 10.1111/pcmr.12412] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/19/2015] [Indexed: 01/05/2023]
Abstract
Melanocytic nevi are a benign clonal proliferation of cells expressing the melanocytic phenotype, with heterogeneous clinical and molecular characteristics. In this review, we discuss the genetics of nevi by salient nevi subtypes: congenital melanocytic nevi, acquired melanocytic nevi, blue nevi, and Spitz nevi. While the molecular etiology of nevi has been less thoroughly studied than melanoma, it is clear that nevi and melanoma share common driver mutations. Acquired melanocytic nevi harbor oncogenic mutations in BRAF, which is the predominant oncogene associated with melanoma. Congenital melanocytic nevi and blue nevi frequently harbor NRAS mutations and GNAQ mutations, respectively, while Spitz and atypical Spitz tumors often exhibit HRAS and kinase rearrangements. These initial 'driver' mutations are thought to trigger the establishment of benign nevi. After this initial phase of the cell proliferation, a senescence program is executed, causing termination of nevi growth. Only upon the emergence of additional tumorigenic alterations, which may provide an escape from oncogene-induced senescence, can malignant progression occur. Here, we review the current literature on the pathobiology and genetics of nevi in the hope that additional studies of nevi promise to inform our understanding of the transition from benign neoplasm to malignancy.
Collapse
Affiliation(s)
- Mi Ryung Roh
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Philip Eliades
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Tufts University School of Medicine, Boston, MA, USA
| | - Sameer Gupta
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hensin Tsao
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Shitara D, Tell-Martí G, Badenas C, Enokihara MMSS, Alós L, Larque AB, Michalany N, Puig-Butille JA, Carrera C, Malvehy J, Puig S, Bagatin E. Mutational status of naevus-associated melanomas. Br J Dermatol 2015; 173:671-80. [PMID: 25857817 DOI: 10.1111/bjd.13829] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND The origin of melanoma has always been a debated subject, as well as the role of adjacent melanocytic naevi. Epidemiological and histopathological studies point to melanomas arising either de novo or from a naevus. OBJECTIVES To evaluate the presence of mutations in genes from well-known melanomagenesis pathways in a large series of naevus-associated melanomas. MATERIALS AND METHODS Sixty-one melanomas found in association with a pre-existing naevus were microdissected, after careful selection of cell subpopulations, and submitted to Sanger sequencing of the BRAF, NRAS, c-KIT, PPP6C, STK19 and RAC1 genes. Each gene was evaluated twice in all samples by sequencing or by sequencing and another confirmation method, allele-specific fluorescent polymerase chain reaction (PCR) and capillary electrophoresis detection or by SNaPshot analysis. Only mutations confirmed via two different molecular methods or twice by sequencing were considered positive. RESULTS The majority of cases presented concordance of mutational status between melanoma and the associated naevus for all six genes (40 of 60; 66.7%). Nine cases presented concomitant BRAF and NRAS mutations, including one case in which both the melanoma and the adjacent naevus harboured V600E and Q61K double mutations. In two cases, both melanoma and associated naevus located on acral sites were BRAF mutated, including an acral lentiginous melanoma. CONCLUSIONS To our knowledge this is the largest naevus-associated melanoma series evaluated molecularly. The majority of melanomas and adjacent naevi in our sample share the same mutational profile, corroborating the theory that the adjacent naevus and melanoma are clonally related and that the melanoma originated within a naevus.
Collapse
Affiliation(s)
- D Shitara
- Department of Dermatology, Federal University of São Paulo, São Paulo, Brazil.,Melanoma Unit, Dermatology, Biochemistry and Molecular Genetics Departments, Hospital Clinic of Barcelona, IDIBAPS, Barcelona, Spain
| | - G Tell-Martí
- Melanoma Unit, Dermatology, Biochemistry and Molecular Genetics Departments, Hospital Clinic of Barcelona, IDIBAPS, Barcelona, Spain.,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain
| | - C Badenas
- Melanoma Unit, Dermatology, Biochemistry and Molecular Genetics Departments, Hospital Clinic of Barcelona, IDIBAPS, Barcelona, Spain.,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain
| | - M M S S Enokihara
- Department of Dermatology, Federal University of São Paulo, São Paulo, Brazil.,Department of Pathology, Federal University of São Paulo, São Paulo, Brazil
| | - L Alós
- Melanoma Unit, Pathology Service, Hospital Clinic of Barcelona, IDIBAPS, Barcelona, Spain
| | - A B Larque
- Melanoma Unit, Pathology Service, Hospital Clinic of Barcelona, IDIBAPS, Barcelona, Spain
| | - N Michalany
- Department of Dermatology, Federal University of São Paulo, São Paulo, Brazil.,Department of Pathology, Federal University of São Paulo, São Paulo, Brazil
| | - J A Puig-Butille
- Melanoma Unit, Dermatology, Biochemistry and Molecular Genetics Departments, Hospital Clinic of Barcelona, IDIBAPS, Barcelona, Spain.,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain
| | - C Carrera
- Melanoma Unit, Dermatology, Biochemistry and Molecular Genetics Departments, Hospital Clinic of Barcelona, IDIBAPS, Barcelona, Spain.,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| | - J Malvehy
- Melanoma Unit, Dermatology, Biochemistry and Molecular Genetics Departments, Hospital Clinic of Barcelona, IDIBAPS, Barcelona, Spain.,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| | - S Puig
- Melanoma Unit, Dermatology, Biochemistry and Molecular Genetics Departments, Hospital Clinic of Barcelona, IDIBAPS, Barcelona, Spain.,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| | - E Bagatin
- Department of Dermatology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
RAS Mutations Beyond KRAS Exon 2: A Review and Discussion of Clinical Trial Data. Curr Treat Options Oncol 2015; 16:33. [DOI: 10.1007/s11864-015-0350-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Lee WS, Lee JN, Baek JH, Park YH. RAS status in Korean patients with stage III and IV colorectal cancer. Clin Transl Oncol 2015; 17:751-6. [PMID: 25997687 DOI: 10.1007/s12094-015-1301-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/11/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND KRAS mutations are common and clearly contribute to malignant progression. The frequency of NRAS mutations and their relationship to clinical, pathologic, and molecular features remains unclear. METHODS We evaluated 130 colorectal tumors for mutations in KRAS and NRAS gene. We tested for mutations in codons 61 and 146 of KRAS and codons 12, 13, 59, 61 and 146 of NRAS. Mutation status was determined by targeted dideoxy sequencing. RESULTS Among the analyzed primary tumors, 36.2% had KRAS mutation. Of the 83 KRAS codon 12 and 13 wild-type patients, 7.2% had KRAS codon 61, 146 or NRAS. 40.7% harbored any RAS mutation. CONCLUSION The frequency of other RAS (NRAS and KRAS exon 3, 4) activating mutations in colorectal cancers is relatively low in Korean colorectal cancer patients.
Collapse
Affiliation(s)
- W-S Lee
- Department of Surgery, Gil Medical Center, Gachon University School of Medicine, 1198 Guwol-dong, Namdong-gu, Incheon, 405-760, Korea,
| | | | | | | |
Collapse
|
25
|
Garay T, Molnár E, Juhász É, László V, Barbai T, Dobos J, Schelch K, Pirker C, Grusch M, Berger W, Tímár J, Hegedűs B. Sensitivity of Melanoma Cells to EGFR and FGFR Activation but Not Inhibition is Influenced by Oncogenic BRAF and NRAS Mutations. Pathol Oncol Res 2015; 21:957-68. [PMID: 25749811 DOI: 10.1007/s12253-015-9916-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/17/2015] [Indexed: 11/28/2022]
Abstract
BRAF and NRAS are the two most frequent oncogenic driver mutations in melanoma and are pivotal components of both the EGF and FGF signaling network. Accordingly, we investigated the effect of BRAF and NRAS oncogenic mutation on the response to the stimulation and inhibition of epidermal and fibroblast growth factor receptors in melanoma cells. In the three BRAF mutant, two NRAS mutant and two double wild-type cell lines growth factor receptor expression had been verified by qRT-PCR. Cell proliferation and migration were determined by the analysis of 3-days-long time-lapse videomicroscopic recordings. Of note, a more profound response was found in motility as compared to proliferation and double wild-type cells displayed a higher sensitivity to EGF and FGF2 treatment when compared to mutant cells. Both baseline and induced activation of the growth factor signaling was assessed by immunoblot analysis of the phosphorylation of the downstream effectors Erk1/2. Low baseline and higher inducibility of the signaling pathway was characteristic in double wild-type cells. In contrast, oncogenic BRAF or NRAS mutation did not influence the response to EGF or FGF receptor inhibitors in vitro. Our findings demonstrate that the oncogenic mutations in melanoma have a profound impact on the motogenic effect of the activation of growth factor receptor signaling. Since emerging molecularly targeted therapies aim at the growth factor receptor signaling, the appropriate mutational analysis of individual melanoma cases is essential in both preclinical studies and in the clinical trials and practice.
Collapse
Affiliation(s)
- Tamás Garay
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, H-1091, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Garay T, Kenessey I, Molnár E, Juhász É, Réti A, László V, Rózsás A, Dobos J, Döme B, Berger W, Klepetko W, Tóvári J, Tímár J, Hegedűs B. Prenylation inhibition-induced cell death in melanoma: reduced sensitivity in BRAF mutant/PTEN wild-type melanoma cells. PLoS One 2015; 10:e0117021. [PMID: 25646931 PMCID: PMC4315579 DOI: 10.1371/journal.pone.0117021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 12/17/2014] [Indexed: 12/23/2022] Open
Abstract
While targeted therapy brought a new era in the treatment of BRAF mutant melanoma, therapeutic options for non-BRAF mutant cases are still limited. In order to explore the antitumor activity of prenylation inhibition we investigated the response to zoledronic acid treatment in thirteen human melanoma cell lines with known BRAF, NRAS and PTEN mutational status. Effect of zoledronic acid on proliferation, clonogenic potential, apoptosis and migration of melanoma cells as well as the activation of downstream elements of the RAS/RAF pathway were investigated in vitro with SRB, TUNEL and PARP cleavage assays and videomicroscopy and immunoblot measurements, respectively. Subcutaneous and spleen-to-liver colonization xenograft mouse models were used to evaluate the influence of zoledronic acid treatment on primary and disseminated tumor growth of melanoma cells in vivo. Zoledronic acid more efficiently decreased short-term in vitro viability in NRAS mutant cells when compared to BRAF mutant and BRAF/NRAS wild-type cells. In line with this finding, following treatment decreased activation of ribosomal protein S6 was found in NRAS mutant cells. Zoledronic acid demonstrated no significant synergism in cell viability inhibition or apoptosis induction with cisplatin or DTIC treatment in vitro. Importantly, zoledronic acid could inhibit clonogenic growth in the majority of melanoma cell lines except in the three BRAF mutant but PTEN wild-type melanoma lines. A similar pattern was observed in apoptosis induction experiments. In vivo zoledronic acid did not inhibit the subcutaneous growth or spleen-to-liver colonization of melanoma cells. Altogether our data demonstrates that prenylation inhibition may be a novel therapeutic approach in NRAS mutant melanoma. Nevertheless, we also demonstrated that therapeutic sensitivity might be influenced by the PTEN status of BRAF mutant melanoma cells. However, further investigations are needed to identify drugs that have appropriate pharmacological properties to efficiently target prenylation in melanoma cells.
Collapse
Affiliation(s)
- Tamás Garay
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
- National Koranyi Institute of TB and Pulmonology, Budapest, Hungary
- Department of Biological Physics, Eötvös University, Budapest, Hungary
| | - István Kenessey
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Eszter Molnár
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Éva Juhász
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Andrea Réti
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Viktória László
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Anita Rózsás
- National Koranyi Institute of TB and Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Judit Dobos
- Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - Balázs Döme
- National Koranyi Institute of TB and Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Department of Thoracic Surgery, Semmelweis University-National Institute of Oncology, Budapest, Hungary
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - József Tímár
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
- MTA-SE Molecular Oncology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balázs Hegedűs
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- MTA-SE Molecular Oncology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
27
|
Kraft S, Granter SR. Molecular pathology of skin neoplasms of the head and neck. Arch Pathol Lab Med 2014; 138:759-87. [PMID: 24878016 DOI: 10.5858/arpa.2013-0157-ra] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Skin neoplasms include the most common malignancies affecting humans. Many show an ultraviolet (UV)-induced pathogenesis and often affect the head and neck region. OBJECTIVE To review literature on cutaneous neoplasms that show a predilection for the head and neck region and that are associated with molecular alterations. DATA SOURCES Literature review. CONCLUSIONS Common nonmelanoma skin cancers, such as basal and squamous cell carcinomas, show a UV-induced pathogenesis. Basal cell carcinomas are characterized by molecular alterations of the Hedgehog pathway, affecting patched and smoothened genes. While squamous cell carcinomas show UV-induced mutations in several genes, driver mutations are only beginning to be identified. In addition, certain adnexal neoplasms also predominantly affect the head and neck region and show interesting, recently discovered molecular abnormalities, or are associated with hereditary conditions whose molecular genetic pathogenesis is well understood. Furthermore, recent advances have led to an increased understanding of the molecular pathogenesis of melanoma. Certain melanoma subtypes, such as lentigo maligna melanoma and desmoplastic melanoma, which are more often seen on the chronically sun-damaged skin of the head and neck, show differences in their molecular signature when compared to the other more common subtypes, such as superficial spreading melanoma, which are more prone to occur at sites with acute intermittent sun damage. In summary, molecular alterations in cutaneous neoplasms of the head and neck are often related to UV exposure. Their molecular footprint often reflects the histologic tumor type, and familiarity with these changes will be increasingly necessary for diagnostic and therapeutic considerations.
Collapse
Affiliation(s)
- Stefan Kraft
- From the Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (Dr Kraft); and the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts (Dr Granter)
| | | |
Collapse
|
28
|
Mandalà M, Merelli B, Massi D. Nras in melanoma: targeting the undruggable target. Crit Rev Oncol Hematol 2014; 92:107-22. [PMID: 24985059 DOI: 10.1016/j.critrevonc.2014.05.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/01/2014] [Accepted: 05/09/2014] [Indexed: 12/30/2022] Open
Abstract
RAS belongs to the guanosine 5'-triphosphate (GTP)-binding proteins' family, and oncogenic mutations in codons 12, 13, or 61 of RAS family occur in approximately one third of all human cancers with N-RAS mutations found in about 15-20% of melanomas. The importance of RAS signaling as a potential target in cancer is emphasized not only by the prevalence of RAS mutations, but also by the high number of RAS activators and effectors identified in mammalian cells that places the RAS proteins at the crossroads of several, important signaling networks. Ras proteins are crucial crossroads of signaling pathways that link the activation of cell surface receptors with a wide variety of cellular processes leading to the control of proliferation, apoptosis and differentiation. Furthermore, oncogenic ras proteins interfere with metabolism of tumor cells, microenvironment's remodeling, evasion of the immune response, and finally contributes to the metastatic process. After 40 years of basic, translational and clinical research, much is now known about the molecular mechanisms by which these monomeric guanosine triphosphatase-binding proteins promote cellular malignancy, and it is clear that they regulate signaling pathways involved in the control of cell proliferation, survival, and invasiveness. In this review we summarize the biological role of RAS in cancer by focusing our attention on the biological rational and strategies to target RAS in melanoma.
Collapse
Affiliation(s)
- Mario Mandalà
- Unit of Medical Oncology, Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy.
| | - Barbara Merelli
- Unit of Medical Oncology, Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Daniela Massi
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Italy
| |
Collapse
|
29
|
Czajkowski R. BRAF,HRAS,KRAS,NRASandCDKN2Agenes analysis in cultured melanocytes used for vitiligo treatment. Int J Dermatol 2014; 50:180-3. [DOI: 10.1111/j.1365-4632.2010.04675.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Prognostic biomarkers in colorectal cancer: where do we stand? Virchows Arch 2014; 464:379-91. [PMID: 24487787 DOI: 10.1007/s00428-013-1532-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/03/2013] [Accepted: 12/23/2013] [Indexed: 12/13/2022]
Abstract
Colorectal cancer remains a major cause of cancer-related death worldwide. One way to reduce its staggering mortality rate and socio-economic burden is to predict outcome based on the aggressiveness of the tumor biology in order to treat patients accordingly to their risk profile. As such, it comes as no surprise that prognostic biomarker discovery is a hot topic in colorectal cancer research. The last two decades have literally produced tons of new data and an avalanche of potential clinically applicable biomarkers. This review explores and summarizes data concerning the prognostic strength and clinical utility of current and future tissue biomarkers in the diagnosis and treatment of colorectal cancer.
Collapse
|
31
|
Sjoestroem C, Khosravi S, Zhang G, Martinka M, Li G. C-terminal tensin-like protein is a novel prognostic marker for primary melanoma patients. PLoS One 2013; 8:e80492. [PMID: 24244691 PMCID: PMC3820571 DOI: 10.1371/journal.pone.0080492] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 10/03/2013] [Indexed: 02/04/2023] Open
Abstract
Background C-terminal tensin-like protein (Cten) is a focal adhesion protein originally identified as a tumor suppressor in prostate cancer. It has since been found to be overexpressed and function as an oncogene in numerous other cancers, but the expression status of Cten in melanoma is still unknown. Methods Using tissue microarrays containing 562 melanocytic lesions, we evaluated Cten protein expression by immunohistochemistry. The association between Cten expression and patient survival was examined using Kaplan-Meier survival analysis, and univariate and multivariate Cox regression analyses were used to estimate the crude and adjusted hazard ratios. Results Strong Cten expression was detected in 7%, 24%, 41%, and 46% of normal nevi, dysplastic nevi, primary melanoma, and metastatic melanoma samples, respectively, and Cten expression was found to be significantly higher in dysplastic nevi compared to normal nevi (P = 0.046), and in primary melanoma compared to dysplastic nevi (P = 0.003), but no difference was observed between metastatic and primary melanoma. Cten staining also correlated with AJCC stages (P = 0.015) and primary tumor thickness (P = 0.002), with Cten expression being induced in the transition from thin (<1mm) to thick (≥1mm) melanomas. Strong Cten expression was significantly associated with a worse 5-year overall (P = 0.008) and disease-specific survival (P = 0.004) for primary melanoma patients, and multivariate Cox regression analysis revealed that Cten expression was an independent prognostic marker for these patients (P = 0.038 for overall survival; P = 0.021 for disease-specific survival). Conclusion Our findings indicate that induction of Cten protein expression is a relatively early event in melanoma progression, and that Cten has the potential to serve as a prognostic marker for primary melanoma patients.
Collapse
Affiliation(s)
- Cecilia Sjoestroem
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| | - Shahram Khosravi
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guohong Zhang
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Magdalena Martinka
- Department of Pathology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Gang Li
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
32
|
Chen J, Chi M, Chen C, Zhang XD. Obesity and melanoma: exploring molecular links. J Cell Biochem 2013; 114:1955-61. [PMID: 23554059 DOI: 10.1002/jcb.24549] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/13/2013] [Indexed: 12/11/2022]
Abstract
Obesity is now a major health problem due to its rapidly increasing incidence worldwide and severe consequences. Among many conditions associated with obesity are some cancers including melanoma. Both genetic defects and environmental risk factors are involved in the carcinogenesis of melanoma. Activation of multiple signal pathways such as the PI3K/Akt and MAPK pathways are necessary for the initiation of melanoma. Activation of the MAPK pathway as a result of activating mutations in BRAF is commonly seen in melanoma though it alone is not sufficient to cause malignant transformation of melanocytes. Obesity can result in the activation of many signal pathways including PI3K/Akt, MAPK, and STAT3. The activation of these pathways may have a synergistic effect with the genetic defects thereby increasing the incidence of melanoma.
Collapse
Affiliation(s)
- Jiezhong Chen
- School of Biomedical Sciences, University of Queensland, Sir William MacGregor Building 64, St Lucia Campus, Brisbane, QLD, 4072, Australia
| | | | | | | |
Collapse
|
33
|
|
34
|
Tschandl P, Berghoff AS, Preusser M, Burgstaller-Muehlbacher S, Pehamberger H, Okamoto I, Kittler H. NRAS and BRAF mutations in melanoma-associated nevi and uninvolved nevi. PLoS One 2013; 8:e69639. [PMID: 23861977 PMCID: PMC3704624 DOI: 10.1371/journal.pone.0069639] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/11/2013] [Indexed: 02/07/2023] Open
Abstract
According to the prevailing multistep model of melanoma development, oncogenic BRAF or NRAS mutations are crucial initial events in melanoma development. It is not known whether melanocytic nevi that are found in association with a melanoma are more likely to carry BRAF or NRAS mutations than uninvolved nevi. By laser microdissection we were able to selectively dissect and genotype cells either from the nevus or from the melanoma part of 46 melanomas that developed in association with a nevus. In 25 cases we also genotyped a control nevus of the same patients. Available tissue was also immunostained using the BRAFV600E-mutation specific antibody VE1. The BRAFV600E mutation was found in 63.0% of melanomas, 65.2% of associated nevi and 50.0% of control nevi. No significant differences in the distribution of BRAF or NRAS mutations could be found between melanoma and associated nevi or between melanoma associated nevi and control nevi. In concordant cases immunohistochemistry showed a higher expression (intensity of immunohistochemistry) of the mutated BRAFV600E-protein in melanomas compared to their associated nevi. In this series the presence of a BRAF- or NRAS mutation in a nevus was not associated with the risk of malignant transformation. Our findings do not support the current traditional model of stepwise tumor progression.
Collapse
Affiliation(s)
- Philipp Tschandl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Anna Sophie Berghoff
- Institute of Neurology and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- Institute of Neurology and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | | - Hubert Pehamberger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Ichiro Okamoto
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Harald Kittler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
35
|
Chakraborty R, Wieland CN, Comfere NI. Molecular targeted therapies in metastatic melanoma. Pharmgenomics Pers Med 2013; 6:49-56. [PMID: 23843700 PMCID: PMC3702032 DOI: 10.2147/pgpm.s44800] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Indexed: 12/27/2022] Open
Abstract
The advent of personalized medicine has ushered in a new era for cancer therapy with a significant impact on the management of advanced melanoma. Molecular targeted therapies have shown promise in the management of various malignancies, including melanoma, with lower toxicity profiles and better overall survival as compared with conventional therapy. The discovery of BRAF mutations in melanoma led to the development of BRAF inhibitors for the treatment of advanced melanoma. However, growing concerns over drug resistance to molecular targeted therapies including BRAF inhibitors, have spurred efforts to elucidate additional molecular targets for the treatment of advanced melanoma. In this review, we discuss the known molecular aberrations in melanoma, current and novel targeted approaches in its treatment, and drug resistance patterns.
Collapse
Affiliation(s)
- Rima Chakraborty
- University of Missouri-Kansas City Medical School, Kansas City, MO
| | - Carilyn N Wieland
- Departments of Dermatology and Laboratory Medicine and Pathology, Mayo Clinic,
Rochester, MN, USA
| | - Nneka I Comfere
- Departments of Dermatology and Laboratory Medicine and Pathology, Mayo Clinic,
Rochester, MN, USA
| |
Collapse
|
36
|
Greaves WO, Verma S, Patel KP, Davies MA, Barkoh BA, Galbincea JM, Yao H, Lazar AJ, Aldape KD, Medeiros LJ, Luthra R. Frequency and spectrum of BRAF mutations in a retrospective, single-institution study of 1112 cases of melanoma. J Mol Diagn 2012; 15:220-6. [PMID: 23273605 DOI: 10.1016/j.jmoldx.2012.10.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 10/09/2012] [Accepted: 10/18/2012] [Indexed: 01/08/2023] Open
Abstract
The US Food and Drug Administration (FDA) approved vemurafenib to treat patients with metastatic melanoma harboring the BRAF c.1799T>A (p.V600E) mutation. However, a subset of melanomas harbor non-p.V600E BRAF mutations, and these data are of potential importance regarding the efficacy of current targeted therapies. To better understand the BRAF mutation profile in melanomas, we retrospectively analyzed data from 1112 primary and metastatic melanomas at our institution. The cohort included nonacral cutaneous (n = 774), acral (n = 111), mucosal (n = 26), uveal (n = 23), leptomeningeal (n = 1), and metastatic melanomas of unknown primary site (n = 177). BRAF mutation hotspot regions in exons 11 and 15 were analyzed by pyrosequencing or with the primer extension MassARRAY system. A total of 499 (44.9%) specimens exhibited BRAF mutations, involving exon 15 [497 (99.6%)] or exon 11 [2 (0.4%)]. p.V600E was detected in 376 (75.4%) cases; the remaining 123 (24.6%) cases exhibited non-p.V600E mutations, of which p.V600K was most frequent [86 (17.2%)]. BRAF mutations were more frequent in nonacral cutaneous (51.4%) than acral melanomas [18 (16.2%)] (P < 0.001); however, there was no significant difference among cutaneous histological subtypes. All mucosal, uveal, and leptomeningeal melanomas were BRAF wild type (WT). The high frequency of non-p.V600E BRAF mutations in melanoma has important implications because the FDA-approved companion diagnostic test for p.V600E detects some but not all non-p.V600E mutations. However, the therapeutic efficacy of vemurafenib is not well established in these lesions.
Collapse
Affiliation(s)
- Wesley O Greaves
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Li A, Ma Y, Jin M, Mason S, Mort RL, Blyth K, Larue L, Sansom OJ, Machesky LM. Activated mutant NRas(Q61K) drives aberrant melanocyte signaling, survival, and invasiveness via a Rac1-dependent mechanism. J Invest Dermatol 2012; 132:2610-21. [PMID: 22718121 PMCID: PMC3472562 DOI: 10.1038/jid.2012.186] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/20/2012] [Accepted: 04/20/2012] [Indexed: 12/30/2022]
Abstract
Around a fifth of melanomas exhibit an activating mutation in the oncogene NRas that confers constitutive signaling to proliferation and promotes tumor initiation. NRas signals downstream of the major melanocyte tyrosine kinase receptor c-kit and activated NRas results in increased signaling via the extracellular signal-regulated kinase (ERK)/MAPK/ERK kinase/mitogen-activated protein kinase (MAPK) pathways to enhance proliferation. The Ras oncogene also activates signaling via the related Rho GTPase Rac1, which can mediate growth, survival, and motility signaling. We tested the effects of activated NRas(Q61K) on the proliferation, motility, and invasiveness of melanoblasts and melanocytes in the developing mouse and ex vivo explant culture as well as in a melanoma transplant model. We find an important role for Rac1 downstream of NRas(Q61K) in mediating dermal melanocyte survival in vivo in mouse, but surprisingly NRas(Q61K) does not appear to affect melanoblast motility or proliferation during mouse embryogenesis. We also show that genetic deletion or pharmacological inhibition of Rac1 in NRas(Q61K) induced melanoma suppresses tumor growth, lymph node spread, and tumor cell invasiveness, suggesting a potential value for Rac1 as a therapeutic target for activated NRas-driven tumor growth and invasiveness.
Collapse
Affiliation(s)
- Ang Li
- The Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK
| | - Yafeng Ma
- The Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK
| | - Meng Jin
- The Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK
| | - Susan Mason
- The Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK
| | - Richard L Mort
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, UK
| | - Karen Blyth
- The Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK
| | - Lionel Larue
- Institut Curie, CNRS UMR3347 INSERM U1021, Institut Curie, Bat 110, Centre Universitaire, Orsay, France
| | - Owen J Sansom
- The Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK
| | - Laura M Machesky
- The Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK
| |
Collapse
|
38
|
Gembarska A, Luciani F, Fedele C, Russell EA, Dewaele M, Villar S, Zwolinska A, Haupt S, de Lange J, Yip D, Goydos J, Haigh JJ, Haupt Y, Larue L, Jochemsen A, Shi H, Moriceau G, Lo RS, Ghanem G, Shackleton M, Bernal F, Marine JC. MDM4 is a key therapeutic target in cutaneous melanoma. Nat Med 2012; 18:1239-47. [PMID: 22820643 DOI: 10.1038/nm.2863] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 06/13/2012] [Indexed: 12/22/2022]
Abstract
The inactivation of the p53 tumor suppressor pathway, which often occurs through mutations in TP53 (encoding tumor protein 53) is a common step in human cancer. However, in melanoma-a highly chemotherapy-resistant disease-TP53 mutations are rare, raising the possibility that this cancer uses alternative ways to overcome p53-mediated tumor suppression. Here we show that Mdm4 p53 binding protein homolog (MDM4), a negative regulator of p53, is upregulated in a substantial proportion (∼65%) of stage I-IV human melanomas and that melanocyte-specific Mdm4 overexpression enhanced tumorigenesis in a mouse model of melanoma induced by the oncogene Nras. MDM4 promotes the survival of human metastatic melanoma by antagonizing p53 proapoptotic function. Notably, inhibition of the MDM4-p53 interaction restored p53 function in melanoma cells, resulting in increased sensitivity to cytotoxic chemotherapy and to inhibitors of the BRAF (V600E) oncogene. Our results identify MDM4 as a key determinant of impaired p53 function in human melanoma and designate MDM4 as a promising target for antimelanoma combination therapy.
Collapse
Affiliation(s)
- Agnieszka Gembarska
- Center for the Biology of Disease, Laboratory for Molecular Cancer Biology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium; Center for Human Genetics, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hill SJ, Delman KA. Pediatric melanomas and the atypical spitzoid melanocytic neoplasms. Am J Surg 2012; 203:761-7. [DOI: 10.1016/j.amjsurg.2011.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 04/11/2011] [Accepted: 04/11/2011] [Indexed: 02/06/2023]
|
40
|
Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes Dev 2012; 26:1055-69. [PMID: 22549727 DOI: 10.1101/gad.187252.112] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human melanocytic nevi (moles) are benign lesions harboring activated oncogenes, including BRAF. Although this oncogene initially acts mitogenically, eventually, oncogene-induced senescence (OIS) ensues. Nevi can infrequently progress to melanomas, but the mechanistic relationship with OIS is unclear. We show here that PTEN depletion abrogates BRAF(V600E)-induced senescence in human fibroblasts and melanocytes. Correspondingly, in established murine BRAF(V600E)-driven nevi, acute shRNA-mediated depletion of PTEN prompted tumor progression. Furthermore, genetic analysis of laser-guided microdissected human contiguous nevus-melanoma specimens recurrently revealed identical mutations in BRAF or NRAS in adjacent benign and malignant melanocytes. The PI3K pathway was often activated through either decreased PTEN or increased AKT3 expression in melanomas relative to their adjacent nevi. Pharmacologic PI3K inhibition in melanoma cells suppressed proliferation and induced the senescence-associated tumor suppressor p15(INK4B). This treatment also eliminated subpopulations resistant to targeted BRAF(V600E) inhibition. Our findings suggest that a significant proportion of melanomas arise from nevi. Furthermore, these results demonstrate that PI3K pathway activation serves as a rate-limiting event in this setting, acting at least in part by abrogating OIS. The reactivation of senescence features and elimination of cells refractory to BRAF(V600E) inhibition by PI3K inhibition warrants further investigation into the therapeutic potential of simultaneously targeting these pathways in melanoma.
Collapse
|
41
|
Lack of BRAF(V600E) mutations in giant congenital melanocytic nevi in a Chinese population. Am J Dermatopathol 2011; 33:341-4. [PMID: 21430505 DOI: 10.1097/dad.0b013e3181fb5bc7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Giant congenital melanocytic nevi (CMNs) are at an increased risk for malignant transformation. To explore the mutation frequencies of BRAF(V600E) (V-raf murine sarcoma virus oncogene homolog B1) and NRAS (neuroblastoma ras viral oncogene homolog) codon 61 in CMNs of Chinese, we selected 55 paraffin-embedded tissue blocks, including 37 cases of medium CMNs (1.5-20cm) and 18 cases of giant CMNs (>20 cm). Direct sequencing was performed to detect the BRAF(V600E) and NRAS codon 61 mutations. The BRAF(V600E) mutations were detected in 9 of 55 nevi (16.4%). In medium CMNs, 9 of 37 BRAF(V600E) mutations (24.3%) were detected. Notably, in giant CMNs, no BRAF(V600E) mutations were found. The difference between these frequencies is statistically significant (P = 0.0231). NRAS codon 61 mutations were detected in 13 of 55 nevi (23.6%), including 10 of 37 medium CMNs (27.0%) and 3 of 18 giant CMNs (16.7%). Additionally, the BRAF(V600E) and NRAS codon 61 mutations did not coexist in the same sample. Finally, we found that the NRAS codon 61 mutation was significantly related to the amount of sun exposure (0 of 18 CMNs from sites of intermittent sun exposure and 13 of 36 CMNs from sites of chronic continuous sun exposure, P = 0.0024). The paradoxically higher incidence of BRAF(V600E) mutations in medium-sized compared with giant CMNs suggests that the presence of the BRAF(V600E) mutation may play different roles between medium and giant CMNs in melanocytic tumorigenesis.
Collapse
|
42
|
Abstract
CONTEXT In the current "molecular" era, the advent of technology, such as array-based platforms, systems biology, and genome-wide approaches, has made it possible to examine human cancers, including melanoma, for genetic mutations, deletions, amplification, differentially regulated genes, and epigenetic changes. Advancement in current technologies is such that one can now examine ribonucleic acid (RNA), deoxyribonucleic acid (DNA), and protein directly from the patient's own tumor. OBJECTIVE To apply these new technologies in advancing molecular diagnostics in melanoma has historically suffered from a major obstacle, namely, the scarcity of fresh frozen, morphologically defined tumor banks, annotated with clinical information. Recently, some of the new platforms have advanced to permit utilization of formalin-fixed, paraffin-embedded (FFPE) tumor specimens as starting material. DATA SOURCES This article reviews the latest technologies applied to FFPE melanoma sections, narrowing its focus on the utility of transcriptional profiling, especially for melastatin; comparative genomic hybridization; BRAF and NRAS mutational analysis; and micro ribonucleic acid profiling. CONCLUSION New molecular approaches are emerging and are likely to improve the classification of melanocytic neoplasms.
Collapse
Affiliation(s)
- Soheil S Dadras
- Department of Dermatology, University of Connecticut Health Center, Farmington, Connecticut 06302, USA.
| |
Collapse
|
43
|
Prevalence of BRAF V600E mutation in Chinese melanoma patients: large scale analysis of BRAF and NRAS mutations in a 432-case cohort. Eur J Cancer 2011; 48:94-100. [PMID: 21788131 DOI: 10.1016/j.ejca.2011.06.056] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 06/01/2011] [Accepted: 06/27/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mutations of NRAS and BRAF have been described in Caucasian melanomas. However, the status and the clinical significance of BRAF and NRAS mutations in the Asian population have not been investigated on a large scale. METHODS Melanoma samples (n=432) were analysed for mutations in exons 11 and 15 of the BRAF gene, and exons 1 and 2 of the NRAS gene in genomic DNA by polymerase chain reaction (PCR) amplification and Sanger sequencing. Mutations of BRAF and NRAS genes were correlated to clinicopathologic features and prognosis of the patients. RESULTS The incidence of somatic mutations within the BRAF and NRAS genes was 25.5% (110/432) and 7.2% (31/432), respectively. Among the 110 patients with BRAF mutations, 98 patients (89.1%) had V600E mutations. Melanomas without chronic sun-induced damage (Non-CSD) were more likely (P<0.01) to show BRAF mutations while NRAS mutation frequency was unbiased between melanoma subtypes. Patients with genetic mutations in BRAF (P<0.01) or NRAS (P=0.04) gene are more likely to have ulceration as compared to patients without BRAF or NRAS mutations, respectively. Both BRAF (P=0.003) and NRAS mutations (P=0.031) are inversely correlated to overall survival. CONCLUSIONS BRAF mutation is frequent while mutations in NRAS gene are rare. The most prevalent BRAF mutation type is V600E. Patients with mutations in BRAF or NRAS gene are frequently present with ulceration, and mutation in BRAF or NRAS gene is indicator for poor prognosis. Our study may warrant a clinical trial of kinase inhibitors targeting BRAF V600E in Chinese and Asian melanoma patients.
Collapse
|
44
|
Rother J, Jones D. Molecular markers of tumor progression in melanoma. Curr Genomics 2011; 10:231-9. [PMID: 19949544 PMCID: PMC2709934 DOI: 10.2174/138920209788488526] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 03/28/2009] [Accepted: 03/29/2009] [Indexed: 01/05/2023] Open
Abstract
Malignant melanoma represents one of the most aggressive malignancies but outcome is highly variable with early tumor lesions having an excellent prognosis following resection. We review here the data on identification of genes involved in the progression of melanoma as a result of expression array studies, genomic profiling, and genetic models. We focus on the role of tumor suppressors involved in cell cycle function, DNA repair, and genome maintenance. Highlighted are the roles of loss of p16 in promoting neoplasia in cooperation with deregulated MAPK signaling, and the role of loss of the RASSF1A protein in promoting chromosomal instability. The interactions between point mutation in growth signaling molecules and epigenetic changes in genes involved in DNA repair and cell division are discussed.
Collapse
Affiliation(s)
- Joshua Rother
- Division of Pathology and Laboratory Medicine, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | |
Collapse
|
45
|
Abstract
Melanoma is the most serious type of skin cancer. Unfortunately, treatment has progressed little and advanced melanoma has appalling survival rates. A goal of molecular analysis is to fully describe the alterations that underpin melanoma's clinical phenotype so that diagnosis can be more accurate, outcome can be predicted with greater confidence, and treatment that is tailored to the patient can be given. This article describes the handful of "signature" changes that are known to occur, describes how some recent studies have shed light on changes beyond this signature, and finally discusses the impact of molecular pathology for practicing histopathologists.
Collapse
Affiliation(s)
- Philip D Da Forno
- Department of Histopathology, University Hospitals of Leicester NHS Trust, Leicester Royal Infirmary, UK.
| | | |
Collapse
|
46
|
Abstract
Despite recent advances, the biology underlying nevogenesis remains unclear. Activating mutations in NRAS, HRAS, BRAF, and GNAQ have been identified in benign nevi. Their presence roughly correlates with congenital, Spitz, acquired, and blue nevi, respectively. These mutations are likely to play a critical role in driving nevogenesis. While each mutation is able to activate the MAP kinase pathway, they also interact with a host of different proteins in other pathways. The different melanocytic developmental pathways activated by each mutation cause the cells to migrate, proliferate, and differentiate to different extents within the skin. This causes each mutation to give rise to a characteristic growth pattern. The exact location and differentiation state of the cell of origin for benign moles remains to be discovered. Further research is necessary to fully understand nevus development given that most of the same developmental pathways are also present in melanoma.
Collapse
|
47
|
Abstract
CONTEXT Melanoma growing as a tumorigenic nodule is one of the most virulent neoplasms to which the flesh is heir. At a considerably small tumor size, it incurs significant risk for widespread metastatic dissemination. There are no effective means of surgical intervention, chemical therapy, or immunologic therapy for advanced and metastatic melanoma. OBJECTIVE To review the literature and highlight recent cardinal advances in the understanding of melanoma vertical growth, with specific emphasis on how its recognition and characterization may be applied to diagnostic practice and development of novel investigative approaches. DATA SOURCES Literature review, archival material, personal experience, and research collaborators. CONCLUSIONS The study of tumorigenic melanoma, both in primary lesions and in metastases, is the key to the eventual eradication of this highly virulent neoplasm that may disseminate widely when only occupying the volume of a grain of rice. Morphology often provides the first insight into structure and function. A growing database using meticulous and inclusive criteria to define tumor stem cells in the context of clinically relevant models now indicates that the key to melanoma heterogeneity may reside in a small subpopulation with the ability to self-renew and form tumors despite most cells present being significantly less virulent. Hopefully, from these insights into melanoma tumor progression from radial growth phase to heterogeneous and tumorigenic vertical growth phase will come additional answers to how smart therapies may be developed that specifically target those vertical growth phase cells that most pertain to patient survival.
Collapse
Affiliation(s)
- Alvaro C Laga
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
48
|
Abstract
Activating mutations in members of the RAS oncogene family (KRAS, HRAS, and NRAS) have been found in a variety of human malignancies, suggesting a dominant role in carcinogenesis. In colon cancers, KRAS mutations are common and clearly contribute to malignant progression. The frequency of NRAS mutations and their relationship with clinical, pathologic, and molecular features remains uncertain. We developed and validated a Pyroseqencing assay to detect NRAS mutations at codons 12, 13, and 61. Using a collection of 225 colorectal cancers from 2 prospective cohort studies, we examined the relationship between NRAS mutations, clinical outcome, and other molecular features, including mutation of KRAS, BRAF, and PIK3CA, microsatellite instability, and the CpG island methylator phenotype. Finally, we examined whether NRAS mutation was associated with patient survival or prognosis. NRAS mutations were detected in 5 (2.2%) of the 225 colorectal cancers and tended to occur in left-sided cancers arising in women, but did not seem to be associated with any of the molecular features that were examined.
Collapse
|
49
|
Chawla R, Procknow JA, Tantravahi RV, Khurana JS, Litvin J, Reddy EP. Cooperativity of Cdk4R24C and Ras in melanoma development. Cell Cycle 2010; 9:3305-14. [PMID: 20703083 DOI: 10.4161/cc.9.16.12632] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The importance of the CDK4 protein in human cancer first became evident following the identification of a germ line mutation in the Cdk4 locus that predisposes humans to melanoma. This mutation results in substitution of arginine with cysteine at position 24 (R24C). In an earlier study, we introduced the R24C mutation into the Cdk4 locus of mice using Cre-loxP-mediated "knock-in" technology and observed a very low incidence of spontaneous melanomas in Cdk4(R24C/R24C) mice. This suggested that additional oncogenic mutations might be required for development of melanomas. Here we report an increased incidence of spontaneous cutaneous melanoma in mice expressing the oncogene HRAS(G12V) in melanocytes on a Cdk4(R24C) background. Treatment of Tyr-HRas:Cdk4(R24C/R24C) mice with the carcinogen, DMBA/TPA resulted in a further increase in the number of nevi and melanomas developed when compared with Tyr-HRas:Cdk4(+/+) mice. In summary, in Tyr-HRas:Cdk4(R24C/R24C) mice, we observed that activated CDK4 cooperates with the oncogenic HRAS(G12V) protein to increase the susceptibility of melanoma development in vivo.
Collapse
Affiliation(s)
- Rachna Chawla
- Temple University School of Medicine, Fels Institute of Cancer Research and Molecular Biology, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
50
|
Lasfar A, Cohen-Solal KA. Resistance to transforming growth factor β-mediated tumor suppression in melanoma: are multiple mechanisms in place? Carcinogenesis 2010; 31:1710-7. [PMID: 20656791 DOI: 10.1093/carcin/bgq155] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Resistance to transforming growth factor (TGF) β-mediated tumor suppression in melanoma appears to be a crucial step in tumor aggressiveness since it is usually coupled with the ability of TGFβ to drive the oncogenic process via autocrine and paracrine effects. In this review, we will focus mainly on the mechanisms of escape from TGFβ-induced cell cycle arrest because the mechanisms of resistance to TGFβ-mediated apoptosis are still essentially speculative. As expected, some of these mechanisms can directly affect the function of the main downstream effectors of TGFβ, Smad2 and Smad3, resulting in compromised Smad-mediated antiproliferative activity. Other mechanisms can counteract or overcome TGFβ-mediated cell cycle arrest independently of the Smads. In melanoma, some models of resistance to TGFβ have been suggested and will be described. In addition, we propose additional models of resistance taking into consideration the information available on the dysregulation of fundamental cellular effectors and signaling pathways in melanoma.
Collapse
Affiliation(s)
- Ahmed Lasfar
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, University Hospital Cancer Center, 205 South Orange Avenue, Newark, NJ 07103, USA
| | | |
Collapse
|