1
|
Hinojosa J, Becerra V, Candela-Cantó S, Alamar M, Culebras D, Valencia C, Valera C, Rumiá J, Muchart J, Aparicio J. Extra-temporal pediatric low-grade gliomas and epilepsy. Childs Nerv Syst 2024; 40:3309-3327. [PMID: 39191974 DOI: 10.1007/s00381-024-06573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
Low-grade gliomas, especially glioneuronal tumors, are a common cause of epilepsy in children. Seizures associated with low-grade pediatric tumors are medically refractory and present a significant burden to patients. Often, morbidity and patients´ quality of life are determined rather by the control of seizures than the oncological process itself and the resolution of epilepsy represents an important part in the treatment of LGGs. The pathogenesis of tumor-related seizures in focal LGG tumors is multifactorial, and mechanisms differ probably among patients and tumor types. Pediatric low-grade tumors associated with epilepsy include a series of neoplasms that have a pure astrocytic or glioneuronal lineage. They are usually benign tumors with a neocortical localization typically in the temporal lobes, but also in other supratentorial locations. Gangliogliomas and dysembryoplastic neuroepithelial tumors (DNET) are the most common entities together with astrocytic gliomas (pilocytic astrocytomas and pleomorphic xanthoastrocytoma) and angiocentric gliomas, and dual pathology is found in up to 40% of glioneuronal tumors. The treatment of low-grade gliomas and associated epilepsy is based mainly on resection and the extent of surgery is the main predictor of postoperative seizure control in patients with a LGG. Long-term epilepsy-associated tumors (LEATs) tend to be well-circumscribed, and therefore, the chances for a complete resection and epilepsy control with a safe approach are very high. New treatments have emerged as alternatives to open microsurgical approaches, including laser thermal ablation or the use of BRAF inhibitors. Future advances in identifying seizure-related biomarkers and molecular tumor pathways will facilitate targeted treatment strategies that will have a deep impact both in oncologic and epilepsy outcomes.
Collapse
Affiliation(s)
- José Hinojosa
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain.
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain.
| | - Victoria Becerra
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Santiago Candela-Cantó
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Mariana Alamar
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Diego Culebras
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Carlos Valencia
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Carlos Valera
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Jordi Rumiá
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
- Department of Neurosurgery, Hospital Clinic Barcelona, C. de Villarroel, 170 08036, Barcelona, Spain
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Jordi Muchart
- Department of Neuroradiology, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Javier Aparicio
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| |
Collapse
|
2
|
Nakai M, Nishimoto S, Higashibeppu Y, Inoue Y. Efficacy of perampanel by etiology in Japanese patients with epilepsy-subpopulation analysis of a prospective post-marketing observational study. Epilepsia Open 2024; 9:1772-1782. [PMID: 38963336 PMCID: PMC11450607 DOI: 10.1002/epi4.13002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVE To examine the efficacy and safety of perampanel (PER) in patients with post-stroke epilepsy (PSE), brain tumor-related epilepsy (BTRE), and post-traumatic epilepsy (PTE) using Japanese real-world data. METHODS The prospective post-marketing observational study included patients with focal seizures with or without focal to bilateral tonic-clonic seizures who received PER combination therapy. The observation period was 24 or 52 weeks after the initial PER administration. The safety and efficacy analysis included 3716 and 3272 patients, respectively. This post hoc analysis examined responder rate (50% reduction in seizure frequency), seizure-free rate (proportion of patients who achieved seizure-free), and safety in patients included in the post-marketing study who had PSE, BTRE, and PTE in the 4 weeks prior to the last observation. RESULTS Overall, 402, 272, and 186 patients were included in the PSE, BTRE, and PTE subpopulations, and 2867 controls in the "Other" population (etiologies other than PSE, BTRE, or PTE). Mean modal dose (the most frequently administered dose) values at 52 weeks were 3.38, 3.36, 3.64, and 4.04 mg/day for PSE, BTRE, PTE, and "Other," respectively; PER retention rates were 56.2%, 54.0%, 52.6%, and 59.7%, respectively. Responder rates (% [95% confidence interval]) were 82% (76.3%-86.5%), 78% (70.8%-83.7%), 67% (56.8%-75.6%), and 50% (47.9%-52.7%) for PSE, BTRE, PTE, and "Other," respectively, and seizure-free rates were 71% (64.5%-76.5%), 62% (54.1%-69.0%), 50% (40.6%-60.4%), and 28% (25.8%-30.1%), respectively. Adverse drug reactions tended to occur less frequently in the PSE (14.7%), BTRE (16.5%), and PTE (16.7%) subpopulations than in the "Other" population (26.3%). SIGNIFICANCE In real-world clinical conditions, efficacy and tolerability for PER combination therapy were observed at low PER doses for the PSE, BTRE, and PTE subpopulations. PLAIN LANGUAGE SUMMARY To find out how well the medication perampanel works and whether it is safe for people who have epilepsy after having had a stroke, brain tumor, or head injury, we used information from real-life medical situations in Japan. We looked at the data of about 3700 Japanese patients with epilepsy who were treated with perampanel. We found that perampanel was used at lower doses and better at controlling seizures, and had fewer side effects for patients with epilepsy caused by these etiologies than the control group.
Collapse
Affiliation(s)
- Miku Nakai
- Neurology DepartmentMedical Headquarters, Eisai Co., Ltd.TokyoJapan
| | - Shohei Nishimoto
- Neurology DepartmentMedical Headquarters, Eisai Co., Ltd.TokyoJapan
| | - Yoichi Higashibeppu
- Clinical Planning and Development DepartmentMedical Headquarters, Eisai Co., Ltd.TokyoJapan
| | - Yushi Inoue
- National Epilepsy CenterNHO Shizuoka Institute of Epilepsy and Neurological DisordersShizuokaJapan
| |
Collapse
|
3
|
Cases-Cunillera S, Friker LL, Müller P, Becker AJ, Gielen GH. From bedside to bench: New insights in epilepsy-associated tumors based on recent classification updates and animal models on brain tumor networks. Mol Oncol 2024. [PMID: 38899375 DOI: 10.1002/1878-0261.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 12/28/2023] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Low-grade neuroepithelial tumors (LGNTs), particularly those with glioneuronal histology, are highly associated with pharmacoresistant epilepsy. Increasing research focused on these neoplastic lesions did not translate into drug discovery; and anticonvulsant or antitumor therapies are not available yet. During the last years, animal modeling has improved, thereby leading to the possibility of generating brain tumors in mice mimicking crucial genetic, molecular and immunohistological features. Among them, intraventricular in utero electroporation (IUE) has been proven to be a valuable tool for the generation of animal models for LGNTs allowing endogenous tumor growth within the mouse brain parenchyma. Epileptogenicity is mostly determined by the slow-growing patterns of these tumors, thus mirroring intrinsic interactions between tumor cells and surrounding neurons is crucial to investigate the mechanisms underlying convulsive activity. In this review, we provide an updated classification of the human LGNT and summarize the most recent data from human and animal models, with a focus on the crosstalk between brain tumors and neuronal function.
Collapse
Affiliation(s)
- Silvia Cases-Cunillera
- INSERM U1266, Neuronal Signaling in Epilepsy and Glioma, Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, Paris, France
- Section for Translational Epilepsy Research, Institute of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Lea L Friker
- Institute of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Philipp Müller
- Section for Translational Epilepsy Research, Institute of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Albert J Becker
- Section for Translational Epilepsy Research, Institute of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Gerrit H Gielen
- Institute of Neuropathology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
4
|
Rudà R, Bruno F, Pellerino A. Epilepsy in gliomas: recent insights into risk factors and molecular pathways. Curr Opin Neurol 2023; 36:557-563. [PMID: 37865836 DOI: 10.1097/wco.0000000000001214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the molecular pathways governing the development of seizures in glioma patients. RECENT FINDINGS The intrinsic epileptogenicity of the neuronal component of glioneuronal and neuronal tumors is the most relevant factor for seizure development. The two major molecular alterations behind epileptogenicity are the rat sarcoma virus (RAS)/mitogen-activated protein kinase / extracellular signal-regulated kinase (MAPK/ERK) and phosphatidylinositol-3-kinase / protein kinase B / mammalian target of rapamycin (P13K/AKT/mTOR) pathways. The BRAFv600E mutation has been shown in experimental models to contribute to epileptogenicity, and its inhibition is effective in controlling both seizures and tumor growth. Regarding circumscribed astrocytic gliomas, either BRAFv600E mutation or mTOR hyperactivation represent targets of treatment. The mechanisms of epileptogenicity of diffuse lower-grade gliomas are different: in addition to enhanced glutamatergic mechanisms, the isocitrate dehydrogenase (IDH) 1/2 mutations and their product D2-hydroxyglutarate (D2HG), which is structurally similar to glutamate, exerts excitatory effects on neurons also dependent on the presence of astrocytes. In preclinical models IDH1/2 inhibitors seem to impact both tumor growth and seizures. Conversely, the molecular factors behind the epileptogenicity of glioblastoma are unknown. SUMMARY This review summarizes the current state of molecular knowledge on epileptogenicity in gliomas and highlights the relationships between epileptogenicity and tumor growth.
Collapse
Affiliation(s)
- Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin, Italy
| | | | | |
Collapse
|
5
|
Rosemberg S. Long-term epilepsy associated-tumors (LEATs): what is new? ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:1146-1151. [PMID: 38157880 PMCID: PMC10756815 DOI: 10.1055/s-0043-1777730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024]
Abstract
Long-term epilepsy-associated tumors (LEATs) include a series of neoplasms that commonly occur in children, adolescents, or young adults, have an astrocytic or glioneuronal lineage, are histologically benign (WHO grade1) with a neocortical localization predominantly situated in the temporal lobes. Clinically, chronic refractory epilepsy is usually the unique symptom. Gangliogliomas (GG) and dysembryoplastic neuroepithelial tumors (DNT) are the most common representative entities besides pilocytic astrocytomas (PA) and angiocentric gliomas (AG). Recent molecular studies have defined new clinicopathological entities, which are recognized by the WHO 2021 classification of brain tumors. Some of them such as diffuse astrocytoma MIB or MYBL1 altered, polymorphous low-grade neuroepithelial tumor of the young (PLNTY), and multilocular and vacuolating neuronal tumor (MVNT) are currently considered LEATs. The relationship between LEATs and epilepsy is still a matter of debate, and there is a general agreement about the beneficial effects of an early neurosurgical intervention on the clinical outcome.
Collapse
Affiliation(s)
- Sergio Rosemberg
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Patologia, São Paulo SP, Brazil.
- Santa Casa de São Paulo, Faculdade de Ciências Médicas, São Paulo SP, Brazil.
| |
Collapse
|
6
|
Kumar K, Dubey V, Zaidi SS, Tripathi M, Siraj F, Sharma MC, Chandra PS, Doddamani R, Dixit AB, Banerjee J. RNA Sequencing of Intraoperative Peritumoral Tissues Reveals Potential Pathways Involved in Glioma-Related Seizures. J Mol Neurosci 2023; 73:437-447. [PMID: 37268865 DOI: 10.1007/s12031-023-02125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
Tumor-induced changes in the peritumoral neocortex play a crucial role in generation of seizures. This study aimed to investigate the molecular mechanisms potentially involved in peritumoral epilepsy in low-grade gliomas (LGGs). Intraoperative peritumoral brain tissues resected from LGG patients with seizures (pGRS) or without seizures (pGNS) were used for RNA sequencing (RNA-seq). Comparative transcriptomics was performed to identify differentially expressed genes (DEGs) in pGRS compared to pGNS using deseq2 and edgeR packages (R). Gene set enrichment analysis (GSEA) using Gene Ontology terms and Kyoto Encyclopedia of Genes & Genomes (KEGG) pathways was performed using the clusterProfiler package (R). The expression of key genes was validated at the transcript and protein levels in the peritumoral region using real-time PCR and immunohistochemistry, respectively. A total of 1073 DEGs were identified in pGRS compared to pGNS, of which 559 genes were upregulated and 514 genes were downregulated (log2 fold-change ≥ 2, padj < 0.001). The DEGs in pGRS were highly enriched in the "Glutamatergic Synapse" and "Spliceosome" pathways, with increased expression of GRIN2A (NR2A), GRIN2B (NR2B), GRIA1 (GLUR1), GRIA3 (GLUR3), GRM5, CACNA1C, CACNA1A, and ITPR2. Moreover, increased immunoreactivity was observed for NR2A, NR2B, and GLUR1 proteins in the peritumoral tissues of GRS. These findings suggest that altered glutamatergic signaling and perturbed Ca2+ homeostasis may be potential causes of peritumoral epilepsy in gliomas. This explorative study identifies important genes/pathways that merit further characterization for their potential involvement in glioma-related seizures.
Collapse
Affiliation(s)
| | - Vivek Dubey
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Syeda S Zaidi
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | | | - Fouzia Siraj
- ICMR-National Institute of Pathology, New Delhi, India
| | | | | | | | - Aparna Banerjee Dixit
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| |
Collapse
|
7
|
Lee DS, Kim TH, Park H, Kang TC. Deregulation of Astroglial TASK-1 K+ Channel Decreases the Responsiveness to Perampanel-Induced AMPA Receptor Inhibition in Chronic Epilepsy Rats. Int J Mol Sci 2023; 24:ijms24065491. [PMID: 36982567 PMCID: PMC10049714 DOI: 10.3390/ijms24065491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Tandem of P domains in a weak inwardly rectifying K+ channel (TWIK)-related acid sensitive K+-1 channel (TASK-1) is activated under extracellular alkaline conditions (pH 7.2–8.2), which are upregulated in astrocytes (particularly in the CA1 region) of the hippocampi of patients with temporal lobe epilepsy and chronic epilepsy rats. Perampanel (PER) is a non-competitive α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) antagonist used for the treatment of focal seizures and primary generalized tonic–clonic seizures. Since AMPAR activation leads to extracellular alkaline shifts, it is likely that the responsiveness to PER in the epileptic hippocampus may be relevant to astroglial TASK-1 regulation, which has been unreported. In the present study, we found that PER ameliorated astroglial TASK-1 upregulation in responders (whose seizure activities were responsive to PER), but not non-responders (whose seizure activities were not responsive to PER), in chronic epilepsy rats. ML365 (a selective TASK-1 inhibitor) diminished astroglial TASK-1 expression and seizure duration in non-responders to PER. ML365 co-treatment with PER decreased spontaneous seizure activities in non-responders to PER. These findings suggest that deregulation of astroglial TASK-1 upregulation may participate in the responsiveness to PER, and that this may be a potential target to improve the efficacies of PER.
Collapse
Affiliation(s)
- Duk-Shin Lee
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Tae-Hyun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hana Park
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: ; Tel.: +82-33-248-2524; Fax: +82-33-248-2525
| |
Collapse
|
8
|
Vezzani A, Ravizza T, Bedner P, Aronica E, Steinhäuser C, Boison D. Astrocytes in the initiation and progression of epilepsy. Nat Rev Neurol 2022; 18:707-722. [PMID: 36280704 PMCID: PMC10368155 DOI: 10.1038/s41582-022-00727-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 11/09/2022]
Abstract
Epilepsy affects ~65 million people worldwide. First-line treatment options include >20 antiseizure medications, but seizure control is not achieved in approximately one-third of patients. Antiseizure medications act primarily on neurons and can provide symptomatic control of seizures, but do not alter the onset and progression of epilepsy and can cause serious adverse effects. Therefore, medications with new cellular and molecular targets and mechanisms of action are needed. Accumulating evidence indicates that astrocytes are crucial to the pathophysiological mechanisms of epilepsy, raising the possibility that these cells could be novel therapeutic targets. In this Review, we discuss how dysregulation of key astrocyte functions - gliotransmission, cell metabolism and immune function - contribute to the development and progression of hyperexcitability in epilepsy. We consider strategies to mitigate astrocyte dysfunction in each of these areas, and provide an overview of how astrocyte activation states can be monitored in vivo not only to assess their contribution to disease but also to identify markers of disease processes and treatment effects. Improved understanding of the roles of astrocytes in epilepsy has the potential to lead to novel therapies to prevent the initiation and progression of epilepsy.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
9
|
Kumar K, Banerjee Dixit A, Tripathi M, Dubey V, Siraj F, Sharma MC, Lalwani S, Chandra PS, Banerjee J. Transcriptomic profiling of nonneoplastic cortical tissues reveals epileptogenic mechanisms in dysembryoplastic neuroepithelial tumors. Funct Integr Genomics 2022; 22:905-917. [PMID: 35633443 DOI: 10.1007/s10142-022-00869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
Low-grade dysembryoplastic neuroepithelial tumors (DNTs) are a frequent cause of drug-refractory epilepsy. Molecular mechanisms underlying seizure generation in these tumors are poorly understood. This study was conducted to identify altered genes in nonneoplastic epileptogenic cortical tissues (ECTs) resected from DNT patients during electrocorticography (ECoG)-guided surgery. RNA sequencing (RNAseq) was used to determine the differentially expressed genes (DEGs) in these high-spiking ECTs compared to non-epileptic controls. A total of 477 DEGs (180 upregulated; 297 downregulated) were observed in the ECTs compared to non-epileptic controls. Gene ontology analysis revealed enrichment of genes belonging to the following Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways: (i) glutamatergic synapse; (ii) nitrogen metabolism; (iii) transcriptional misregulation in cancer; and (iv) protein digestion and absorption. The glutamatergic synapse pathway was enriched by DEGs such as GRM4, SLC1A6, GRIN2C, GRM2, GRM5, GRIN3A, and GRIN2B. Enhanced glutamatergic activity was observed in the pyramidal neurons of ECTs, which could be attributed to altered synaptic transmission in these tissues compared to non-epileptic controls. Besides glutamatergic synapse, altered expression of other genes such as GABRB1 (synapse formation), SLIT2 (axonal growth), and PROKR2 (neuron migration) could be linked to epileptogenesis in ECTs. Also, upregulation of GABRA6 gene in ECTs could underlie benzodiazepine resistance in these patients. Neural cell-type-specific gene set enrichment analysis (GSEA) revealed transcriptome of ECTs to be predominantly contributed by microglia and neurons. This study provides first comprehensive gene expression profiling of nonneoplastic ECTs of DNT patients and identifies genes/pathways potentially linked to epileptogenesis.
Collapse
Affiliation(s)
- Krishan Kumar
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | | | | | - Vivek Dubey
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Fouzia Siraj
- ICMR-National Institute of Pathology, New Delhi, India
| | | | - Sanjeev Lalwani
- Department of Forensic Medicine and Toxicology, AIIMS, New Delhi, India
| | | | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| |
Collapse
|
10
|
Kakuta K, Asano K, Shimamura N, Kurose A, Ohkuma H. Dysembryoplastic Neuroepithelial Tumor of the Infratentorial Multiple Lesions: A Case Report and Review of the Literature. NMC Case Rep J 2022; 9:89-94. [PMID: 35646500 PMCID: PMC9119689 DOI: 10.2176/jns-nmc.2021-0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/04/2022] [Indexed: 11/20/2022] Open
Abstract
A dysembryoplastic neuroepithelial tumor (DNT) is a benign neoplasm that usually occurs in the supratentorial cerebral cortex. Here, we report a rare case of an infratentorial DNT in a 42-year-old woman who presented with dizziness and a gait disturbance. Magnetic resonance imaging of the lesion demonstrated hyperintensity on T2-weighted images and hypointensity on T1-weighted images of the left cerebellar hemisphere with a multifocal lesion. Macroscopically, the lesion appeared soft, avascular, and slightly torose at the cortical surface. Histologically, dysplastic disorganization of the cortex and floating neurons were observed. The pathological and immunochemical features of this case agree with the diagnosis of a DNT. The lesion partially included cortical heterotopia, which is a novel observation in an infratentorial DNT. On the basis of the previous reports, we discussed the surgical resection of the infratentorial DNT.
Collapse
Affiliation(s)
- Kiyohide Kakuta
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Kenichiro Asano
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Norihito Shimamura
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Akira Kurose
- Department of Anatomic Pathology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Hiroki Ohkuma
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
- Department of Neurosurgery, National Hospital Organization, Hirosaki National Hospital, Hirosaki, Aomori, Japan
| |
Collapse
|
11
|
Dono F, Consoli S, Evangelista G, Ricci A, Russo M, Carrarini C, Di Iorio A, Bonanni L, Anzellotti F, Onofrj M, Sensi SL. Levetiracetam Prophylaxis Therapy for Brain Tumor-Related Epilepsy (BTRE) Is Associated With a Higher Psychiatric Burden. Front Neurol 2022; 12:806839. [PMID: 35087476 PMCID: PMC8787304 DOI: 10.3389/fneur.2021.806839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: Brain tumor-related epilepsy (BTRE) is a condition characterized by the development of seizures in the context of an undergoing oncological background. Levetiracetam (LEV) is a third-generation anti-seizure medication (ASM) widely used in BTRE prophylaxis. The study evaluated LEV neuropsychiatric side effects (SEs) in BTRE prophylaxis. Method: Twenty-eight patients with brain tumors were retrospectively selected and divided into two groups. In one group, we evaluated patients with a BTRE diagnosis using LEV (BTRE-group). The other group included patients with brain tumors who never had epilepsy and used a prophylactic ASM regimen with LEV (PROPHYLAXIS-group). Neuropsychiatric SEs of LEV were monitored using the Neuropsychiatric Inventory Questionnaire (NPI-Q) at the baseline visit and the 6- and 12-month follow-up. Results: Eighteen patients of the BTRE-group and 10 patients of the PROPHYLAXIS-group were included. Compared to the BTRE-group, the PROPHYLAXIS-group showed a higher severity of neuropsychiatric symptoms. According to Linear Mixed Models (LMM), a multiplicative effect was observed for the interaction between group treatment and time. For the caregiver distress score (CDS), only a time-effect was observed. Conclusion: Prophylactic ASM with LEV is associated with an increased frequency of neuropsychiatric SE. Accurate epileptological evaluations in patients with brain tumors are mandatory to select who would benefit most from ASM.
Collapse
Affiliation(s)
- Fedele Dono
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Stefano Consoli
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giacomo Evangelista
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Annalisa Ricci
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mirella Russo
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Claudia Carrarini
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Angelo Di Iorio
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Laura Bonanni
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Institute for Mind Impairments and Neurological Disorders (iMIND), University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
12
|
Li T, Yang J, Yang B, Zhao G, Lin H, Liu Q, Wang L, Wan Y, Jiang H. Ketamine Inhibits Ovarian Cancer Cell Growth by Regulating the lncRNA-PVT1/EZH2/p57 Axis. Front Genet 2021; 11:597467. [PMID: 33763107 PMCID: PMC7982774 DOI: 10.3389/fgene.2020.597467] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
Ketamine is widely used for cancer pain treatment in clinic, and has been shown to inhibit various tumor cells growth. However, the effect of ketamine on ovarian cancer cells growth and the downstream molecules has not been defined. In the present study, we found that ketamine significantly inhibited the proliferation and survival of six ovarian cancer cell lines. Moreover, ketamine induced ovarian cancer cell cycle arrest, apoptosis, and inhibited colony formation capacity. Since lncRNAs have been identified as key regulators of cancer development, we performed bioinformatics analysis of a GEO dataset and found fourteen significantly altered lncRNAs in ovarian cancer patients. We then investigated the effect of ketamine on these lncRNAs, and found that ketamine regulated the expression of lncRNA PVT1. Mechanistically, ketamine regulated P300-mediated H3K27 acetylation activation in the promoter of PVT1. Our RNA immunoprecipitation experiment indicated that PVT1 bound histone methyltransferase enhancer of zeste homolog 2 (EZH2), and regulated the expression of target gene, including p57, and consequently altered ovarian cancer cell biology. Our study revealed that ketamine could be a potential therapeutic strategy for ovarian cancer patients.
Collapse
Affiliation(s)
- Tao Li
- Department of Anesthesiology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Jie Yang
- Department of Endocrinology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ben Yang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guoqing Zhao
- Department of Anesthesiology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Hai Lin
- Outpatient Department of Aviation University of Air Force, Changchun, China
| | - Qi Liu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Leiming Wang
- Shenzhen Bay Laboratory, Gaoke International Innovation Center, The Institute of Chemical Biology, Shenzhen, China
| | - Yingchun Wan
- Department of Endocrinology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Hongyang Jiang
- Department of Endocrinology, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
13
|
Sareddy GR, Pratap UP, Venkata PP, Zhou M, Alejo S, Viswanadhapalli S, Tekmal RR, Brenner AJ, Vadlamudi RK. Activation of estrogen receptor beta signaling reduces stemness of glioma stem cells. Stem Cells 2021; 39:536-550. [PMID: 33470499 DOI: 10.1002/stem.3337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 11/08/2022]
Abstract
Glioblastoma (GBM) is the most common and deadliest tumor of the central nervous system. GBM has poor prognosis and glioma stem cells (GSCs) are implicated in tumor initiation and therapy resistance. Estrogen receptor β (ERβ) is expressed in GBM and exhibit tumor suppressive function. However, the role of ERβ in GSCs and the therapeutic potential of ERβ agonists on GSCs remain largely unknown. Here, we examined whether ERβ modulates GSCs stemness and tested the utility of two ERβ selective agonists (LY500307 and Liquiritigenin) to reduce the stemness of GSCs. The efficacy of ERβ agonists was examined on GSCs isolated from established and patient derived GBMs. Our results suggested that knockout of ERβ increased the proportion of CD133+ and SSEA+ positive GSCs and overexpression of ERβ reduced the proportion of GSCs in GBM cells. Overexpression of ERβ or treatment with ERβ agonists significantly inhibited the GSCs cell viability, neurosphere formation, self-renewal ability, induced the apoptosis and reduced expression of stemness markers in GSCs. RNA sequencing analysis revealed that ERβ agonist modulate pathways related to stemness, differentiation and apoptosis. Mechanistic studies showed that ERβ overexpression or agonist treatment reduced glutamate receptor signaling pathway and induced apoptotic pathways. In orthotopic models, ERβ overexpression or ERβ agonists treatment significantly reduced the GSCs mediated tumor growth and improved the mice overall survival. Immunohistochemical studies demonstrated that ERβ overexpression decreased SOX2 and GRM3 expression and increased expression of GFAP in tumors. These results suggest that ERβ activation could be a promising therapeutic strategy to eradicate GSCs.
Collapse
Affiliation(s)
- Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Prabhakar Pitta Venkata
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Mei Zhou
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA.,Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha Shi, Hunan, People's Republic of China
| | - Salvador Alejo
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Andrew J Brenner
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA.,Hematology & Oncology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
14
|
Acetylation-dependent glutamate receptor GluR signalosome formation for STAT3 activation in both transcriptional and metabolism regulation. Cell Death Discov 2021; 7:11. [PMID: 33446662 PMCID: PMC7809112 DOI: 10.1038/s41420-020-00389-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Besides their original regulating roles in the brain, spinal cord, retina, and peripheral nervous system for mediating fast excitatory synaptic transmission, glutamate receptors consisting of metabotropic glutamate receptors (GluRs) and ionotropic glutamate receptors (iGluRs) have emerged to have a critical role in the biology of cancer initiation, progression, and metastasis. However, the precise mechanism underpinning the signal transduction mediated by ligand-bound GluRs is not clearly elucidated. Here, we show that iGluRs, GluR1 and GluR2, are acetylated by acetyltransferase CREB-binding protein upon glutamate stimulation of cells, and are targeted by lysyl oxidase-like 2 for deacetylation. Acetylated GluR1/2 recruit β-arrestin1/2 and signal transducer and activator of transcription 3 (STAT3) to form a protein complex. Both β-arrestin1/2 and STAT3 are subsequently acetylated and activated. Simultaneously, activated STAT3 acetylated at lysine 685 translocates to mitochondria to upregulate energy metabolism-related gene transcription. Our results reveal that acetylation-dependent formation of GluR1/2-β-arrestin1/2-STAT3 signalosome is critical for glutamate-induced cell proliferation.
Collapse
|
15
|
Kim JE, Lee DS, Park H, Kang TC. Src/CK2/PTEN-Mediated GluN2B and CREB Dephosphorylations Regulate the Responsiveness to AMPA Receptor Antagonists in Chronic Epilepsy Rats. Int J Mol Sci 2020; 21:E9633. [PMID: 33348808 PMCID: PMC7766850 DOI: 10.3390/ijms21249633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/30/2022] Open
Abstract
Both α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) and N-methyl-D-aspartate receptor (NMDAR) have been reported as targets for treatment of epilepsy. To investigate the roles and interactions of AMPAR and NMDAR in ictogenesis of epileptic hippocampus, we analyzed AMPAR antagonists (perampanel and GYKI 52466)-mediated phosphatase and tensin homolog deleted on chromosome 10 (PTEN) regulation and glutamate ionotropic receptor NMDA type subunit 2B (GluN2B) tyrosine (Y) 1472 phosphorylation in epilepsy rats. Both perampanel and GYKI 52466 increased PTEN expression and its activity (reduced phosphorylation), concomitant with decreased activities (phosphorylations) of Src family-casein kinase 2 (CK2) signaling pathway. Compatible with these, they also restored the upregulated GluN2B Y1472 and Ca2+/cAMP response element-binding protein (CREB) serine (S) 133 phosphorylations and surface expression of glutamate ionotropic receptor AMPA type subunit 1 (GRIA1) to basal level in the epileptic hippocampus. These effects of perampanel and GYKI 52466 are observed in responders (whose seizure activities are responsive to AMPAR antagonists), but not non-responders (whose seizure activities were uncontrolled by AMPAR antagonists). Therefore, our findings suggest that Src/CK2/PTEN-mediated GluN2B Y1472 and CREB S133 regulations may be one of the responsible signaling pathways for the generation of refractory seizures in non-responders to AMPAR antagonists.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.-E.K.); (D.-S.L.); (H.P.)
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.-E.K.); (D.-S.L.); (H.P.)
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Hana Park
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.-E.K.); (D.-S.L.); (H.P.)
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.-E.K.); (D.-S.L.); (H.P.)
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
16
|
Ko A, Lee JS. Factors associated with seizure and cognitive outcomes after epilepsy surgery for low-grade epilepsy-associated neuroepithelial tumors in children. Clin Exp Pediatr 2020; 63:171-177. [PMID: 32024326 PMCID: PMC7254172 DOI: 10.3345/kjp.2019.01151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022] Open
Abstract
Low-grade epilepsy-associated neuroepithelial tumors (LEATs) are responsible for drug-resistant chronic focal epilepsy, and are the second-most common reason for epilepsy surgery in children. LEATs are extremely responsive to surgical treatment, and therefore epilepsy surgery should be considered as a treatment option for LEATs. However, the optimal time for surgery remains controversial, and surgeries are often delayed. In this review, we reviewed published article on the factors associated with seizure and cognitive outcomes after epilepsy surgery for LEATs in children to help clinicians in their decision whether to pursue epilepsy surgery for LEATs. The achievement of gross total resection may be the most important prognostic factor for seizure freedom. A shorter duration of epilepsy, a younger age at surgery, and extended resection of temporal lobe tumors have also been suggested as favorable prognostic factors in terms of seizure control. Poor cognitive function in children with LEATs is associated with a longer duration of epilepsy and a younger age at seizure onset.
Collapse
Affiliation(s)
- Ara Ko
- Division of Pediatric Neurology, Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University College of Medicine, Yangsan, Korea
| | - Joon Soo Lee
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Cucchiara F, Pasqualetti F, Giorgi FS, Danesi R, Bocci G. Epileptogenesis and oncogenesis: An antineoplastic role for antiepileptic drugs in brain tumours? Pharmacol Res 2020; 156:104786. [PMID: 32278037 DOI: 10.1016/j.phrs.2020.104786] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
The first description of epileptic seizures due to brain tumours occurred in 19th century. Nevertheless, after over one hundred years, scientific literature is still lacking on how epilepsy and its treatment can affect tumour burden, progression and clinical outcomes. In patients with brain tumours, epilepsy dramatically impacts their quality of life (QoL). Even antiepileptic therapy seems to affect tumor lesion development. Numerous studies suggest that certain actors involved in epileptogenesis (inflammatory changes, glutamate and its ionotropic and metabotropic receptors, GABA-A and its GABA-AR receptor, as well as certain ligand- and voltage-gated ion channel) may also contribute to tumorigenesis. Although some antiepileptic drugs (AEDs) are known operating on such mechanisms underlying epilepsy and tumor development, few preclinical and clinical studies have tried to investigate them as targets of pharmacological tools acting to control both phenomena. The primary aim of this review is to summarize known determinants and pathophysiological mechanisms of seizures, as well as of cell growth and spread, in patients with brain tumors. Therefore, a special focus will be provided on the anticancer effects of commonly prescribed AEDs (including levetiracetam, valproic acid, oxcarbazepine and others), with an overview of both preclinical and clinical data. Potential clinical applications of this finding are discussed.
Collapse
Affiliation(s)
- Federico Cucchiara
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy; Scuola di Specializzazione in Farmacologia e Tossicologia Clinica, Università di Pisa, Pisa, Italy
| | - Francesco Pasqualetti
- U.O. Radioterapia, Azienda Ospedaliera Universitaria Pisana, Università di Pisa, Italy
| | - Filippo Sean Giorgi
- U.O. Neurologia, Azienda Ospedaliera Universitaria Pisana, Università di Pisa, Pisa, Italy; Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Romano Danesi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy; Scuola di Specializzazione in Farmacologia e Tossicologia Clinica, Università di Pisa, Pisa, Italy
| | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy; Scuola di Specializzazione in Farmacologia e Tossicologia Clinica, Università di Pisa, Pisa, Italy.
| |
Collapse
|
18
|
Melikyan AG, Shishkina LV, Vlasov PA, Kozlova AB, Schultz EI, Kushel YV, Korsakova MB, Buklina SB, Varukhina MD. [Surgical treatment of epilepsy in children with gloneuronal brain tumors: morphology, MRI semiology and factors affecting the outcome]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2020; 84:6-22. [PMID: 32207739 DOI: 10.17116/neiro2020840116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Glioneuronal tumors (GNT) are usually found in children (less than 1.5% of all neoplasms of the brain). With rare exceptions, they are benign and usually manifest only by epilepsy, which is quite often resistant to treatment with AE drugs. Tumor removal usually helps to cope with epileptic seizures, however, a number of issues regarding diagnosis and surgical treatment (interpretation of morphological data and classification, epileptogenesis and topography of the epileptogenic zone, the value of intraoperative invasive EEG and the optimal volume of resection) remain debatable. AIM To describe the morphology, electro-clinical picture and MR-semiology in patients with gloneuronal brain tumors, as well as to analyse the results of their surgical treatment and the factors determining its outcome. MATERIAL AND METHODS 152 children with a median age of 8 years were treated surgically (There were 64 gangliogliomas, 73 DNT, 15 cases where the tumor classification failed - GNT NOS). In children under 2 years of age, temporal localization of the tumor prevailed. In 81 cases, ECoG was used during the operation. Surgical treatment complications: transient neurological deficit (in 15 cases); hematomas removed without consequences (in 2 cases), infectious (osteomyelitis of bone bone flap in 2 cases). We analyzed: the age of the epilepsy onset (median - 4 years 7 months) and its duration (median - 23.5 months), the type of seizures, as well as the features of MR-semiology and morphology of tumors and adjacent areas of the brain. The volume of tumor resection was verified by MRI (in 101 cases) and CT (in each case). The follow-up was collected through face-to-face meetings, with repeated video EEG and MRI, as well as telephone interviews. We studied the effect of a number of parameters characterizing the patient and features of his/her operation on the outcome of treatmen. RESULTS Among 102 patients in whom the follow-up history is one year or more (median - 2 years), a favorable outcome (Engel IA) was observed in 86 of them (84%); 55 of them (54%) at the time of the last examination stopped drug AE treatment. Radical tumor removal and younger age at the time of surgery were statistically significantly associated with a favorable result. CONCLUSION In children with gloneuronal brain tumors, removal of the tumor is effective and relatively safe in the treatment of symptomatic epilepsy. Radical tumor resection and earlier intervention are the most important prerequisites for a favorable outcome and persistent remission of seizures.
Collapse
Affiliation(s)
| | | | - P A Vlasov
- Burdenko Neurosurgical Center, Moscow, Russia
| | - A B Kozlova
- Burdenko Neurosurgical Center, Moscow, Russia
| | - E I Schultz
- Burdenko Neurosurgical Center, Moscow, Russia
| | - Yu V Kushel
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - S B Buklina
- Burdenko Neurosurgical Center, Moscow, Russia
| | | |
Collapse
|
19
|
Planas-Fontánez TM, Dreyfus CF, Saitta KS. Reactive Astrocytes as Therapeutic Targets for Brain Degenerative Diseases: Roles Played by Metabotropic Glutamate Receptors. Neurochem Res 2020; 45:541-550. [PMID: 31983009 PMCID: PMC7058558 DOI: 10.1007/s11064-020-02968-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/13/2020] [Accepted: 01/18/2020] [Indexed: 02/06/2023]
Abstract
Astrocytes are well known to play critical roles in the development and maintenance of the central nervous system (CNS). Moreover, recent reports indicate that these cells are heterogeneous with respect to the molecules they express and the functions they exhibit in the quiescent or activated state. Because astrocytes also contribute to pathology, promising new results raise the possibility of manipulating specific astroglial populations for therapeutic roles. In this mini-review, we highlight the function of metabotropic glutamate receptors (mGluRs), in particular mGluR3 and mGluR5, in reactive astrocytes and relate these to three degenerative CNS diseases: multiple sclerosis, Alzheimer's disease and Amyotrophic Lateral Sclerosis. Previous studies demonstrate that effects of these receptors may be beneficial, but this varies depending on the subtype of receptor, the state of the astrocytes, and the specific disease to which they are exposed. Elucidating the role of mGluRs on astrocytes at specific times during development and disease will provide novel insights in understanding how to best use these to serve as therapeutic targets.
Collapse
Affiliation(s)
- Talia M. Planas-Fontánez
- grid.430387.b0000 0004 1936 8796Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ USA ,grid.430387.b0000 0004 1936 8796Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ USA
| | - Cheryl F. Dreyfus
- grid.430387.b0000 0004 1936 8796Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ USA ,grid.430387.b0000 0004 1936 8796Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 361, Piscataway, NJ 08854 USA
| | - Kyle S. Saitta
- grid.430387.b0000 0004 1936 8796Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ USA ,grid.430387.b0000 0004 1936 8796Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ USA
| |
Collapse
|
20
|
Nowacka A, Borczyk M. Ketamine applications beyond anesthesia - A literature review. Eur J Pharmacol 2019; 860:172547. [PMID: 31348905 DOI: 10.1016/j.ejphar.2019.172547] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
Abstract
Ketamine's clinical use began in the 1970s. Physicians benefited from its safety and ability to induce short-term anesthesia and analgesia. The psychodysleptic effects caused by the drug called its further clinical use into question. Despite these unpleasant effects, ketamine is still applied in veterinary medicine, field medicine, and specialist anesthesia. Recent intensive research brought into light new possible applications of this drug. It began to be used in acute, chronic and cancer pain management. Most interesting reports come from research on the antidepressive and antisuicidal properties of ketamine giving hope for the creation of an effective treatment for major depressive disorder. Other reports highlight the possible use of ketamine in treating addiction, asthma and preventing cancer growth. Besides clinical use, the drug is also applied to in animal model of schizophrenia. It seems that nowadays, with numerous possible applications, the use of ketamine has returned; to its former glory. Nevertheless, the drug must be used with caution because still the mechanisms by which it executes its functions and long-term effects of its use are not fully known. This review aims to discuss the well-known and new promising applications of ketamine.
Collapse
Affiliation(s)
- Agata Nowacka
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Borczyk
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
21
|
Celli R, Santolini I, Van Luijtelaar G, Ngomba RT, Bruno V, Nicoletti F. Targeting metabotropic glutamate receptors in the treatment of epilepsy: rationale and current status. Expert Opin Ther Targets 2019; 23:341-351. [PMID: 30801204 DOI: 10.1080/14728222.2019.1586885] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Several drugs targeting the GABAergic system are used in the treatment of epilepsy, but only one drug targeting glutamate receptors is on the market. This is surprising because an imbalance between excitatory and inhibitory neurotransmission lies at the core of the pathophysiology of epilepsy. One possible explanation is that drug development has been directed towards the synthesis of molecules that inhibit the activity of ionotropic glutamate receptors. These receptors mediate fast excitatory synaptic transmission in the central nervous system (CNS) and their blockade may cause severe adverse effects such as sedation, cognitive impairment, and psychotomimetic effects. Metabotropic glutamate (mGlu) receptors are more promising drug targets because these receptors modulate synaptic transmission rather than mediate it. Areas covered: We review the current evidence that links mGlu receptor subtypes to the pathophysiology and experimental treatment of convulsive and absence seizures. Expert opinion: While mGlu5 receptor negative allosteric modulators have the potential to be protective against convulsive seizures and hyperactivity-induced neurodegeneration, drugs that enhance mGlu5 and mGlu7 receptor function may have beneficial effects in the treatment of absence epilepsy. Evidence related to the other mGlu receptor subtypes is more fragmentary; further investigations are required for an improved understanding of their role in the generation and propagation of seizures.
Collapse
Affiliation(s)
| | | | | | | | - Valeria Bruno
- a IRCCS NEUROMED , Pozzilli , Italy.,d Departments of Physiology and Pharmacology , University Sapienza , Rome , Italy
| | - Ferdinando Nicoletti
- a IRCCS NEUROMED , Pozzilli , Italy.,d Departments of Physiology and Pharmacology , University Sapienza , Rome , Italy
| |
Collapse
|
22
|
Conditional Knock-out of mGluR5 from Astrocytes during Epilepsy Development Impairs High-Frequency Glutamate Uptake. J Neurosci 2018; 39:727-742. [PMID: 30504280 DOI: 10.1523/jneurosci.1148-18.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 11/11/2018] [Accepted: 11/18/2018] [Indexed: 11/21/2022] Open
Abstract
Astrocyte expression of metabotropic glutamate receptor 5 (mGluR5) is consistently observed in resected tissue from patients with epilepsy and is equally prevalent in animal models of epilepsy. However, little is known about the functional signaling properties or downstream consequences of astrocyte mGluR5 activation during epilepsy development. In the rodent brain, astrocyte mGluR5 expression is developmentally regulated and confined in expression/function to the first weeks of life, with similar observations made in human control tissue. Herein, we demonstrate that mGluR5 expression and function dramatically increase in a mouse model of temporal lobe epilepsy. Interestingly, in both male and female mice, mGluR5 function persists in the astrocyte throughout the process of epileptogenesis following status epilepticus. However, mGluR5 expression and function are transient in animals that do not develop epilepsy over an equivalent time period, suggesting that patterns of mGluR5 expression may signify continuing epilepsy development or its resolution. We demonstrate that, during epileptogenesis, astrocytes reacquire mGluR5-dependent calcium transients following agonist application or synaptic glutamate release, a feature of astrocyte-neuron communication absent since early development. Finally, we find that the selective and conditional knock-out of mGluR5 signaling from astrocytes during epilepsy development slows the rate of glutamate clearance through astrocyte glutamate transporters under high-frequency stimulation conditions, a feature that suggests astrocyte mGluR5 expression during epileptogenesis may recapitulate earlier developmental roles in regulating glutamate transporter function.SIGNIFICANCE STATEMENT In development, astrocyte mGluR5 signaling plays a critical role in regulating structural and functional interactions between astrocytes and neurons at the tripartite synapse. Notably, mGluR5 signaling is a positive regulator of astrocyte glutamate transporter expression and function, an essential component of excitatory signaling regulation in hippocampus. After early development, astrocyte mGluR5 expression is downregulated, but reemerges in animal models of temporal lobe epilepsy (TLE) development and patient epilepsy samples. We explored the hypothesis that astrocyte mGluR5 reemergence recapitulates earlier developmental roles during TLE acquisition. Our work demonstrates that astrocytes with mGluR5 signaling during TLE development perform faster glutamate uptake in hippocampus, revealing a previously unexplored role for astrocyte mGluR5 signaling in hypersynchronous pathology.
Collapse
|
23
|
Deshmukh A, Leichner J, Bae J, Song Y, Valdés-Hernández PA, Lin WC, Riera JJ. Histological Characterization of the Irritative Zones in Focal Cortical Dysplasia Using a Preclinical Rat Model. Front Cell Neurosci 2018; 12:52. [PMID: 29867355 PMCID: PMC5968101 DOI: 10.3389/fncel.2018.00052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/15/2018] [Indexed: 12/19/2022] Open
Abstract
Current clinical practice in focal epilepsy involves brain source imaging (BSI) to localize brain areas where from interictal epileptiform discharges (IEDs) emerge. These areas, named irritative zones, have been useful to define candidate seizures-onset zones during pre-surgical workup. Since human histological data are mostly available from final resected zones, systematic studies characterizing pathophysiological mechanisms and abnormal molecular/cellular substrates in irritative zones—independent of them being epileptogenic—are challenging. Combining BSI and histological analysis from all types of irritative zones is only possible through the use of preclinical animal models. Here, we recorded 32-channel spontaneous electroencephalographic data from rats that have focal cortical dysplasia (FCD) and chronic seizures. BSI for different IED subtypes was performed using the methodology presented in Bae et al. (2015). Post-mortem brain sections containing irritative zones were stained to quantify anatomical, functional, and inflammatory biomarkers specific for epileptogenesis, and the results were compared with those obtained using the contralateral healthy brain tissue. We found abnormal anatomical structures in all irritative zones (i.e., larger neuronal processes, glioreactivity, and vascular cuffing) and larger expressions for neurotransmission (i.e., NR2B) and inflammation (i.e., ILβ1, TNFα and HMGB1). We conclude that irritative zones in this rat preclinical model of FCD comprise abnormal tissues disregarding whether they are actually involved in icto-genesis or not. We hypothesize that seizure perpetuation happens gradually; hence, our results could support the use of IED-based BSI for the early diagnosis and preventive treatment of potential epileptic foci. Further verifications in humans are yet needed.
Collapse
Affiliation(s)
- Abhay Deshmukh
- Neuronal Mass Dynamics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Jared Leichner
- Neuronal Mass Dynamics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Jihye Bae
- Neuronal Mass Dynamics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Yinchen Song
- Neuronal Mass Dynamics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Pedro A Valdés-Hernández
- Neuronal Mass Dynamics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Wei-Chiang Lin
- Neuronal Mass Dynamics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Jorge J Riera
- Neuronal Mass Dynamics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| |
Collapse
|
24
|
Iacovelli L, Orlando R, Rossi A, Spinsanti P, Melchiorri D, Nicoletti F. Targeting metabotropic glutamate receptors in the treatment of primary brain tumors. Curr Opin Pharmacol 2018. [PMID: 29525720 DOI: 10.1016/j.coph.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In spite of the recent advancement in the molecular characterization of malignant gliomas and medulloblastomas, the treatment of primary brain tumors remains suboptimal. The use of small molecule inhibitors of intracellular signaling pathways, inhibitors of angiogenesis, and immunotherapic agents is limited by systemic adverse effects, limited brain penetration, and, in some cases, lack of efficacy. Thus, adjuvant chemo-therapy and radiotherapy still remain the gold standard in the treatment of grade-IV astrocytoma (glioblastoma multiforme) and medulloblastoma. We review evidence that supports the development of mGlu3 receptor antagonists as add-on drugs in the treatment of malignant gliomas. These drugs appear to display pleiotropic effect on tumor cells, affecting proliferation, differentiation, and response to chemotherapy. mGlu1 and mGlu4 receptors could also be targeted by potential anticancer agents in the treatment of malignant gliomas and medulloblastoma, but extensive research is required for target validation.
Collapse
Affiliation(s)
- Luisa Iacovelli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy.
| | - Rosamaria Orlando
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy
| | - Alessandro Rossi
- Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - Paola Spinsanti
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy
| | - Daniela Melchiorri
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
25
|
Stone TJ, Rowell R, Jayasekera BAP, Cunningham MO, Jacques TS. Review: Molecular characteristics of long-term epilepsy-associated tumours (LEATs) and mechanisms for tumour-related epilepsy (TRE). Neuropathol Appl Neurobiol 2018; 44:56-69. [DOI: 10.1111/nan.12459] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/22/2017] [Indexed: 12/14/2022]
Affiliation(s)
- T. J. Stone
- Developmental Biology and Cancer Programme; UCL Great Ormond Street Institute of Child Health; London UK
- Department of Histopathology; Great Ormond Street Hospital for Children NHS Foundation Trust; London UK
| | - R. Rowell
- Institute of Neuroscience; Newcastle University; Newcastle Upon Tyne UK
- Department of Neurosurgery; Royal Victoria Hospital; Newcastle Upon Tyne UK
| | - B. A. P. Jayasekera
- Institute of Neuroscience; Newcastle University; Newcastle Upon Tyne UK
- Department of Neurosurgery; Royal Victoria Hospital; Newcastle Upon Tyne UK
| | - M. O. Cunningham
- Institute of Neuroscience; Newcastle University; Newcastle Upon Tyne UK
- Department of Neurosurgery; Royal Victoria Hospital; Newcastle Upon Tyne UK
| | - T. S. Jacques
- Developmental Biology and Cancer Programme; UCL Great Ormond Street Institute of Child Health; London UK
- Department of Histopathology; Great Ormond Street Hospital for Children NHS Foundation Trust; London UK
| |
Collapse
|
26
|
Ribeiro MPC, Custódio JBA, Santos AE. Ionotropic glutamate receptor antagonists and cancer therapy: time to think out of the box? Cancer Chemother Pharmacol 2016; 79:219-225. [PMID: 27586965 DOI: 10.1007/s00280-016-3129-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/04/2016] [Indexed: 12/26/2022]
Abstract
Glutamate has a trophic function in the development of the central nervous system, regulating the proliferation and migration of neuronal progenitors. The resemblance between neuronal embryonic and tumor cells has paved the way for the investigation of the effects of glutamate on tumor cells. Indeed, tumor cells derived from neuronal tissue express ionotropic glutamate receptor (iGluRs) subunits and iGluR antagonists decrease cell proliferation. Likewise, iGluRs subunits are expressed in several peripheral cancer cells and blockade of the N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) ionotropic glutamate receptor subtypes decreases their proliferation and migration. Although these mechanisms are still being investigated, the inhibition of the mitogen-activated protein kinase pathway was shown to play a key role in the antiproliferative activity of iGluR antagonists. Importantly, MK-801, a NMDAR channel blocker, was effective and well tolerated in animal models of melanoma, lung, and breast cancers, suggesting that the blockade of iGluR signaling may represent a new strategy for cancer treatment. In this review, we focus on the significance of NMDA and AMPA receptor expression in tumor cells, as well as possible therapeutic strategies targeting these receptors.
Collapse
Affiliation(s)
- Mariana P C Ribeiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354, Coimbra, Portugal.,Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - José B A Custódio
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354, Coimbra, Portugal.,Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Armanda E Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354, Coimbra, Portugal. .,Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
| |
Collapse
|
27
|
Metabotropic glutamate receptor 5 – a promising target in drug development and neuroimaging. Eur J Nucl Med Mol Imaging 2016; 43:1151-70. [DOI: 10.1007/s00259-015-3301-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
|
28
|
Dumas SJ, Humbert M, Cohen-Kaminsky S. [The cancer paradigm in pulmonary arterial hypertension: towards anti-remodeling therapies targeting metabolic dysfunction?]. Biol Aujourdhui 2016; 210:171-189. [PMID: 28327277 DOI: 10.1051/jbio/2016022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Indexed: 11/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare, complex and multifactorial disease in which pulmonary vascular remodeling plays a major role ending in right heart failure and death. Current specific therapies of PAH that mainly target the vasoconstriction/vasodilatation imbalance are not curative. Bi-pulmonary transplantation remains the only option in patients resistant to current therapies. It is thus crucial to identify novel vascular anti-remodeling therapeutic targets. This remodeling displays several properties of cancer cells, especially overproliferation and apoptosis resistance of pulmonary vascular cells, hallmarks of cancer related to the metabolic shift known as the "Warburg effect". The latter is characterized by a shift of ATP production, from oxidative phosphorylation to low rate aerobic glycolysis. In compensation, the cancer cells exhibit exacerbated glutaminolysis thus resulting in glutamine addiction, necessary to their overproliferation. Glutamine intake results in glutamate production, a molecule at the crossroads of energy metabolism and cancer cell communication, thus contributing to cell proliferation. Accordingly, therapeutic strategies targeting glutamate production, its release into the extracellular space and its membrane receptors have been suggested to treat different types of cancers, not only in the central nervous system but also in the periphery. We propose that similar strategies targeting glutamatergic signaling may be considered in PAH, especially as they could affect not only the vascular remodeling but also the right heart hypertrophy known to involve the glutaminolysis pathway. Ongoing studies aim to characterize the involvement of the glutamate pathway and its receptors in vascular remodeling, and the therapeutic potential of specific molecules targeting this pathway.
Collapse
Affiliation(s)
- Sébastien J Dumas
- INSERM UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France - Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France - AP-HP Assistance Publique-Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Marc Humbert
- INSERM UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France - Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France - AP-HP Assistance Publique-Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Sylvia Cohen-Kaminsky
- INSERM UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France - Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
29
|
Armstrong TS, Grant R, Gilbert MR, Lee JW, Norden AD. Epilepsy in glioma patients: mechanisms, management, and impact of anticonvulsant therapy. Neuro Oncol 2015; 18:779-89. [PMID: 26527735 DOI: 10.1093/neuonc/nov269] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/01/2015] [Indexed: 12/16/2022] Open
Abstract
Seizures are a well-recognized symptom of primary brain tumors, and anticonvulsant use is common. This paper provides an overview of epilepsy and the use of anticonvulsants in glioma patients. Overall incidence and mechanisms of epileptogenesis are reviewed. Factors to consider with the use of antiepileptic drugs (AEDs) including incidence during the disease trajectory and prophylaxis along with considerations in the selection of anticonvulsant use (ie, potential side effects, drug interactions, adverse effects, and impact on survival) are also reviewed. Finally, areas for future research and exploring the pathophysiology and use of AEDs in this population are also discussed.
Collapse
Affiliation(s)
- Terri S Armstrong
- Department of Family Health, University of Texas Health Science Center at Houston, Houston, Texas (T.S.A.); Edinburgh Centre for Neuro-Oncology, Edinburgh, UK (R.G.); Neuro-Oncology Branch, National Cancer Institute and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (M.R.G.); Division of EEG and Epilepsy, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (J.W.L.); Center for Neuro-Oncology, Dana-Farber Cancer Institute; Division of Cancer Neurology, Department of Neurology, Brigham and Women's Hospital; and Harvard Medical School, Boston, Massachusetts (A.D.N.)
| | - Robin Grant
- Department of Family Health, University of Texas Health Science Center at Houston, Houston, Texas (T.S.A.); Edinburgh Centre for Neuro-Oncology, Edinburgh, UK (R.G.); Neuro-Oncology Branch, National Cancer Institute and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (M.R.G.); Division of EEG and Epilepsy, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (J.W.L.); Center for Neuro-Oncology, Dana-Farber Cancer Institute; Division of Cancer Neurology, Department of Neurology, Brigham and Women's Hospital; and Harvard Medical School, Boston, Massachusetts (A.D.N.)
| | - Mark R Gilbert
- Department of Family Health, University of Texas Health Science Center at Houston, Houston, Texas (T.S.A.); Edinburgh Centre for Neuro-Oncology, Edinburgh, UK (R.G.); Neuro-Oncology Branch, National Cancer Institute and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (M.R.G.); Division of EEG and Epilepsy, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (J.W.L.); Center for Neuro-Oncology, Dana-Farber Cancer Institute; Division of Cancer Neurology, Department of Neurology, Brigham and Women's Hospital; and Harvard Medical School, Boston, Massachusetts (A.D.N.)
| | - Jong Woo Lee
- Department of Family Health, University of Texas Health Science Center at Houston, Houston, Texas (T.S.A.); Edinburgh Centre for Neuro-Oncology, Edinburgh, UK (R.G.); Neuro-Oncology Branch, National Cancer Institute and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (M.R.G.); Division of EEG and Epilepsy, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (J.W.L.); Center for Neuro-Oncology, Dana-Farber Cancer Institute; Division of Cancer Neurology, Department of Neurology, Brigham and Women's Hospital; and Harvard Medical School, Boston, Massachusetts (A.D.N.)
| | - Andrew D Norden
- Department of Family Health, University of Texas Health Science Center at Houston, Houston, Texas (T.S.A.); Edinburgh Centre for Neuro-Oncology, Edinburgh, UK (R.G.); Neuro-Oncology Branch, National Cancer Institute and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (M.R.G.); Division of EEG and Epilepsy, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (J.W.L.); Center for Neuro-Oncology, Dana-Farber Cancer Institute; Division of Cancer Neurology, Department of Neurology, Brigham and Women's Hospital; and Harvard Medical School, Boston, Massachusetts (A.D.N.)
| |
Collapse
|
30
|
Kirschstein T, Köhling R. Animal models of tumour-associated epilepsy. J Neurosci Methods 2015; 260:109-17. [PMID: 26092434 DOI: 10.1016/j.jneumeth.2015.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 01/26/2023]
Abstract
Brain tumours cause a sizeable proportion of epilepsies in adulthood, and actually can be etiologically responsible also for childhood epilepsies. Conversely, seizures are often first clinical signs of a brain tumour. Nevertheless, several issues of brain-tumour associated seizures and epilepsies are far from understood, or clarified regarding clinical consensus. These include both the specific mechanisms of epileptogenesis related to different tumour types, the possible relationship between malignancy and seizure emergence, the interaction between tumour mass and surrounding neuronal networks, and - not least - the best treatment options depending on different tumour types. To investigate these issues, experimental models of tumour-induced epilepsies are necessary. This review concentrates on the description of currently used models, focusing on methodological aspects. It highlights advantages and shortcomings of these models, and identifies future experimental challenges.
Collapse
Affiliation(s)
- Timo Kirschstein
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Gertrudenstrasse 9, 18057 Rostock, Germany
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Gertrudenstrasse 9, 18057 Rostock, Germany.
| |
Collapse
|
31
|
Abstract
OPINION STATEMENT Seizures represent a common symptom in low- and high-grade gliomas. Tumor location and histology influence the risk for epilepsy. Some molecular factors (BRAF V 600E mutations in glioneuronal tumors and IDH1/2 mutations in diffuse grade II and III gliomas) are molecular factors that are relevant for diagnosis and prognosis and have been associated with the risk of epilepsy as well. Glutamate plays a central role in epileptogenicity and growth of glial and glioneuronal tumors, based on the release of glutamate from tumor cells that enhances excitotoxicity, and a downregulation of the inhibitory GABAergic pathways. Several potential targets for therapy have been identified, and m-TOR inhibitors have already shown activity. Gross total resection is the strongest predictor of seizure freedom in addition to clinical factors, such as preoperative seizure duration, type, and control with antiepileptic drugs (AEDs). Radiotherapy and chemotherapy with alkylating agents (procarbazine, CCNU, vincristine, temozolomide) are effective in reducing the frequency of seizures in patients with pharmacoresistant epilepsy. Newer AEDs (in particular levetiracetam and lacosamide) seem to be better tolerated than the old AEDs (phenobarbital, phenytoin, carbamazepine), but randomized clinical trials are needed to prove their superiority in terms of efficacy.
Collapse
Affiliation(s)
- Roberta Rudà
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Via Cherasco 15, 10126, Torino, Italy,
| | | |
Collapse
|
32
|
Goonawardena J, Marshman LA, Drummond KJ. Brain tumour-associated status epilepticus. J Clin Neurosci 2015; 22:29-34. [DOI: 10.1016/j.jocn.2014.03.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/27/2014] [Accepted: 03/29/2014] [Indexed: 01/27/2023]
|
33
|
Giulioni M, Marucci G, Martinoni M, Marliani AF, Toni F, Bartiromo F, Volpi L, Riguzzi P, Bisulli F, Naldi I, Michelucci R, Baruzzi A, Tinuper P, Rubboli G. Epilepsy associated tumors: Review article. World J Clin Cases 2014; 2:623-641. [PMID: 25405186 PMCID: PMC4233414 DOI: 10.12998/wjcc.v2.i11.623] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 08/31/2014] [Accepted: 10/10/2014] [Indexed: 02/05/2023] Open
Abstract
Long-term epilepsy associated tumors (LEAT) represent a well known cause of focal epilepsies. Glioneuronal tumors are the most frequent histological type consisting of a mixture of glial and neuronal elements and most commonly arising in the temporal lobe. Cortical dysplasia or other neuronal migration abnormalities often coexist. Epilepsy associated with LEAT is generally poorly controlled by antiepileptic drugs while, on the other hand, it is high responsive to surgical treatment. However the best management strategy of tumor-related focal epilepsies remains controversial representing a contemporary issues in epilepsy surgery. Temporo-mesial LEAT have a widespread epileptic network with complex epileptogenic mechanisms. By using an epilepsy surgery oriented strategy LEAT may have an excellent seizure outcome therefore surgical treatment should be offered early, irrespective of pharmacoresistance, avoiding both the consequences of uncontrolled seizures as well as the side effects of prolonged pharmacological therapy and the rare risk of malignant transformation.
Collapse
|
34
|
Stepulak A, Rola R, Polberg K, Ikonomidou C. Glutamate and its receptors in cancer. J Neural Transm (Vienna) 2014; 121:933-44. [PMID: 24610491 PMCID: PMC4133641 DOI: 10.1007/s00702-014-1182-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/19/2014] [Indexed: 01/29/2023]
Abstract
Glutamate, a nonessential amino acid, is a major bioenergetic substrate for proliferating normal and neoplastic cells on one hand and an excitatory neurotransmitter that is actively involved in biosynthetic, bioenergetic, metabolic, and oncogenic signaling pathways on the other. It exerts its action through a family of receptors consisting of metabotropic glutamate receptors (mGluRs) and ionotropic glutamate receptors (iGluRs), both of which have been implicated previously in a broad spectrum of acute and chronic neurodegenerative diseases. In this review, we discuss existing data on the role of glutamate as a growth factor for neoplastic cells, the expression of glutamate receptors in various types of benign and malignant neoplasms, and the potential roles that GluRs play in cancer development and progression along with their clinical significance. We conclude that glutamate-related receptors and their signaling pathways may provide novel therapeutic opportunities for a variety of malignant human diseases.
Collapse
Affiliation(s)
- Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University in Lublin, ul. Chodzki 1, 20-093, Lublin, Poland,
| | | | | | | |
Collapse
|
35
|
Liubinas SV, O'Brien TJ, Moffat BM, Drummond KJ, Morokoff AP, Kaye AH. Tumour associated epilepsy and glutamate excitotoxicity in patients with gliomas. J Clin Neurosci 2014; 21:899-908. [PMID: 24746886 DOI: 10.1016/j.jocn.2014.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/22/2014] [Indexed: 02/04/2023]
Abstract
Tumour associated epilepsy (TAE) is common, debilitating and often not successfully controlled by surgical resection of the tumour and administration of multiple anti-epileptic drugs. It represents a cause of significant lost quality of life in an incurable disease and is therefore an important subject for ongoing research. The pathogenesis of TAE is likely to be multifactorial and involve, on the microscopic level, the interaction of genetic factors, changes in the peritumoural microenvironment, alterations in synaptic neurotransmitter release and re-uptake, and the excitotoxic effects of glutamate. On a macroscopic level, the occurrence of TAE is likely to be influenced by tumour size, location and interaction with environmental factors. The optimal treatment of TAE requires a multi-disciplinary approach with input from neurosurgeons, neurologists, radiologists, pathologists and basic scientists. This article reviews the current literature regarding the incidence, treatment, and aetiology of TAE.
Collapse
Affiliation(s)
- Simon V Liubinas
- Department of Neurosurgery, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC 3050, Australia; Department of Surgery (RMH/WH), The University of Melbourne, Parkville, VIC, Australia.
| | - Terence J O'Brien
- Department of Medicine (RMH/WH), The University of Melbourne, Parkville, VIC, Australia
| | - Bradford M Moffat
- Department of Radiology (RMH/WH), The University of Melbourne, Parkville, VIC, Australia
| | - Katharine J Drummond
- Department of Neurosurgery, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC 3050, Australia; Department of Surgery (RMH/WH), The University of Melbourne, Parkville, VIC, Australia
| | - Andrew P Morokoff
- Department of Neurosurgery, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC 3050, Australia; Department of Surgery (RMH/WH), The University of Melbourne, Parkville, VIC, Australia
| | - Andrew H Kaye
- Department of Neurosurgery, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC 3050, Australia; Department of Surgery (RMH/WH), The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
36
|
Aronica E, Crino PB. Epilepsy related to developmental tumors and malformations of cortical development. Neurotherapeutics 2014; 11:251-68. [PMID: 24481729 PMCID: PMC3996119 DOI: 10.1007/s13311-013-0251-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Structural abnormalities of the brain are increasingly recognized in patients with neurodevelopmental delay and intractable focal epilepsies. The access to clinically well-characterized neurosurgical material has provided a unique opportunity to better define the neuropathological, neurochemical, and molecular features of epilepsy-associated focal developmental lesions. These studies help to further understand the epileptogenic mechanisms of these lesions. Neuropathological evaluation of surgical specimens from patients with epilepsy-associated developmental lesions reveals two major pathologies: focal cortical dysplasia and low-grade developmental tumors (glioneuronal tumors). In the last few years there have been major advances in the recognition of a wide spectrum of developmental lesions associated with a intractable epilepsy, including cortical tubers in patients with tuberous sclerosis complex and hemimegalencephaly. As an increasing number of entities are identified, the development of a unified and comprehensive classification represents a great challenge and requires continuous updates. The present article reviews current knowledge of molecular pathogenesis and the pathophysiological mechanisms of epileptogenesis in this group of developmental disorders. Both emerging neuropathological and basic science evidence will be analyzed, highlighting the involvement of different, but often converging, pathogenetic and epileptogenic mechanisms, which may create the basis for new therapeutic strategies in these disorders.
Collapse
Affiliation(s)
- Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands,
| | | |
Collapse
|
37
|
|
38
|
Hubbard JA, Hsu MS, Fiacco TA, Binder DK. Glial cell changes in epilepsy: Overview of the clinical problem and therapeutic opportunities. Neurochem Int 2013; 63:638-51. [DOI: 10.1016/j.neuint.2013.01.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/14/2013] [Accepted: 01/18/2013] [Indexed: 12/20/2022]
|
39
|
Ius T, Pauletto G, Isola M, Gregoraci G, Budai R, Lettieri C, Eleopra R, Fadiga L, Skrap M. Surgery for insular low-grade glioma: predictors of postoperative seizure outcome. J Neurosurg 2013; 120:12-23. [PMID: 24236654 DOI: 10.3171/2013.9.jns13728] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Although a number of recent studies on the surgical treatment of insular low-grade glioma (LGG) have demonstrated that aggressive resection leads to increased overall patient survival and decreased malignant progression, less attention has been given to the results with respect to tumor-related epilepsy. The aim of this investigation was to evaluate the impact of volumetric, histological, and intraoperative neurophysiological factors on seizure outcome in patients with insular LGG. METHODS The authors evaluated predictors of seizure outcome with special emphasis on both the extent of tumor resection (EOR) and the tumor's infiltrative pattern quantified by computing the difference between the preoperative T2- and T1-weighted MR images (ΔVT2T1) in 52 patients with preoperative drug-resistant epilepsy. RESULTS The 12-month postoperative seizure outcome (Engel class) was as follows: seizure free (Class I), 67.31%; rare seizures (Class II), 7.69%; meaningful seizure improvement (Class III), 15.38%; and no improvement or worsening (Class IV), 9.62%. Poor seizure control was more common in patients with a longer preoperative seizure history (p < 0.002) and higher frequency of seizures (p = 0.008). Better seizure control was achieved in cases with EOR ≥ 90% (p < 0.001) and ΔVT2T1 < 30 cm(3) (p < 0.001). In the final model, ΔVT2T1 proved to be the strongest independent predictor of seizure outcome in insular LGG patients (p < 0.0001). CONCLUSIONS No or little postoperative seizure improvement occurs mainly in cases with a prevalent infiltrative tumor growth pattern, expressed by high ΔVT2T1 values, which consequently reflects a smaller EOR.
Collapse
|
40
|
Yamaguchi F, Hirata Y, Akram H, Kamitori K, Dong Y, Sui L, Tokuda M. FOXO/TXNIP pathway is involved in the suppression of hepatocellular carcinoma growth by glutamate antagonist MK-801. BMC Cancer 2013; 13:468. [PMID: 24112473 PMCID: PMC3852080 DOI: 10.1186/1471-2407-13-468] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 10/08/2013] [Indexed: 11/23/2022] Open
Abstract
Background Accumulating evidence has suggested the importance of glutamate signaling in cancer growth, yet the signaling pathway has not been fully elucidated. N-methyl-D-aspartic acid (NMDA) receptor activates intracellular signaling pathways such as the extracellular-signal-regulated kinase (ERK) and forkhead box, class O (FOXO). Suppression of lung carcinoma growth by NMDA receptor antagonists via the ERK pathway has been reported. However, series of evidences suggested the importance of FOXO pathways for the regulation of normal and cancer cell growth. In the liver, FOXO1 play important roles for the cell proliferation such as hepatic stellate cells as well as liver metabolism. Our aim was to investigate the involvement of the FOXO pathway and the target genes in the growth inhibitory effects of NMDA receptor antagonist MK-801 in human hepatocellular carcinoma. Methods Expression of NMDAR1 in cancer cell lines from different tissues was examined by Western blot. NMDA receptor subunits in HepG2, HuH-7, and HLF were examined by reverse transcriptase polymerase chain reaction (RT-PCR), and growth inhibition by MK-801 and NBQX was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of MK-801 on the cell cycle were examined by flow cytometry and Western blot analysis. Expression of thioredoxin-interacting protein (TXNIP) and p27 was determined by real-time PCR and Western blotting. Activation of the FOXO pathway and TXNIP induction were examined by Western blotting, fluorescence microscopy, Chromatin immunoprecipitation (ChIP) assay, and reporter gene assay. The effects of TXNIP on growth inhibition were examined using the gene silencing technique. Results NMDA receptor subunits were expressed in all cell lines examined, and MK-801, but not NBQX, inhibited cell growth of hepatocellular carcinomas. Cell cycle analysis showed that MK-801 induced G1 cell cycle arrest by down-regulating cyclin D1 and up-regulating p27. MK-801 dephosphorylated Thr24 in FOXO1 and induced its nuclear translocation, thus increasing transcription of TXNIP, a tumor suppressor gene. Knock-down of TXNIP ameliorated the growth inhibitory effects of MK-801. Conclusions Our results indicate that functional NMDA receptors are expressed in hepatocellular carcinomas and that the FOXO pathway is involved in the growth inhibitory effects of MK-801. This mechanism could be common in hepatocellular carcinomas examined, but other mechanisms such as ERK pathway could exist in other cancer cells as reported in lung carcinoma cells. Altered expression levels of FOXO target genes including cyclin D1 and p27 may contribute to the inhibition of G1/S cell cycle transition. Induction of the tumor suppressor gene TXNIP plays an important role in the growth inhibition by MK-801. Our report provides new evidence that FOXO-TXNIP pathway play a role in the inhibition of the hepatocellular carcinoma growth by MK-801.
Collapse
Affiliation(s)
- Fuminori Yamaguchi
- Departments of Cell Physiology, Faculty of Medicine, Kagawa University, 1750-1 Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | | | | | | | | | | | | |
Collapse
|
41
|
Rudà R, Bello L, Duffau H, Soffietti R. Seizures in low-grade gliomas: natural history, pathogenesis, and outcome after treatments. Neuro Oncol 2013; 14 Suppl 4:iv55-64. [PMID: 23095831 DOI: 10.1093/neuonc/nos199] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Seizures represent a common symptom in low-grade gliomas; when uncontrolled, they significantly contribute to patient morbidity and negatively impact quality of life. Tumor location and histology influence the risk for epilepsy. The pathogenesis of tumor-related epilepsy is multifactorial and may differ among tumor histologies (glioneuronal tumors vs diffuse grade II gliomas). Gross total resection is the strongest predictor of seizure freedom in addition to clinical factors, such as preoperative seizure duration, type, and control with antiepileptic drugs (AEDs). Epilepsy surgery may improve seizure control. Radiotherapy and chemotherapy with alkylating agents (procarbazine + CCNU+ vincristine, temozolomide) are effective in reducing the frequency of seizures in patients with pharmacoresistant epilepsy. Newer AEDs (levetiracetam, topiramate, lacosamide) seem to be better tolerated than the old AEDs (phenobarbital, phenytoin, carbamazepine), but there is lack of evidence regarding their superiority in terms of efficacy.
Collapse
Affiliation(s)
- Roberta Rudà
- Department of Neuro-Oncology, University of Turin and San Giovanni Battista Hospital, Turin, Italy.
| | | | | | | |
Collapse
|
42
|
Transcriptomic profiling of human peritumoral neocortex tissues revealed genes possibly involved in tumor-induced epilepsy. PLoS One 2013; 8:e56077. [PMID: 23418513 PMCID: PMC3572021 DOI: 10.1371/journal.pone.0056077] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/09/2013] [Indexed: 12/11/2022] Open
Abstract
The molecular mechanism underlying tumor-induced epileptogenesis is poorly understood. Alterations in the peritumoral microenvironment are believed to play a significant role in inducing epileptogenesis. We hypothesize that the change of gene expression in brain peritumoral tissues may contribute to the increased neuronal excitability and epileptogenesis. To identify the genes possibly involved in tumor-induced epilepsy, a genome-wide gene expression profiling was conducted using Affymetrix HG U133 plus 2.0 arrays and RNAs derived from formalin-fixed paraffin embedded (FFPE) peritumoral cortex tissue slides from 5-seizure vs. 5-non-seizure low grade brain tumor patients. We identified many differentially expressed genes (DEGs). Seven dysregulated genes (i.e., C1QB, CALCRL, CCR1, KAL1, SLC1A2, SSTR1 and TYRO3) were validated by qRT-PCR, which showed a high concordance. Principal Component Analysis (PCA) showed that epilepsy subjects were clustered together tightly (except one sample) and were clearly separated from the non-epilepsy subjects. Molecular functional categorization showed that significant portions of the DEGs functioned as receptor activity, molecular binding including enzyme binding and transcription factor binding. Pathway analysis showed these DEGs were mainly enriched in focal adhesion, ECM-receptor interaction, and cell adhesion molecules pathways. In conclusion, our study showed that dysregulation of gene expression in the peritumoral tissues may be one of the major mechanisms of brain tumor induced-epilepsy. However, due to the small sample size of the present study, further validation study is needed. A deeper characterization on the dysregulated genes involved in brain tumor-induced epilepsy may shed some light on the management of epilepsy due to brain tumors.
Collapse
|
43
|
Abstract
The term long-term epilepsy associated tumor (LEAT) encompasses lesions identified in patients investigated for long histories (often 2 years or more) of drug-resistant epilepsy. They are generally slowly growing, low grade, cortically based tumors, more often arising in younger age groups and in many cases exhibit neuronal in addition to glial differentiation. Gangliogliomas and dysembryoplastic neuroepithelial tumors predominate in this group. LEATs are further united by cyto-architectural changes that may be present in the adjacent cortex which have some similarities to developmental focal cortical dysplasias (FCD); these are now grouped as FCD type IIIb in the updated International League Against Epilepsy (ILAE) classification. In the majority of cases, surgical treatments are beneficial from both perspectives of managing the seizures and the tumor. However, in a minority, seizures may recur, tumors may show regrowth or recurrence, and rarely undergo anaplastic progression. Predicting and identifying tumors likely to behave less favorably are key objectives of the neuropathologist. With immunohistochemistry and modern molecular pathology, it is becoming increasingly possible to refine diagnostic groups. Despite this, some LEATs remain difficult to classify, particularly tumors with "non-specific" or diffuse growth patterns. Modification of LEAT classification is inevitable with the goal of unifying terminological criteria applied between centers for accurate clinico-pathological-molecular correlative data to emerge. Finally, establishing the epileptogenic components of LEAT, either within the lesion or perilesional cortex, will elucidate the cellular mechanisms of epileptogenesis, which in turn will guide optimal surgical management of these lesions.
Collapse
Affiliation(s)
- Maria Thom
- Department of Clinical and Experimental Epilepsy, UCL, Institute of Neurology, Queen Square, London, UK.
| | | | | |
Collapse
|
44
|
Ghareeb F, Duffau H. Intractable epilepsy in paralimbic Word Health Organization Grade II gliomas: should the hippocampus be resected when not invaded by the tumor? J Neurosurg 2012; 116:1226-34. [PMID: 22404676 DOI: 10.3171/2012.1.jns112120] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECT Beyond its oncological benefit, surgery could improve seizure control in paralimbic frontotemporoinsular or temporoinsular WHO Grade II gliomas generating intractable seizures. However, no studies have examined the impact of hippocampal resection on chronic epilepsy when the hippocampus is not invaded by Grade II gliomas. Here, the authors compared the epileptological outcomes and return to work in 2 groups of patients who underwent surgery with or without hippocampectomy for paralimbic Grade II gliomas eliciting intractable epilepsy despite no tumoral involvement of the hippocampus. METHODS Surgery was performed in 15 consecutive patients who were unable to work (median Karnofsky Performance Scale [KPS] Score 70) because of refractory epilepsy due to paralimbic Grade II gliomas that were not invading the hippocampus. In Group A (8 patients), the hippocampus was preserved. In Group B (7 patients), glioma removal was associated with hippocampectomy. RESULTS No patient died or suffered a permanent deficit after surgery. Postoperatively, in Group A, no patients were seizure free (4 patients were in Engel Class II and 4 were in Class III). In Group B, all 7 patients were seizure free (Class I) (p = 0.02). Only 62.5% of patients returned to work in Group A, whereas all patients are working full time in Group B. The postsurgical median KPS score was 85 in Group A, that is, not significantly improved in comparison with the preoperative score, while the postsurgical median KPS was 95 in Group B, that is, significantly improved in comparison with the preoperative score (p = 0.03). CONCLUSIONS The authors' data support, for the first time, the significant impact of hippocampectomy in patients with intractable epilepsy generated by a paralimbic Grade II glioma, even if it does not invade the hippocampus. Hippocampal resection allowed seizure control in all patients, with an improvement in KPS scores, since all patients resumed their social and professional activities. Thus, the authors suggest performing a resection of the nontumoral hippocampus in addition to resection of the tumor in patients with refractory epilepsy due to paralimbic Grade II gliomas.
Collapse
Affiliation(s)
- Fadi Ghareeb
- Department of Neurosurgery, Riyadh Military Hospital, Riyadh, Saudi Arabia
| | | |
Collapse
|
45
|
You G, Sha Z, Jiang T. The pathogenesis of tumor-related epilepsy and its implications for clinical treatment. Seizure 2012; 21:153-9. [PMID: 22300623 DOI: 10.1016/j.seizure.2011.12.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/28/2011] [Accepted: 12/29/2011] [Indexed: 01/12/2023] Open
Abstract
Approximately 30-50% of patients with brain tumors present with seizures as the initial symptom. Seizures play a very important role in the quality of life, particularly in patients with slow-growing primary brain tumors. Tumor-related seizures are often refractory to antiepileptic treatment. Despite the importance of this subject to the fields of neurology, neurosurgery and neurooncology, the pathogenesis of tumor-related epilepsy remains poorly understood. This review summarizes possible mechanisms underlying the pathogenesis of tumor-related epilepsy, including both tumoral and peri-tumoral aspects. Tumor cells themselves may create intrinsic epileptogenicity, and inadequate homeostasis in the peri-tumoral tissues may lead to seizure susceptibility. Other local changes in electrolytes, perfusion, metabolism, and enzymes could also contribute. It is generally accepted that changes in amino acid neurotransmission are the most important mechanism underlying tumor-related seizures, and changes in extracellular ions also play an important role. Hypoxia, acidosis, and metabolic, immunological, and inflammatory changes may also be involved in the occurrence of seizures. Knowledge of these mechanisms may provide guidance in the search for new strategies for the surgical and medical treatment of tumor-related epilepsy.
Collapse
Affiliation(s)
- Gan You
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | | | | |
Collapse
|
46
|
Van Breemen MSM, Wilms EB, Vecht CJ. Seizure control in brain tumors. HANDBOOK OF CLINICAL NEUROLOGY 2012; 104:381-389. [PMID: 22230456 DOI: 10.1016/b978-0-444-52138-5.00026-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
47
|
Intrinsic epileptogenicity of gangliogliomas may be independent from co-occurring focal cortical dysplasia. Epilepsy Res 2011; 97:208-13. [PMID: 21831599 DOI: 10.1016/j.eplepsyres.2011.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 07/05/2011] [Accepted: 07/10/2011] [Indexed: 01/12/2023]
Abstract
Gangliogliomas are a frequent cause of drug-resistant epilepsies in children. It remains unknown, however, whether gangliogliomas are intrinsically epileptogenic or if associated lesions contribute to their high epileptogenicity, i.e. associated focal cortical dysplasia (FCD). We report on a child operated twice for drug-resistant focal seizures symptomatic of a right temporal lobe lesion. Histological examination of the first, incomplete lesionectomy revealed tumor-associated FCD Type IIIb. The child was not seizure-free, and surface as well as intracerebral recordings were obtained during a second presurgical assessment. Histopathological examination of the second operation revealed a ganglioglioma. Intralesional EEG recordings from the ganglioglioma documented rhythmic bursts of fast activity suggesting that the high epileptogenicity of gangliogliomas is related to intrinsic epileptogenic activity.
Collapse
|
48
|
Loiacono G, Cirillo C, Chiarelli F, Verrotti A. Focal epilepsy associated with glioneuronal tumors. ISRN NEUROLOGY 2011; 2011:867503. [PMID: 22389832 PMCID: PMC3263547 DOI: 10.5402/2011/867503] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/19/2011] [Indexed: 11/23/2022]
Abstract
Glioneuronal tumors are an increasingly recognized cause of partial seizures that occur primarily in children and young adults. Focal epilepsy associated with glioneuronal tumors is often resistant to pharmacological treatment. The cellular mechanisms underlying the epileptogenicity of glioneuronal tumors remain largely unknown. The involved mechanisms are certain to be multifactorial and depend on specific tumor histology, integrity of the blood-brain barrier, characteristics of the peritumoral environment, circuit abnormalities, or cellular and molecular defects. Glioneuronal tumors presenting with epilepsy were observed to have relatively benign biological behavior. The completeness of the tumor resection is of paramount importance in avoiding tumor progression and malignant transformation, which are rare in cases of epileptogenic glioneuronal tumors.
An evolving understanding of the various mechanisms of tumor-related epileptogenicity may also lead to a more defined surgical objective and effective therapeutic strategies, including antiepileptogenic treatments, to prevent epilepsy in at-risk patients.
Collapse
Affiliation(s)
- Giulia Loiacono
- Department of Paediatrics, University of Chieti, 66100 Chieti, Italy
| | | | | | | |
Collapse
|
49
|
Mancino M, Ametller E, Gascón P, Almendro V. The neuronal influence on tumor progression. Biochim Biophys Acta Rev Cancer 2011; 1816:105-18. [PMID: 21616127 DOI: 10.1016/j.bbcan.2011.04.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 04/28/2011] [Accepted: 04/29/2011] [Indexed: 01/11/2023]
Abstract
Nerve fibers accompany blood and lymphatic vessels all over the body. An extensive amount of knowledge has been obtained with regard to tumor angiogenesis and tumor lymphangiogenesis, yet little is known about the potential biological effects of "neoneurogenesis". Cancer cells can exploit the advantage of the factors released by the nerve fibers to generate a positive microenvironment for cell survival and proliferation. At the same time, they can stimulate the formation of neurites by secreting neurotrophic factors and axon guidance molecules. The neuronal influence on the biology of a neoplasm was initially described several decades ago. Since then, an increasing amount of experimental evidence strongly suggests the existence of reciprocal interactions between cancer cells and nerves in humans. Moreover, researchers have been able to demonstrate a crosstalk between cancer cells and nerve fibers as a strategy for survival. Despite all these evidence, a lot remains to be done in order to clarify the role of neurotransmitters, neuropeptides, and their associated receptor-initiated signaling pathways in the development and progression of cancer, and response to therapy. A global-wide characterization of the neurotransmitters or neuropeptides present in the tumor microenvironment would provide insights into the real biological influences of the neuronal tissue on tumor progression. This review is intended to discuss our current understanding of neurosignaling in cancer and its potential implications on cancer prevention and therapy. The review will focus on the soluble factors released by cancer cells and nerve endings, their biological effects and their potential relevance in the treatment of cancer.
Collapse
Affiliation(s)
- Mario Mancino
- Department of Medical Oncology, Centro Esther Koplowitz CEK, Institut d' investigacions Biomèdiques August Pi i Sunyer IDIBAPS, Hospital Clinic, Medical School, University of Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW To present an overview of the recent findings in pathophysiology and management of epileptic seizures in patients with brain tumors. RECENT FINDINGS Low-grade gliomas are the most epileptogenic brain tumors. Regarding pathophysiology, the role of peritumoral changes [hypoxia and acidosis, blood-brain barrier (BBB) disruption, increase or decrease of neurotransmitters and receptors] are of increasing importance. Tumor-associated epilepsy and tumor growth could have some common molecular pathways. Total/subtotal surgical resection (with or without epilepsy surgery) allows a seizure control in a high percentage of patients. Radiotherapy and chemotherapy as well have a role. New antiepileptic drugs are promising, both in terms of efficacy and tolerability. The resistance to antiepileptic drugs is still a major problem: new insights into pathogenesis are needed to develop strategies to manipulate the pharmakoresistance. SUMMARY Epileptic seizures in brain tumors have been definitely recognized as one of the major problems in patients with brain tumors, and need specific and multidisciplinary approaches.
Collapse
|