1
|
Design and Experimental Evaluation of a Peptide Antagonist against Amyloid β(1-42) Interactions with Calmodulin and Calbindin-D28k. Int J Mol Sci 2022; 23:ijms23042289. [PMID: 35008543 PMCID: PMC8880779 DOI: 10.3390/ijms23042289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 11/21/2022] Open
Abstract
Amyloid β1–42 (Aβ(1–42)) oligomers have been linked to the pathogenesis of Alzheimer’s disease (AD). Intracellular calcium (Ca2+) homeostasis dysregulation with subsequent alterations of neuronal excitability has been proposed to mediate Aβ neurotoxicity in AD. The Ca2+ binding proteins calmodulin (CaM) and calbindin-D28k, whose expression levels are lowered in human AD brains, have relevant roles in neuronal survival and activity. In previous works, we have shown that CaM has a high affinity for Aβ(1–42) oligomers and extensively binds internalized Aβ(1–42) in neurons. In this work, we have designed a hydrophobic peptide of 10 amino acid residues: VFAFAMAFML (amidated-C-terminus amino acid) mimicking the interacting domain of CaM with Aβ (1–42), using a combined strategy based on the experimental results obtained for Aβ(1–42) binding to CaM and in silico docking analysis. The increase in the fluorescence intensity of Aβ(1–42) HiLyteTM-Fluor555 has been used to monitor the kinetics of complex formation with CaM and with calbindin-D28k. The complexation between nanomolar concentrations of Aβ(1–42) and calbindin-D28k is also a novel finding reported in this work. We found that the synthetic peptide VFAFAMAFML (amidated-C-terminus amino acid) is a potent inhibitor of the formation of Aβ(1–42):CaM and of Aβ(1–42):calbindin-D28k complexes.
Collapse
|
2
|
Fischer N, Johnson Chacko L, Majerus A, Potrusil T, Riechelmann H, Schmutzhard J, Schrott-Fischer A, Glueckert R. Age-Dependent Calcium-Binding Protein Expression in the Spiral Ganglion and Hearing Performance of C57BL/6J and 129/SvJ Mice. ORL J Otorhinolaryngol Relat Spec 2019; 81:138-154. [PMID: 31170714 DOI: 10.1159/000499472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/08/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Calcium-binding proteins in neurons buffer intracellular free Ca2+ ions, which interact with proteins controlling enzymatic and ion channel activity. The heterogeneous distribution of calretinin, calbindin, and parvalbumin influences calcium homeostasis, and calcium-related neuronal processes play an important role in neuronal aging and degeneration. This study evaluated age-related changes in calretinin, calbindin, and parvalbumin immune reactivity in spiral ganglion cells. METHODS A total of 16 C57BL/6J and 16 129/SvJ mice at different ages (2, 4, 7, and 12 months) were included in the study. Hearing thresholds were assessed using auditory brainstem response before inner ears were excised for further evaluation. Semiquantitative immunohistochemistry for the aforementioned calcium-binding proteins was performed at the cellular level. RESULTS The hearing thresholds of C57BL/6J and 129/SvJ mice increased significantly by 7 months of age. The average immune reactivity of calbin-din as well as the relative number of positive cells increased significantly with aging, but no significant alterations in calretinin or parvalbumin were observed. CONCLUSIONS Upregulation of calbindin could serve as a protection to compensate for functional deficits that occur with aging. Expression of both calretinin and parvalbumin seem to be stabilizing factors in murine inner ears up to the age of 12 months in C57BL/6J and 129/SvJ mice.
Collapse
Affiliation(s)
- Natalie Fischer
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Lejo Johnson Chacko
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Alexandra Majerus
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Potrusil
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Joachim Schmutzhard
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Rudolf Glueckert
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria.,Department of Otorhinolaryngology, Tirol Kliniken, University Clinics of Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Multi-site dynamic recording for Aβ oligomers-induced Alzheimer's disease in vitro based on neuronal network chip. Biosens Bioelectron 2019; 133:183-191. [PMID: 30928737 DOI: 10.1016/j.bios.2019.03.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 01/31/2023]
Abstract
Alzheimer's disease (AD) is a chronic central neurodegenerative disease. The pathological features of AD are the extracellular deposition of senile plaques formed by amyloid-β oligomers (AβOs) and the intracellular accumulation of neurofibrillary tangles. However, due to the lack of effective method and experimental models to study the cognitive decline, communication at cell resolution and the implementation of interventions, the diagnosis and treatment on AD still progress slowly. In this paper, we established a pathological model of AD in vitro based on AβOs-induced hippocampal neuronal network chip for multi-site dynamic analysis of the neuronal electrical activity and network connection. The multiple characteristic parameters, including positive and negative spike intervals, firing rate and peak-to-peak values, were extracted through the analysis of spike signals, and two firing patterns from the interneurons and pyramidal neurons were recorded. The spatial firing patterns mapping and cross-correlation between channels were performed to validate the degeneration of neuronal network connectivity. Moreover, an electrical stimulation with frequency at 40 Hz was exerted to preliminarily explore the therapeutic effect on the pathological model of AD. This neuronal network chip enables the implementation of AD models in vitro for studying basic mechanisms of neurodegeneration within networks and for the parallel testing of various potential therapies. It can be a novel technique in the research of AD pathological model in vitro.
Collapse
|
4
|
Iritani S, Torii Y, Habuchi C, Sekiguchi H, Fujishiro H, Yoshida M, Go Y, Iriki A, Isoda M, Ozaki N. The neuropathological investigation of the brain in a monkey model of autism spectrum disorder with ABCA13 deletion. Int J Dev Neurosci 2018; 71:130-139. [PMID: 30201574 DOI: 10.1016/j.ijdevneu.2018.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/31/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023] Open
Abstract
The precise biological etiology of autism spectrum disorder (ASD) remains unknown. In this study, we investigated the neuropathology of a monkey model of autism Human ABCA13 is the largest ABC transporter protein, with a length of 5058 amino acids and a predicted molecular weight of >450 kDa. However, the function of this protein remains to be elucidated. This protein is thought to be associated with major psychiatric disease. Using this monkey model of autism with an ABCA13 deletion and a mutation of 5HT2c, we neuropathologically investigated the changes in the neuronal formation in the frontal cortex. As a result, the neuronal formation in the cortex was found to be disorganized with regard to the neuronal size and laminal distribution in the ABCA13 deletion monkey. The catecholaminergic and GABAergic neuronal systems, serotoninergic neuronal formation (5HT2c) were also found to be impaired by an immunohistochemical evaluation. This study suggested that ABCA13 deficit induces the impairment of neuronal maturation or migration, and the function of the neuronal network. This protein might thus play a role in the neurodevelopmental function of the central nervous system and the dysfunction of this protein may be a pathophysiological cause of mental disorders including autism.
Collapse
Affiliation(s)
- Shuji Iritani
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| | - Youta Torii
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Chikako Habuchi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hirotaka Sekiguchi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiroshige Fujishiro
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Yasuhiro Go
- Department of Brain Sciences, Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan; The Graduate University for Advanced Studies (Sokendai), Okazaki, Japan
| | - Astushi Iriki
- Laboratory for Symbolic Cognitive Developmen RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Masaki Isoda
- Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Aichi, Japan; Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama, Japan; Department of Physiology, Kansai Medical University School of Medicine, Hirakata, Osaka, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
5
|
Gonadal hormone modulation of intracellular calcium as a mechanism of neuroprotection. Front Neuroendocrinol 2016; 42:40-52. [PMID: 26930421 DOI: 10.1016/j.yfrne.2016.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/22/2016] [Accepted: 02/26/2016] [Indexed: 12/28/2022]
Abstract
Hormones have wide-ranging effects throughout the nervous system, including the ability interact with and modulate many aspects of intracellular calcium regulation and calcium signaling. Indeed, these interactions specifically may help to explain the often opposing or paradoxical effects of hormones, such as their ability to both promote and prevent neuronal cell death during development, as well as reduce or exacerbate damage following an insult or injury in adulthood. Here, we review the basic mechanisms underlying intracellular calcium regulation-perhaps the most dynamic and flexible of all signaling molecules-and discuss how gonadal hormones might manipulate these mechanisms to coordinate diverse cellular responses and achieve disparate outcomes. Additional future research that specifically addresses questions of sex and hormone effects on calcium signaling at different ages will be critical to understanding hormone-mediated neuroprotection.
Collapse
|
6
|
Bradbury A, Bagel J, Sampson M, Farhat N, Ding W, Swain G, Prociuk M, O'Donnell P, Drobatz K, Gurda B, Wassif C, Remaley A, Porter F, Vite C. Cerebrospinal Fluid Calbindin D Concentration as a Biomarker of Cerebellar Disease Progression in Niemann-Pick Type C1 Disease. J Pharmacol Exp Ther 2016; 358:254-61. [PMID: 27307499 DOI: 10.1124/jpet.116.232975] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/06/2016] [Indexed: 01/29/2023] Open
Abstract
Niemann-Pick type C (NPC) 1 disease is a rare, inherited, neurodegenerative disease. Clear evidence of the therapeutic efficacy of 2-hydroxypropyl-β-cyclodextrin (HPβCD) in animal models resulted in the initiation of a phase I/IIa clinical trial in 2013 and a phase IIb/III trial in 2015. With clinical trials ongoing, validation of a biomarker to track disease progression and serve as a supporting outcome measure of therapeutic efficacy has become compulsory. In this study, we evaluated calcium-binding protein calbindin D-28K (calbindin) concentrations in the cerebrospinal fluid (CSF) as a biomarker of NPC1 disease. In the naturally occurring feline model, CSF calbindin was significantly elevated at 3 weeks of age, prior to the onset of cerebellar dysfunction, and steadily increased to >10-fold over normal at end-stage disease. Biweekly intrathecal administration of HPβCD initiated prior to the onset of neurologic dysfunction completely normalized CSF calbindin in NPC1 cats at all time points analyzed when followed up to 78 weeks of age. Initiation of HPβCD after the onset of clinical signs (16 weeks of age) resulted in a delayed reduction of calbindin levels in the CSF. Evaluation of CSF from patients with NPC1 revealed that calbindin concentrations were significantly elevated compared with CSF samples collected from unaffected patients. Off-label treatment of patients with NPC1 with miglustat, an inhibitor of glycosphingolipid biosynthesis, significantly decreased CSF calbindin compared with pretreatment concentrations. These data suggest that the CSF calbindin concentration is a sensitive biomarker of NPC1 disease that could be instrumental as an outcome measure of therapeutic efficacy in ongoing clinical trials.
Collapse
Affiliation(s)
- Allison Bradbury
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.B., J.B., W.D., G.S., M.P., P.O., K.D., B.G., C.V.); Division of Intramural Research, National Institutes of Health National Heart, Lung, and Blood Institute, Bethesda, Maryland (M.S., A.R.); and Division of Translational Research, National Institutes of Health Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland (N.F., C.W., F.P.)
| | - Jessica Bagel
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.B., J.B., W.D., G.S., M.P., P.O., K.D., B.G., C.V.); Division of Intramural Research, National Institutes of Health National Heart, Lung, and Blood Institute, Bethesda, Maryland (M.S., A.R.); and Division of Translational Research, National Institutes of Health Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland (N.F., C.W., F.P.)
| | - Maureen Sampson
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.B., J.B., W.D., G.S., M.P., P.O., K.D., B.G., C.V.); Division of Intramural Research, National Institutes of Health National Heart, Lung, and Blood Institute, Bethesda, Maryland (M.S., A.R.); and Division of Translational Research, National Institutes of Health Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland (N.F., C.W., F.P.)
| | - Nicole Farhat
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.B., J.B., W.D., G.S., M.P., P.O., K.D., B.G., C.V.); Division of Intramural Research, National Institutes of Health National Heart, Lung, and Blood Institute, Bethesda, Maryland (M.S., A.R.); and Division of Translational Research, National Institutes of Health Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland (N.F., C.W., F.P.)
| | - Wenge Ding
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.B., J.B., W.D., G.S., M.P., P.O., K.D., B.G., C.V.); Division of Intramural Research, National Institutes of Health National Heart, Lung, and Blood Institute, Bethesda, Maryland (M.S., A.R.); and Division of Translational Research, National Institutes of Health Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland (N.F., C.W., F.P.)
| | - Gary Swain
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.B., J.B., W.D., G.S., M.P., P.O., K.D., B.G., C.V.); Division of Intramural Research, National Institutes of Health National Heart, Lung, and Blood Institute, Bethesda, Maryland (M.S., A.R.); and Division of Translational Research, National Institutes of Health Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland (N.F., C.W., F.P.)
| | - Maria Prociuk
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.B., J.B., W.D., G.S., M.P., P.O., K.D., B.G., C.V.); Division of Intramural Research, National Institutes of Health National Heart, Lung, and Blood Institute, Bethesda, Maryland (M.S., A.R.); and Division of Translational Research, National Institutes of Health Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland (N.F., C.W., F.P.)
| | - Patricia O'Donnell
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.B., J.B., W.D., G.S., M.P., P.O., K.D., B.G., C.V.); Division of Intramural Research, National Institutes of Health National Heart, Lung, and Blood Institute, Bethesda, Maryland (M.S., A.R.); and Division of Translational Research, National Institutes of Health Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland (N.F., C.W., F.P.)
| | - Kenneth Drobatz
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.B., J.B., W.D., G.S., M.P., P.O., K.D., B.G., C.V.); Division of Intramural Research, National Institutes of Health National Heart, Lung, and Blood Institute, Bethesda, Maryland (M.S., A.R.); and Division of Translational Research, National Institutes of Health Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland (N.F., C.W., F.P.)
| | - Brittney Gurda
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.B., J.B., W.D., G.S., M.P., P.O., K.D., B.G., C.V.); Division of Intramural Research, National Institutes of Health National Heart, Lung, and Blood Institute, Bethesda, Maryland (M.S., A.R.); and Division of Translational Research, National Institutes of Health Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland (N.F., C.W., F.P.)
| | - Christopher Wassif
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.B., J.B., W.D., G.S., M.P., P.O., K.D., B.G., C.V.); Division of Intramural Research, National Institutes of Health National Heart, Lung, and Blood Institute, Bethesda, Maryland (M.S., A.R.); and Division of Translational Research, National Institutes of Health Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland (N.F., C.W., F.P.)
| | - Alan Remaley
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.B., J.B., W.D., G.S., M.P., P.O., K.D., B.G., C.V.); Division of Intramural Research, National Institutes of Health National Heart, Lung, and Blood Institute, Bethesda, Maryland (M.S., A.R.); and Division of Translational Research, National Institutes of Health Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland (N.F., C.W., F.P.)
| | - Forbes Porter
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.B., J.B., W.D., G.S., M.P., P.O., K.D., B.G., C.V.); Division of Intramural Research, National Institutes of Health National Heart, Lung, and Blood Institute, Bethesda, Maryland (M.S., A.R.); and Division of Translational Research, National Institutes of Health Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland (N.F., C.W., F.P.)
| | - Charles Vite
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.B., J.B., W.D., G.S., M.P., P.O., K.D., B.G., C.V.); Division of Intramural Research, National Institutes of Health National Heart, Lung, and Blood Institute, Bethesda, Maryland (M.S., A.R.); and Division of Translational Research, National Institutes of Health Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland (N.F., C.W., F.P.)
| |
Collapse
|
7
|
de Wilde MC, Overk CR, Sijben JW, Masliah E. Meta-analysis of synaptic pathology in Alzheimer's disease reveals selective molecular vesicular machinery vulnerability. Alzheimers Dement 2016; 12:633-44. [PMID: 26776762 DOI: 10.1016/j.jalz.2015.12.005] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/02/2015] [Accepted: 12/04/2015] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Loss of synapses best correlates to cognitive deficits in Alzheimer's disease (AD) in which oligomeric neurotoxic species of amyloid-β appears to contribute synaptic pathology. Although a number of clinical pathologic studies have been performed with limited sample size, there are no systematic studies encompassing large samples. Therefore, we performed a meta-analysis study. METHODS We identified 417 publications reporting postmortem synapse and synaptic marker loss from AD patients. Two meta-analyses were performed using a single database of subselected publications and calculating the standard mean differences. RESULTS Meta-analysis confirmed synaptic loss in selected brain regions is an early event in AD pathogenesis. The second meta-analysis of 57 synaptic markers revealed that presynaptic makers were affected more than postsynaptic markers. DISCUSSION The present meta-analysis study showed a consistent synaptic loss across brain regions and that molecular machinery including endosomal pathways, vesicular assembly mechanisms, glutamate receptors, and axonal transport are often affected.
Collapse
Affiliation(s)
- Martijn C de Wilde
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands
| | - Cassia R Overk
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - John W Sijben
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Department of Pathology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Murayama N, Noshita T, Ogino R, Masuda T, Kadoshima T, Oka T, Ueno N, Takemoto N, Toba T, Ueno S, Schulze W, Igawa Y, Morita Y, Inoue T. SUN11602-induced hyperexpression of calbindin D-28k is pivotal for the survival of hippocampal neurons under neurotoxic conditions. Brain Res 2015; 1594:71-81. [DOI: 10.1016/j.brainres.2014.10.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/12/2014] [Accepted: 10/29/2014] [Indexed: 02/03/2023]
|
9
|
Kook SY, Jeong H, Kang MJ, Park R, Shin HJ, Han SH, Son SM, Song H, Baik SH, Moon M, Yi EC, Hwang D, Mook-Jung I. Crucial role of calbindin-D28k in the pathogenesis of Alzheimer's disease mouse model. Cell Death Differ 2014; 21:1575-87. [PMID: 24853300 PMCID: PMC4158683 DOI: 10.1038/cdd.2014.67] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 03/03/2014] [Accepted: 04/04/2014] [Indexed: 01/22/2023] Open
Abstract
Calbindin-D28k (CB), one of the major calcium-binding and buffering proteins, has a critical role in preventing a neuronal death as well as maintaining calcium homeostasis. Although marked reductions of CB expression have been observed in the brains of mice and humans with Alzheimer disease (AD), it is unknown whether these changes contribute to AD-related dysfunction. To determine the pathogenic importance of CB depletions in AD models, we crossed 5 familial AD mutations (5XFAD; Tg) mice with CB knock-out (CBKO) mice and generated a novel line CBKO·5XFAD (CBKOTg) mice. We first identified the change of signaling pathways and differentially expressed proteins globally by removing CB in Tg mice using mass spectrometry and antibody microarray. Immunohistochemistry showed that CBKOTg mice had significant neuronal loss in the subiculum area without changing the magnitude (number) of amyloid β-peptide (Aβ) plaques deposition and elicited significant apoptotic features and mitochondrial dysfunction compared with Tg mice. Moreover, CBKOTg mice reduced levels of phosphorylated mitogen-activated protein kinase (extracellular signal-regulated kinase) 1/2 and cAMP response element-binding protein at Ser-133 and synaptic molecules such as N-methyl-D-aspartate receptor 1 (NMDA receptor 1), NMDA receptor 2A, PSD-95 and synaptophysin in the subiculum compared with Tg mice. Importantly, this is the first experimental evidence that removal of CB from amyloid precursor protein/presenilin transgenic mice aggravates AD pathogenesis, suggesting that CB has a critical role in AD pathogenesis.
Collapse
Affiliation(s)
- S-Y Kook
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Korea
| | - H Jeong
- School of Interdisciplinary Bioscience and Bioengineering, Department of Chemical Engineering, POSTECH, Pohang, Korea
| | - M J Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Korea
| | - R Park
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Korea
| | - H J Shin
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Korea
| | - S-H Han
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Korea
| | - S M Son
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Korea
| | - H Song
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Korea
| | - S H Baik
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Korea
| | - M Moon
- Molecular Neurobiology Laboratory, Department of Psychiatry and Mclean Hospital, Harvard Medical School, Belmont, MA, USA
| | - E C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Korea
| | - D Hwang
- 1] School of Interdisciplinary Bioscience and Bioengineering, Department of Chemical Engineering, POSTECH, Pohang, Korea [2] Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu, Korea
| | - I Mook-Jung
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Stefanits H, Wesseling C, Kovacs GG. Loss of Calbindin immunoreactivity in the dentate gyrus distinguishes Alzheimer's disease from other neurodegenerative dementias. Neurosci Lett 2014; 566:137-41. [PMID: 24569123 DOI: 10.1016/j.neulet.2014.02.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/27/2014] [Accepted: 02/06/2014] [Indexed: 10/25/2022]
Abstract
Calbindin (Cb) is one of the major Ca(2+) binding proteins exhibiting neuromodulatory functions such as long-term potentiation (LTP), synaptic plasticity, and memory functions. It is expressed in hippocampal interneurons, pyramidal cells and granule cells of the dentate gyrus (DGCs). Cb mRNA levels remain stable during normal ageing, but decrease in Alzheimer's, Huntington, and Parkinson's disease. A recent study suggested a link between Aβ-induced Alzheimer's disease (AD)-related cognitive deficits and neuronal depletion of Cb. To evaluate whether this is specific for AD, we performed a comparative study of Cb immunoreactivity of DGCs in cases with AD-related neuropathologic change (49), grouped according to the stages of Braak and Braak, BB), Creutzfeldt-Jakob-disease (16), FTLD-tau Pick's disease type (PiD; 5), argyrophilic grain disease (8), and FTLD-TDP types A and B (6). The group of AD cases with BB stages V and VI showed the highest proportion of Cb negative cells in the DGC when compared to all other groups except PiD. The ratio of negative cells correlated significantly with the BB stages. While the total number of DGCs decreased with age in our series, loss of Cb immunoreactivity was shown to be age-dependent only in PiD and FTLD-TDP. We conclude, that late stage AD-neuropathologic change (BB V and VI stages) associates with significantly higher ratios of Cb negative DGCs and this correlates with advanced BB stage. This might suggest an accumulative effect of an epilepsy-like pathway on the Cb expression or the direct influence of local pathological protein deposits on the DGCs.
Collapse
Affiliation(s)
- Harald Stefanits
- Institute of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Carolin Wesseling
- Institute of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
11
|
Craig-Schapiro R, Kuhn M, Xiong C, Pickering EH, Liu J, Misko TP, Perrin RJ, Bales KR, Soares H, Fagan AM, Holtzman DM. Multiplexed immunoassay panel identifies novel CSF biomarkers for Alzheimer's disease diagnosis and prognosis. PLoS One 2011; 6:e18850. [PMID: 21526197 PMCID: PMC3079734 DOI: 10.1371/journal.pone.0018850] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 03/21/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Clinicopathological studies suggest that Alzheimer's disease (AD) pathology begins ∼10-15 years before the resulting cognitive impairment draws medical attention. Biomarkers that can detect AD pathology in its early stages and predict dementia onset would, therefore, be invaluable for patient care and efficient clinical trial design. We utilized a targeted proteomics approach to discover novel cerebrospinal fluid (CSF) biomarkers that can augment the diagnostic and prognostic accuracy of current leading CSF biomarkers (Aβ42, tau, p-tau181). METHODS AND FINDINGS Using a multiplexed Luminex platform, 190 analytes were measured in 333 CSF samples from cognitively normal (Clinical Dementia Rating [CDR] 0), very mildly demented (CDR 0.5), and mildly demented (CDR 1) individuals. Mean levels of 37 analytes (12 after Bonferroni correction) were found to differ between CDR 0 and CDR>0 groups. Receiver-operating characteristic curve analyses revealed that small combinations of a subset of these markers (cystatin C, VEGF, TRAIL-R3, PAI-1, PP, NT-proBNP, MMP-10, MIF, GRO-α, fibrinogen, FAS, eotaxin-3) enhanced the ability of the best-performing established CSF biomarker, the tau/Aβ42 ratio, to discriminate CDR>0 from CDR 0 individuals. Multiple machine learning algorithms likewise showed that the novel biomarker panels improved the diagnostic performance of the current leading biomarkers. Importantly, most of the markers that best discriminated CDR 0 from CDR>0 individuals in the more targeted ROC analyses were also identified as top predictors in the machine learning models, reconfirming their potential as biomarkers for early-stage AD. Cox proportional hazards models demonstrated that an optimal panel of markers for predicting risk of developing cognitive impairment (CDR 0 to CDR>0 conversion) consisted of calbindin, Aβ42, and age. CONCLUSIONS/SIGNIFICANCE Using a targeted proteomic screen, we identified novel candidate biomarkers that complement the best current CSF biomarkers for distinguishing very mildly/mildly demented from cognitively normal individuals. Additionally, we identified a novel biomarker (calbindin) with significant prognostic potential.
Collapse
Affiliation(s)
- Rebecca Craig-Schapiro
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Max Kuhn
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton, Connecticut, United States of America
- Neuroscience Research Unit, Pfizer Global Research and Development, St. Louis, Missouri, United States of America
| | - Chengjie Xiong
- The Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eve H. Pickering
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton, Connecticut, United States of America
- Neuroscience Research Unit, Pfizer Global Research and Development, St. Louis, Missouri, United States of America
| | - Jingxia Liu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Thomas P. Misko
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton, Connecticut, United States of America
- Neuroscience Research Unit, Pfizer Global Research and Development, St. Louis, Missouri, United States of America
| | - Richard J. Perrin
- The Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Neuropathology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kelly R. Bales
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton, Connecticut, United States of America
- Neuroscience Research Unit, Pfizer Global Research and Development, St. Louis, Missouri, United States of America
| | - Holly Soares
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton, Connecticut, United States of America
- Neuroscience Research Unit, Pfizer Global Research and Development, St. Louis, Missouri, United States of America
| | - Anne M. Fagan
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- The Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David M. Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- The Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
12
|
Attems J, Ittner A, Jellinger K, Nitsch RM, Maj M, Wagner L, Götz J, Heikenwalder M. Reduced secretagogin expression in the hippocampus of P301L tau transgenic mice. J Neural Transm (Vienna) 2011; 118:737-45. [PMID: 21442354 DOI: 10.1007/s00702-011-0626-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 03/13/2011] [Indexed: 11/26/2022]
Abstract
Neuropathological features in Alzheimer's Disease (AD) include the presence of hyperphosphorylated forms of the microtubule-associated tau protein (tau) in hippocampal neurones. Numerous studies indicate a neuroprotective effect of calcium-binding proteins (Ca2+ binding proteins) in neurodegenerative diseases (e.g., AD). Secretagogin is a newly described Ca2+ binding protein that is produced by pyramidal neurones of the human hippocampus. Recently, secretagogin expressing hippocampal neurones were demonstrated to resist tau-induced pathology in AD in contrast to the majority of neighbouring neurones. This suggested a neuroprotective effect of secretagogin in hippocampal neurones. Here, we investigated secretagogin expression in wild type (wt) mice as well as in hemizygous and homozygous P301L tau transgenic (tg) mice, which show pronounced and widespread tau pathology in hippocampal neurones. Secretagogin expression was analyzed at the immunohistochemical and biochemical levels in brains of age-matched wt and hemi- and homozygous tau tg mice. In wt mice hippocampal secretagogin-immunoreactive neurones were invariably detected, while immunoreactivity was much lower (P < 0.001) in tau tg mice. Of note, hippocampal secretagogin immunoreactivity was absent in 62.5% of homozygous tau tg mice. In line with this finding, Western blot analysis demonstrated a significant reduction in protein expression levels of secretagogin in homozygous tau tg compared to wt mice. Our results suggest that increased levels of tau negatively influence secretagogin expression in the hippocampus of tau tg mice.
Collapse
Affiliation(s)
- Johannes Attems
- Institute for Ageing and Health, Wolfson Research Centre, Newcastle University, Newcastle upon Tyne, UK.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Attems J, Preusser M, Grosinger-Quass M, Wagner L, Lintner F, Jellinger K. Calcium-binding protein secretagogin-expressing neurones in the human hippocampus are largely resistant to neurodegeneration in Alzheimer's disease. Neuropathol Appl Neurobiol 2007; 34:23-32. [PMID: 17961140 DOI: 10.1111/j.1365-2990.2007.00854.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pathological findings in Alzheimer's disease (AD) are partly attributed to alterations in calcium-binding protein (CBP) functions. We showed previously that immunoreactivity of secretagogin, a recently cloned CBP, in the human hippocampus is restricted to pyramidal neurones and that the amount of immunoreactive neurones does not differ between AD cases and controls. In this study we investigate the influence of hippocampal tau pathology on secretagogin expression in more details. The study group consisted of 26 cases with different degrees of neuropathologically confirmed AD pathology. Sections were incubated separately with secretagogin- and tau-specific antibodies, respectively. The amount of immunoreactive neurones and integral optical densities were assessed. In addition, double immunofluorescence for both secretagogin and tau was performed. No difference with respect to secretagogin immunoreactivity was observed in different stages of AD pathology, and similarly no significant associations were seen between the amount of secretagogin and tau immunoreactivity in the different hippocampal subfields. Double immunofluorescence revealed that both proteins rarely colocalize because only 5.3% of tau and 2.9% of secretagogin immunoreactive neurones, respectively, showed colocalization. Because there are no differences in the amount of hippocampal secretagogin expression between AD cases and controls (as we have shown previously), the lack of an association between the amount of secretagogin expression and tau burden together with the low frequency of colocalization of tau and secretagogin in the human hippocampus, suggest that secretagogin-expressing neurones are largely resistant to neurodegeneration in AD.
Collapse
Affiliation(s)
- J Attems
- Institute of Pathology, Otto Wagner Hospital, Baumgartner Hoehe, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
As part of the hippocampus, the dentate gyrus is considered to play a crucial role in associative memory. The reviewed data suggest that the dentate gyrus withstands the formation of plaques, tangles and neuronal death until late stages of Alzheimer's disease (AD). However, changes related to a disconnecting process, and more subtle intrinsic alterations, may contribute to disturbances in memory and learning observed in early stages of AD.
Collapse
Affiliation(s)
- Thomas G Ohm
- Institute of Integrative Neuroanatomy, Department of Clinical Cell and Neurobiology, Charité CCM, 10098 Berlin, Germany.
| |
Collapse
|
15
|
Chance SA, Casanova MF, Switala AE, Crow TJ, Esiri MM. Minicolumn thinning in temporal lobe association cortex but not primary auditory cortex in normal human ageing. Acta Neuropathol 2006; 111:459-64. [PMID: 16496164 DOI: 10.1007/s00401-005-0014-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 10/06/2005] [Accepted: 10/10/2005] [Indexed: 12/24/2022]
Abstract
The cerebral cortex undergoes changes during normal ageing with increasing effect on cognition. Disruption of minicolumnar organization of neurons is found with increased cognitive impairment in primates. We measured the minicolumn spacing and organization of cells in Heschl's gyrus (primary auditory cortex, A1), the Planum Temporale (Tpt, BA22), and middle temporal gyrus (MTG, BA21) of 17 normally aged human adults. Age-associated minicolumn thinning was found in temporal lobe association cortex (Tpt and MTG) but not primary auditory cortex (HG). Minicolumn thinning was also associated with greater plaque load, although this effect was present in all areas. The regional variability of age-associated minicolumn thinning reflects the regionally selective progression of tangle pathology in Alzheimer's Disease (AD). The generalized effect of plaque load persists when controlling for age. Therefore plaque load combines with age to increase minicolumn thinning, which may reflect increasing risk of AD. Since old age is the greatest risk factor for dementia, the transition to dementia may involve an extension of normal ageing processes.
Collapse
Affiliation(s)
- Steven A Chance
- Department of Neuropathology, Radcliffe Infirmary, Woodstock Road, OX2 6HE, Oxford, UK.
| | | | | | | | | |
Collapse
|
16
|
Idrizbegovic E, Bogdanovic N, Willott JF, Canlon B. Age-related increases in calcium-binding protein immunoreactivity in the cochlear nucleus of hearing impaired C57BL/6J mice. Neurobiol Aging 2004; 25:1085-93. [PMID: 15212833 DOI: 10.1016/j.neurobiolaging.2003.11.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2003] [Revised: 10/27/2003] [Accepted: 11/04/2003] [Indexed: 11/17/2022]
Abstract
Aging C57BL/6J (C57) mice (1-30 months old), were used to study calcium-binding protein immunoreactivity (parvalbumin, calbindin and calretinin) in the cochlear nucleus. A quantitative stereological method, the optical fractionator was used to determine the total number of neurons, and the total number of immunostained neurons in the posteroventral- and dorsal cochlear nuclei (PVCN and DCN). A statistically significant age-related decrease of the total number of neurons was found in the PVCN and DCN using Nissl staining. In the DCN, an age-related increase in the total number of parvalbumin-positive neurons was found, while no changes in the total number of calbindin or calretinin positive neurons were demonstrated. In the PVCN, the total number of parvalbumin, calbindin, or calretinin positive neurons remained stable with increasing age. The percentage of parvalbumin, calbindin, and calretinin positive neurons significantly increased in the DCN, and the percentage of parvalbumin and calbindin-positive neurons increased in the PVCN. These findings imply that there is a relative up-regulation of calcium-binding proteins in neurons that had not previously expressed these proteins. This plastic response in the profoundly hearing impaired C57 mouse may be a survival strategy for cochlear nucleus neurons.
Collapse
Affiliation(s)
- Esma Idrizbegovic
- Department of Audiology, Huddinge University Hospital, Huddinge, Sweden
| | | | | | | |
Collapse
|
17
|
Maekawa S, Al-Sarraj S, Kibble M, Landau S, Parnavelas J, Cotter D, Everall I, Leigh PN. Cortical selective vulnerability in motor neuron disease: a morphometric study. ACTA ACUST UNITED AC 2004; 127:1237-51. [PMID: 15130949 DOI: 10.1093/brain/awh132] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neuroimaging and neuropsychological studies have revealed that the primary motor cortex (PMC) and the extramotor cortical areas are functionally abnormal in motor neuron disease (MND, amyotrophic lateral sclerosis), but the nature of the cortical lesions that underlie these changes is poorly understood. In particular, there have been few attempts to quantify neuronal loss in the PMC and in other cortical areas in MND. We used SMI-32, an antibody against an epitope on non-phosphorylated neurofilament heavy chain, to analyse the size and density of SMI-32-positive cortical pyramidal neurons in layer V of the PMC, the dorsolateral prefrontal cortex (DLPFC) and the supragenual anterior cingulate cortex (ACC) in 13 MND and eight control subjects. There was a statistically significant reduction in the density of SMI-32-immunoreactive (IR) pyramidal neurons within cortical layer V in the PMC, the DLPFC and the ACC in MND subjects compared with controls [t (19) = 2.91, P = 0.009; estimated reduction 25%; 95% CI = 8%, 40%]. In addition, we studied the density and size of interneurons immunoreactive for the calcium-binding proteins calbindin-D(28K) (CB), parvalbumin (PV) and calretinin (CR) in the same areas (PMC, DLPFC and ACC). Statistically significant differences in the densities of CB-IR neurons were observed within cortical layers V (P = 0.003) and VI (P = 0.001) in MND cases compared with controls. The densities of CR- and PV-IR neurons were not significantly different between MND and control cases, although there were trends towards reductions of CR-IR neuronal density within the same layers and of PV-IR neuronal density within cortical layer VI. Loss of pyramidal neurons and of GABAergic interneurons is more widespread than has been appreciated and is present in areas associated with neuroimaging and cognitive abnormalities in MND. These findings support the notion that MND should be considered a multisystem disorder.
Collapse
Affiliation(s)
- S Maekawa
- Department of Neurology, Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK.
| | | | | | | | | | | | | | | |
Collapse
|