1
|
Zhang Y, Yin R, Liu X. Changes in Cyclic Guanosine Monophosphate Channel of 661w Cells In vitro with Excessive Light Time. J Ophthalmic Vis Res 2023; 18:417-423. [PMID: 38250228 PMCID: PMC10794799 DOI: 10.18502/jovr.v18i4.14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/21/2023] [Indexed: 01/23/2024] Open
Abstract
Purpose To determine the response time and protective mechanism of the cyclic guanosine monophosphate (cGMP) channel in 661w cells. Methods 661w cells were exposed to 4500Lux visible light for three and four days at the following exposure time periods per day: 20, 30, 60, 90, 120, and 180. Cells were incubated for the rest of the time without any other treatment. Cell activity and cell death rates were measured with Hoechst/PI (diphenylmethane/propidium iodide) staining. Western Blot was used to detect the levels of guanylate cyclase-activating proteins 1 (GCAP1), cGMP, and phosphodiesterase (PDE)6 in the cGMP-gated channel. Results 661w cells showed low mortality within three days. The mortality rate increased from the fourth day, especially during the longer times (120 and 180 min) of light exposure. After three-day illumination, the level of cGMP increased after 20 and 90 min and the level of GCAP1 increased after 60 and 90 min. After four days of illumination, the level of GCAP1 upregulated after a time of 20 and 60 min, while the cGMP level decreased from 30 min. The expression of PDE6 upregulated at each light period. Conclusion The survival rate of 661w cells was relevant to the time of light exposure. The changes in GCAP1, cGMP, and PDE6 levels over time were possibly related to cell metabolism and restoration after light-induced damage.
Collapse
Affiliation(s)
- Yahan Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, National Clinical Research Center for Eye Diseases, Shanghai Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Rui Yin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Xin Liu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Grabinski SE, Parsana D, Perkins BD. Comparative analysis of transcriptional changes in zebrafish cep290 and bbs2 mutants by RNA-seq reveals upregulation of inflammatory and stress-related pathways. Front Mol Neurosci 2023; 16:1148840. [PMID: 37293546 PMCID: PMC10244513 DOI: 10.3389/fnmol.2023.1148840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Acute injury to the adult zebrafish retina triggers the release of pro-inflammatory cytokines and growth factors that stimulate multiple gene regulatory networks, which ultimately stimulate Müller glia to proliferate and regenerate neurons. In contrast, zebrafish carrying mutations in cep290 or bbs2 undergo progressive loss of cone photoreceptors and exhibit signs of microglia activation and inflammation, but the mutants fail to stimulate a regeneration response. To identify transcriptional changes that occur in zebrafish mutants undergoing progressive photoreceptor degeneration, RNA-seq transcriptional profiling was performed on cep290-/- and bbs2-/- retinas. The PANTHER Classification System was used to identify biological processes and signaling pathways that were differentially expressed between mutants and wild-type siblings during degeneration. As expected, genes associated with phototransduction were downregulated in cep290 and bbs2 mutants compared to wild-type siblings. Although both cep290 and bbs2 mutants undergo proliferation of rod precursors in response to retinal degeneration, the process of negatively regulating proliferation is enriched for upregulated genes, and this negative regulation may restrict proliferation of Müller glia and inhibit regeneration. A total of 815 differentially expressed genes (DEGs) were shared by cep290 and bbs2 retinas. Genes in pathways associated with inflammation, apoptosis, stress response, and PDGF signaling were overrepresented. Identifying the genes and biological pathways that are common in zebrafish models of inherited retinal degeneration provides a foundation for future studies on the mechanisms that regulate cell death as well as processes that prohibit Müller cell reprogramming or proliferation in a model capable of retinal regeneration. The pathways will provide targets for future interventions that may promote successful regeneration of lost photoreceptors.
Collapse
Affiliation(s)
- Sarah E. Grabinski
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Dhwani Parsana
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Brian D. Perkins
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
3
|
Koch KW. Molecular tuning of calcium dependent processes by neuronal calcium sensor proteins in the retina. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119491. [PMID: 37230154 DOI: 10.1016/j.bbamcr.2023.119491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Vertebrate photoreceptor cells are exquisite light detectors operating under very dim and bright illumination mediated by phototransduction, which is under control of the two secondary messengers cGMP and Ca2+. Feedback mechanisms enable photoreceptor cells to regain their responsiveness after light stimulation and involve neuronal Ca2+-sensor proteins, named GCAPs (guanylate cyclase-activating proteins) and recoverins. This review compares the diversity in Ca2+-related signaling mediated by GCAP and recoverin variants that exhibit differences in Ca2+-sensing, protein conformational changes, myristoyl switch mechanisms, diversity in divalent cation binding and dimer formation. In summary, both subclasses of neuronal Ca2+-sensor proteins contribute to a complex signaling network in rod and cone cells, which is perfectly suited to match the requirements for sensitive cell responses and maintaining this responsiveness in the presence of different background light intensities.
Collapse
Affiliation(s)
- Karl-Wilhelm Koch
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, 26111 Oldenburg, Germany.
| |
Collapse
|
4
|
Abstract
Carotenoid pigments accumulate in specific patterns in vertebrate tissues and play important roles as colorants, chromophores, and hormone precursors. However, proteins that facilitate transportation of these lipophilic pigments within cells have not been identified. We provide evidence that Aster proteins are key components for this process and show that they bind the pigments with high affinity. We observed in mice that carotenoids accumulate in tissues that express Aster-B and this accumulation can be prevented by enzymatic turnover by the BCO2 protein. Accordingly, we found opposing expression patterns of the Aster-B protein and BCO2 in the human retina that seemingly contribute to the unique carotenoid concentration in the macula lutea. Some mammalian tissues uniquely concentrate carotenoids, but the underlying biochemical mechanism for this accumulation has not been fully elucidated. For instance, the central retina of the primate eyes displays high levels of the carotenoids, lutein, and zeaxanthin, whereas the pigments are largely absent in rodent retinas. We previously identified the scavenger receptor class B type 1 and the enzyme β-carotene-oxygenase-2 (BCO2) as key components that determine carotenoid concentration in tissues. We now provide evidence that Aster (GRAM-domain-containing) proteins, recently recognized for their role in nonvesicular cholesterol transport, engage in carotenoid metabolism. Our analyses revealed that the StART-like lipid binding domain of Aster proteins can accommodate the bulky pigments and bind them with high affinity. We further showed that carotenoids and cholesterol compete for the same binding site. We established a bacterial test system to demonstrate that the StART-like domains of mouse and human Aster proteins can extract carotenoids from biological membranes. Mice deficient for the carotenoid catabolizing enzyme BCO2 concentrated carotenoids in Aster-B protein-expressing tissues such as the adrenal glands. Remarkably, Aster-B was expressed in the human but not in the mouse retina. Within the retina, Aster-B and BCO2 showed opposite expression patterns in central versus peripheral parts. Together, our study unravels the biochemical basis for intracellular carotenoid transport and implicates Aster-B in the pathway for macula pigment concentration in the human retina.
Collapse
|
5
|
Avesani A, Bielefeld L, Weisschuh N, Marino V, Mazzola P, Stingl K, Haack TB, Koch KW, Dell’Orco D. Molecular Properties of Human Guanylate Cyclase-Activating Protein 3 (GCAP3) and Its Possible Association with Retinitis Pigmentosa. Int J Mol Sci 2022; 23:ijms23063240. [PMID: 35328663 PMCID: PMC8948881 DOI: 10.3390/ijms23063240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022] Open
Abstract
The cone-specific guanylate cyclase-activating protein 3 (GCAP3), encoded by the GUCA1C gene, has been shown to regulate the enzymatic activity of membrane-bound guanylate cyclases (GCs) in bovine and teleost fish photoreceptors, to an extent comparable to that of the paralog protein GCAP1. To date, the molecular mechanisms underlying GCAP3 function remain largely unexplored. In this work, we report a thorough characterization of the biochemical and biophysical properties of human GCAP3, moreover, we identified an isolated case of retinitis pigmentosa, in which a patient carried the c.301G>C mutation in GUCA1C, resulting in the substitution of a highly conserved aspartate residue by a histidine (p.(D101H)). We found that myristoylated GCAP3 can activate GC1 with a similar Ca2+-dependent profile, but significantly less efficiently than GCAP1. The non-myristoylated form did not induce appreciable regulation of GC1, nor did the p.D101H variant. GCAP3 forms dimers under physiological conditions, but at odds with its paralogs, it tends to form temperature-dependent aggregates driven by hydrophobic interactions. The peculiar properties of GCAP3 were confirmed by 2 ms molecular dynamics simulations, which for the p.D101H variant highlighted a very high structural flexibility and a clear tendency to lose the binding of a Ca2+ ion to EF3. Overall, our data show that GCAP3 has unusual biochemical properties, which make the protein significantly different from GCAP1 and GCAP2. Moreover, the newly identified point mutation resulting in a substantially unfunctional protein could trigger retinitis pigmentosa through a currently unknown mechanism.
Collapse
Affiliation(s)
- Anna Avesani
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.A.); (V.M.)
| | - Laura Bielefeld
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, 26111 Oldenburg, Germany; (L.B.); (K.-W.K.)
| | - Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany;
| | - Valerio Marino
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.A.); (V.M.)
| | - Pascale Mazzola
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; (P.M.); (T.B.H.)
| | - Katarina Stingl
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany;
| | - Tobias B. Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; (P.M.); (T.B.H.)
- Centre for Rare Diseases, University of Tübingen, 72076 Tübingen, Germany
| | - Karl-Wilhelm Koch
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, 26111 Oldenburg, Germany; (L.B.); (K.-W.K.)
| | - Daniele Dell’Orco
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.A.); (V.M.)
- Correspondence: ; Tel.: +39-045-802-7637
| |
Collapse
|
6
|
Zang J, Neuhauss SCF. Biochemistry and physiology of zebrafish photoreceptors. Pflugers Arch 2021; 473:1569-1585. [PMID: 33598728 PMCID: PMC8370914 DOI: 10.1007/s00424-021-02528-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
All vertebrates share a canonical retina with light-sensitive photoreceptors in the outer retina. These photoreceptors are of two kinds: rods and cones, adapted to low and bright light conditions, respectively. They both show a peculiar morphology, with long outer segments, comprised of ordered stacks of disc-shaped membranes. These discs host numerous proteins, many of which contribute to the visual transduction cascade. This pathway converts the light stimulus into a biological signal, ultimately modulating synaptic transmission. Recently, the zebrafish (Danio rerio) has gained popularity for studying the function of vertebrate photoreceptors. In this review, we introduce this model system and its contribution to our understanding of photoreception with a focus on the cone visual transduction cascade.
Collapse
Affiliation(s)
- Jingjing Zang
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrase 190, CH - 8057, Zürich, Switzerland
| | - Stephan C F Neuhauss
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrase 190, CH - 8057, Zürich, Switzerland.
| |
Collapse
|
7
|
Regulation of retinal membrane guanylyl cyclase (RetGC) by negative calcium feedback and RD3 protein. Pflugers Arch 2021; 473:1393-1410. [PMID: 33537894 PMCID: PMC8329130 DOI: 10.1007/s00424-021-02523-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/07/2022]
Abstract
This article presents a brief overview of the main biochemical and cellular processes involved in regulation of cyclic GMP production in photoreceptors. The main focus is on how the fluctuations of free calcium concentrations in photoreceptors between light and dark regulate the activity of retinal membrane guanylyl cyclase (RetGC) via calcium sensor proteins. The emphasis of the review is on the structure of RetGC and guanylyl cyclase activating proteins (GCAPs) in relation to their functional role in photoreceptors and congenital diseases of photoreceptors. In addition to that, the structure and function of retinal degeneration-3 protein (RD3), which regulates RetGC in a calcium-independent manner, is discussed in detail in connections with its role in photoreceptor biology and inherited retinal blindness.
Collapse
|
8
|
Peshenko IV, Olshevskaya EV, Dizhoor AM. GUCY2D mutations in retinal guanylyl cyclase 1 provide biochemical reasons for dominant cone-rod dystrophy but not for stationary night blindness. J Biol Chem 2020; 295:18301-18315. [PMID: 33109612 PMCID: PMC7939455 DOI: 10.1074/jbc.ra120.015553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/23/2020] [Indexed: 11/07/2022] Open
Abstract
Mutations in the GUCY2D gene coding for the dimeric human retinal membrane guanylyl cyclase (RetGC) isozyme RetGC1 cause various forms of blindness, ranging from rod dysfunction to rod and cone degeneration. We tested how the mutations causing recessive congenital stationary night blindness (CSNB), recessive Leber's congenital amaurosis (LCA1), and dominant cone-rod dystrophy-6 (CORD6) affected RetGC1 activity and regulation by RetGC-activating proteins (GCAPs) and retinal degeneration-3 protein (RD3). CSNB mutations R666W, R761W, and L911F, as well as LCA1 mutations R768W and G982VfsX39, disabled RetGC1 activation by human GCAP1, -2, and -3. The R666W and R761W substitutions compromised binding of GCAP1 with RetGC1 in HEK293 cells. In contrast, G982VfsX39 and L911F RetGC1 retained the ability to bind GCAP1 in cyto but failed to effectively bind RD3. R768W RetGC1 did not bind either GCAP1 or RD3. The co-expression of GUCY2D allelic combinations linked to CSNB did not restore RetGC1 activity in vitro The CORD6 mutation R838S in the RetGC1 dimerization domain strongly dominated the Ca2+ sensitivity of cyclase regulation by GCAP1 in RetGC1 heterodimer produced by co-expression of WT and the R838S subunits. It required higher Ca2+ concentrations to decelerate GCAP-activated RetGC1 heterodimer-6-fold higher than WT and 2-fold higher than the Ser838-harboring homodimer. The heterodimer was also more resistant than homodimers to inhibition by RD3. The observed biochemical changes can explain the dominant CORD6 blindness and recessive LCA1 blindness, both of which affect rods and cones, but they cannot explain the selective loss of rod function in recessive CSNB.
Collapse
Affiliation(s)
- Igor V Peshenko
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania, USA
| | - Elena V Olshevskaya
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania, USA
| | - Alexander M Dizhoor
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania, USA.
| |
Collapse
|
9
|
Role of GUCA1C in Primary Congenital Glaucoma and in the Retina: Functional Evaluation in Zebrafish. Genes (Basel) 2020; 11:genes11050550. [PMID: 32422965 PMCID: PMC7288452 DOI: 10.3390/genes11050550] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022] Open
Abstract
Primary congenital glaucoma (PCG) is a heterogeneous, inherited, and severe optical neuropathy caused by apoptotic degeneration of the retinal ganglion cell layer. Whole-exome sequencing analysis of one PCG family identified two affected siblings who carried a low-frequency homozygous nonsense GUCA1C variant (c.52G > T/p.Glu18Ter/rs143174402). This gene encodes GCAP3, a member of the guanylate cyclase activating protein family, involved in phototransduction and with a potential role in intraocular pressure regulation. Segregation analysis supported the notion that the variant was coinherited with the disease in an autosomal recessive fashion. GCAP3 was detected immunohistochemically in the adult human ocular ciliary epithelium and retina. To evaluate the ocular effect of GUCA1C loss-of-function, a guca1c knockout zebrafish line was generated by CRISPR/Cas9 genome editing. Immunohistochemistry demonstrated the presence of GCAP3 in the non-pigmented ciliary epithelium and retina of adult wild-type fishes. Knockout animals presented up-regulation of the glial fibrillary acidic protein in Müller cells and evidence of retinal ganglion cell apoptosis, indicating the existence of gliosis and glaucoma-like retinal damage. In summary, our data provide evidence for the role of GUCA1C as a candidate gene in PCG and offer new insights into the function of this gene in the ocular anterior segment and the retina.
Collapse
|
10
|
Lamb TD. Evolution of the genes mediating phototransduction in rod and cone photoreceptors. Prog Retin Eye Res 2019; 76:100823. [PMID: 31790748 DOI: 10.1016/j.preteyeres.2019.100823] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/28/2022]
Abstract
This paper reviews current knowledge of the evolution of the multiple genes encoding proteins that mediate the process of phototransduction in rod and cone photoreceptors of vertebrates. The approach primarily involves molecular phylogenetic analysis of phototransduction protein sequences, combined with analysis of the syntenic arrangement of the genes. At least 35 of these phototransduction genes appear to reside on no more than five paralogons - paralogous regions that each arose from a common ancestral region. Furthermore, it appears that such paralogs arose through quadruplication during the two rounds of genome duplication (2R WGD) that occurred in a chordate ancestor prior to the vertebrate radiation, probably around 600 millions years ago. For several components of the phototransduction cascade, it is shown that distinct isoforms already existed prior to WGD, with the likely implication that separate classes of scotopic and photopic photoreceptor cells had already evolved by that stage. The subsequent quadruplication of the entire genome then permitted the refinement of multiple distinct protein isoforms in rods and cones. A unified picture of the likely pattern and approximate timing of all the important gene duplications is synthesised, and the implications for our understanding of the evolution of rod and cone phototransduction are presented.
Collapse
Affiliation(s)
- Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
11
|
Lukowski SW, Lo CY, Sharov AA, Nguyen Q, Fang L, Hung SSC, Zhu L, Zhang T, Grünert U, Nguyen T, Senabouth A, Jabbari JS, Welby E, Sowden JC, Waugh HS, Mackey A, Pollock G, Lamb TD, Wang P, Hewitt AW, Gillies MC, Powell JE, Wong RCB. A single-cell transcriptome atlas of the adult human retina. EMBO J 2019; 38:e100811. [PMID: 31436334 PMCID: PMC6745503 DOI: 10.15252/embj.2018100811] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 01/12/2023] Open
Abstract
The retina is a specialized neural tissue that senses light and initiates image processing. Although the functional organization of specific retina cells has been well studied, the molecular profile of many cell types remains unclear in humans. To comprehensively profile the human retina, we performed single-cell RNA sequencing on 20,009 cells from three donors and compiled a reference transcriptome atlas. Using unsupervised clustering analysis, we identified 18 transcriptionally distinct cell populations representing all known neural retinal cells: rod photoreceptors, cone photoreceptors, Müller glia, bipolar cells, amacrine cells, retinal ganglion cells, horizontal cells, astrocytes, and microglia. Our data captured molecular profiles for healthy and putative early degenerating rod photoreceptors, and revealed the loss of MALAT1 expression with longer post-mortem time, which potentially suggested a novel role of MALAT1 in rod photoreceptor degeneration. We have demonstrated the use of this retina transcriptome atlas to benchmark pluripotent stem cell-derived cone photoreceptors and an adult Müller glia cell line. This work provides an important reference with unprecedented insights into the transcriptional landscape of human retinal cells, which is fundamental to understanding retinal biology and disease.
Collapse
Affiliation(s)
- Samuel W Lukowski
- Institute for Molecular BioscienceUniversity of QueenslandBrisbaneQldAustralia
| | | | - Alexei A Sharov
- National Institute for AgingNational Institutes of HealthBaltimoreMDUSA
| | - Quan Nguyen
- Institute for Molecular BioscienceUniversity of QueenslandBrisbaneQldAustralia
| | - Lyujie Fang
- Centre for Eye Research AustraliaMelbourneVic.Australia
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVic.Australia
- Jinan UniversityGuangzhouChina
| | - Sandy SC Hung
- Centre for Eye Research AustraliaMelbourneVic.Australia
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVic.Australia
| | - Ling Zhu
- The University of SydneyFaculty of MedicineSave Sight InstituteSydneyNSWAustralia
| | - Ting Zhang
- The University of SydneyFaculty of MedicineSave Sight InstituteSydneyNSWAustralia
| | - Ulrike Grünert
- The University of SydneyFaculty of MedicineSave Sight InstituteSydneyNSWAustralia
| | - Tu Nguyen
- Centre for Eye Research AustraliaMelbourneVic.Australia
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVic.Australia
| | - Anne Senabouth
- Garvan‐Weizmann Centre for Cellular GenomicsGarvan Institute of Medical ResearchSydneyNSWAustralia
| | | | - Emily Welby
- Stem Cells and Regenerative Medicine SectionNIHR Great Ormond Street Hospital Biomedical Research CentreUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Jane C Sowden
- Stem Cells and Regenerative Medicine SectionNIHR Great Ormond Street Hospital Biomedical Research CentreUCL Great Ormond Street Institute of Child HealthLondonUK
| | | | | | | | - Trevor D Lamb
- John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Peng‐Yuan Wang
- Department of Chemistry and BiotechnologySwinburne University of TechnologyMelbourneVic.Australia
- Center for Human Tissues and Organs DegenerationInstitute of Biomedicine and BiotechnologyShenzhen Institute of Advanced TechnologyChinese Academy of ScienceShenzhenChina
| | - Alex W Hewitt
- Centre for Eye Research AustraliaMelbourneVic.Australia
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVic.Australia
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTas.Australia
| | - Mark C Gillies
- The University of SydneyFaculty of MedicineSave Sight InstituteSydneyNSWAustralia
| | - Joseph E Powell
- Garvan‐Weizmann Centre for Cellular GenomicsGarvan Institute of Medical ResearchSydneyNSWAustralia
- UNSW Cellular Genomics Futures InstituteUniversity of New South WalesSydneyNSWAustralia
| | - Raymond CB Wong
- Centre for Eye Research AustraliaMelbourneVic.Australia
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVic.Australia
- Shenzhen Eye HospitalShenzhen University School of MedicineShenzhenChina
| |
Collapse
|
12
|
Peshenko IV, Cideciyan AV, Sumaroka A, Olshevskaya EV, Scholten A, Abbas S, Koch KW, Jacobson SG, Dizhoor AM. A G86R mutation in the calcium-sensor protein GCAP1 alters regulation of retinal guanylyl cyclase and causes dominant cone-rod degeneration. J Biol Chem 2019; 294:3476-3488. [PMID: 30622141 DOI: 10.1074/jbc.ra118.006180] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/04/2019] [Indexed: 11/06/2022] Open
Abstract
The guanylyl cyclase-activating protein, GCAP1, activates photoreceptor membrane guanylyl cyclase (RetGC) in the light, when free Ca2+ concentrations decline, and decelerates the cyclase in the dark, when Ca2+ concentrations rise. Here, we report a novel mutation, G86R, in the GCAP1 (GUCA1A) gene in a family with a dominant retinopathy. The G86R substitution in a "hinge" region connecting EF-hand domains 2 and 3 in GCAP1 strongly interfered with its Ca2+-dependent activator-to-inhibitor conformational transition. The G86R-GCAP1 variant activated RetGC at low Ca2+ concentrations with higher affinity than did the WT GCAP1, but failed to decelerate the cyclase at the Ca2+ concentrations characteristic of dark-adapted photoreceptors. Ca2+-dependent increase in Trp94 fluorescence, indicative of the GCAP1 transition to its RetGC inhibiting state, was suppressed and shifted to a higher Ca2+ range. Conformational changes in G86R GCAP1 detectable by isothermal titration calorimetry (ITC) also became less sensitive to Ca2+, and the dose dependence of the G86R GCAP1-RetGC1 complex inhibition by retinal degeneration 3 (RD3) protein was shifted toward higher than normal concentrations. Our results indicate that the flexibility of the hinge region between EF-hands 2 and 3 is required for placing GCAP1-regulated Ca2+ sensitivity of the cyclase within the physiological range of intracellular Ca2+ at the expense of reducing GCAP1 affinity for the target enzyme. The disease-linked mutation of the hinge Gly86, leading to abnormally high affinity for the target enzyme and reduced Ca2+ sensitivity of GCAP1, is predicted to abnormally elevate cGMP production and Ca2+ influx in photoreceptors in the dark.
Collapse
Affiliation(s)
- Igor V Peshenko
- From the Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| | - Artur V Cideciyan
- the Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Alexander Sumaroka
- the Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Elena V Olshevskaya
- From the Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| | - Alexander Scholten
- the Department of Neuroscience, University of Oldenburg, Oldenburg D-26129, Germany
| | - Seher Abbas
- the Department of Neuroscience, University of Oldenburg, Oldenburg D-26129, Germany
| | - Karl-Wilhelm Koch
- the Department of Neuroscience, University of Oldenburg, Oldenburg D-26129, Germany
| | - Samuel G Jacobson
- the Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Alexander M Dizhoor
- From the Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027,
| |
Collapse
|
13
|
Lamb TD, Hunt DM. Evolution of the calcium feedback steps of vertebrate phototransduction. Open Biol 2018; 8:180119. [PMID: 30257895 PMCID: PMC6170504 DOI: 10.1098/rsob.180119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/29/2018] [Indexed: 01/11/2023] Open
Abstract
We examined the genes encoding the proteins that mediate the Ca-feedback regulatory system in vertebrate rod and cone phototransduction. These proteins comprise four families: recoverin/visinin, the guanylyl cyclase activating proteins (GCAPs), the guanylyl cyclases (GCs) and the sodium/calcium-potassium exchangers (NCKXs). We identified a paralogon containing at least 36 phototransduction genes from at least fourteen families, including all four of the families involved in the Ca-feedback loop (recoverin/visinin, GCAPs, GCs and NCKXs). By combining analyses of gene synteny with analyses of the molecular phylogeny for each of these four families of genes for Ca-feedback regulation, we have established the likely pattern of gene duplications and losses underlying the expansion of isoforms, both before and during the two rounds of whole-genome duplication (2R WGD) that occurred in early vertebrate evolution. Furthermore, by combining our results with earlier evidence on the timing of duplication of the visual G-protein receptor kinase genes, we propose that specialization of proto-vertebrate photoreceptor cells for operation at high and low light intensities preceded the emergence of rhodopsin, which occurred during 2R WGD.
Collapse
Affiliation(s)
- Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Australian Capital Territory 2600, Australia
| | - David M Hunt
- Centre for Ophthalmology and Visual Science, The Lions Eye Institute, The University of Western Australia, Western Australia 6009, Australia
- School of Biological Sciences, The University of Western Australia, Western Australia 6009, Australia
| |
Collapse
|
14
|
Vinberg F, Peshenko IV, Chen J, Dizhoor AM, Kefalov VJ. Guanylate cyclase-activating protein 2 contributes to phototransduction and light adaptation in mouse cone photoreceptors. J Biol Chem 2018; 293:7457-7465. [PMID: 29549122 DOI: 10.1074/jbc.ra117.001574] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/12/2018] [Indexed: 12/14/2022] Open
Abstract
Light adaptation of photoreceptor cells is mediated by Ca2+-dependent mechanisms. In darkness, Ca2+ influx through cGMP-gated channels into the outer segment of photoreceptors is balanced by Ca2+ extrusion via Na+/Ca2+, K+ exchangers (NCKXs). Light activates a G protein signaling cascade, which closes cGMP-gated channels and decreases Ca2+ levels in photoreceptor outer segment because of continuing Ca2+ extrusion by NCKXs. Guanylate cyclase-activating proteins (GCAPs) then up-regulate cGMP synthesis by activating retinal membrane guanylate cyclases (RetGCs) in low Ca2+ This activation of RetGC accelerates photoresponse recovery and critically contributes to light adaptation of the nighttime rod and daytime cone photoreceptors. In mouse rod photoreceptors, GCAP1 and GCAP2 both contribute to the Ca2+-feedback mechanism. In contrast, only GCAP1 appears to modulate RetGC activity in mouse cones because evidence of GCAP2 expression in cones is lacking. Surprisingly, we found that GCAP2 is expressed in cones and can regulate light sensitivity and response kinetics as well as light adaptation of GCAP1-deficient mouse cones. Furthermore, we show that GCAP2 promotes cGMP synthesis and cGMP-gated channel opening in mouse cones exposed to low Ca2+ Our biochemical model and experiments indicate that GCAP2 significantly contributes to the activation of RetGC1 at low Ca2+ when GCAP1 is not present. Of note, in WT mouse cones, GCAP1 dominates the regulation of cGMP synthesis. We conclude that, under normal physiological conditions, GCAP1 dominates the regulation of cGMP synthesis in mouse cones, but if its function becomes compromised, GCAP2 contributes to the regulation of phototransduction and light adaptation of cones.
Collapse
Affiliation(s)
- Frans Vinberg
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Igor V Peshenko
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California 90033
| | - Alexander M Dizhoor
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| | - Vladimir J Kefalov
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110.
| |
Collapse
|
15
|
Plattner H, Verkhratsky A. Inseparable tandem: evolution chooses ATP and Ca2+ to control life, death and cellular signalling. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0419. [PMID: 27377729 DOI: 10.1098/rstb.2015.0419] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2016] [Indexed: 01/01/2023] Open
Abstract
From the very dawn of biological evolution, ATP was selected as a multipurpose energy-storing molecule. Metabolism of ATP required intracellular free Ca(2+) to be set at exceedingly low concentrations, which in turn provided the background for the role of Ca(2+) as a universal signalling molecule. The early-eukaryote life forms also evolved functional compartmentalization and vesicle trafficking, which used Ca(2+) as a universal signalling ion; similarly, Ca(2+) is needed for regulation of ciliary and flagellar beat, amoeboid movement, intracellular transport, as well as of numerous metabolic processes. Thus, during evolution, exploitation of atmospheric oxygen and increasingly efficient ATP production via oxidative phosphorylation by bacterial endosymbionts were a first step for the emergence of complex eukaryotic cells. Simultaneously, Ca(2+) started to be exploited for short-range signalling, despite restrictions by the preset phosphate-based energy metabolism, when both phosphates and Ca(2+) interfere with each other because of the low solubility of calcium phosphates. The need to keep cytosolic Ca(2+) low forced cells to restrict Ca(2+) signals in space and time and to develop energetically favourable Ca(2+) signalling and Ca(2+) microdomains. These steps in tandem dominated further evolution. The ATP molecule (often released by Ca(2+)-regulated exocytosis) rapidly grew to be the universal chemical messenger for intercellular communication; ATP effects are mediated by an extended family of purinoceptors often linked to Ca(2+) signalling. Similar to atmospheric oxygen, Ca(2+) must have been reverted from a deleterious agent to a most useful (intra- and extracellular) signalling molecule. Invention of intracellular trafficking further increased the role for Ca(2+) homeostasis that became critical for regulation of cell survival and cell death. Several mutually interdependent effects of Ca(2+) and ATP have been exploited in evolution, thus turning an originally unholy alliance into a fascinating success story.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Alexei Verkhratsky
- Faculty of Biological Sciences, University of Manchester, Manchester M13 9PT, UK Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| |
Collapse
|
16
|
Manes G, Mamouni S, Hérald E, Richard AC, Sénéchal A, Aouad K, Bocquet B, Meunier I, Hamel CP. Cone dystrophy or macular dystrophy associated with novel autosomal dominant GUCA1A mutations. Mol Vis 2017; 23:198-209. [PMID: 28442884 PMCID: PMC5389339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/31/2017] [Indexed: 10/27/2022] Open
Abstract
PURPOSE Sixteen different mutations in the guanylate cyclase activator 1A gene (GUCA1A), have been previously identified to cause autosomal dominant cone dystrophy (adCOD), cone-rod dystrophy (adCORD), macular dystrophy (adMD), and in an isolated patient, retinitis pigmentosa (RP). The purpose of this study is to report on two novel mutations and the patients' clinical features. METHODS Clinical investigations included visual acuity and visual field testing, fundus examination, high-resolution spectral-domain optical coherence tomography (OCT), fundus autofluorescence imaging, and full-field and multifocal electroretinogram (ERG) recordings. GUCA1A was screened by Sanger sequencing in a cohort of 12 French families with adCOD, adCORD, and adMD. RESULTS We found two novel GUCA1A mutations-one amino acid deletion, c.302_304delTAG (p.Val101del), and one missense mutation, c.444T>A (p.Asp148Glu)-each of which was found in one family. The p.Asp148Glu mutation affected one of the Ca2+-binding amino acids of the EF4 hand, while the p.Val101del mutation resulted in the in-frame deletion of Valine-101, localized between two Ca2+-binding aspartic acid residues at positions 100 and 102 of the EF3 hand. Both families complained of visual acuity loss worsening with age. However, the p.Asp148Glu mutation was present in one family with adCOD involving abnormal cone function and an absence of macular atrophy, whereas p.Val101del mutation was encountered in another family with adMD without a generalized cone defect. CONCLUSIONS The two novel mutations described in this study are associated with distinct phenotypes, MD for p.Val101del and COD for p.Asp148Glu, with no intrafamilial phenotypic heterogeneity.
Collapse
Affiliation(s)
- Gaël Manes
- Institut National de la Santé et de la Recherche Médicale, U1051, Institute for Neurosciences of Montpellier, Montpellier, France,University of Montpellier, Montpellier, France
| | - Sonia Mamouni
- CHRU, Genetics of Sensory Diseases, Montpellier, France
| | | | | | - Audrey Sénéchal
- Institut National de la Santé et de la Recherche Médicale, U1051, Institute for Neurosciences of Montpellier, Montpellier, France
| | - Karim Aouad
- Aravis Medical Center, Ophthalmology Department, Argonay, France
| | - Béatrice Bocquet
- University of Montpellier, Montpellier, France,CHRU, Genetics of Sensory Diseases, Montpellier, France
| | - Isabelle Meunier
- Institut National de la Santé et de la Recherche Médicale, U1051, Institute for Neurosciences of Montpellier, Montpellier, France,University of Montpellier, Montpellier, France,CHRU, Genetics of Sensory Diseases, Montpellier, France
| | - Christian P. Hamel
- Institut National de la Santé et de la Recherche Médicale, U1051, Institute for Neurosciences of Montpellier, Montpellier, France,University of Montpellier, Montpellier, France,CHRU, Genetics of Sensory Diseases, Montpellier, France
| |
Collapse
|
17
|
GUCA1A mutation causes maculopathy in a five-generation family with a wide spectrum of severity. Genet Med 2017; 19:945-954. [PMID: 28125083 PMCID: PMC5548935 DOI: 10.1038/gim.2016.217] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/18/2016] [Indexed: 12/19/2022] Open
Abstract
PURPOSE The aim of this study was to investigate the genetic basis and pathogenic mechanism of variable maculopathies, ranging from mild photoreceptor degeneration to central areolar choroidal dystrophy, in a five-generation family. METHODS Clinical characterizations, whole-exome sequencing, and genome-wide linkage analysis were carried out on the family. Zebrafish models were used to investigate the pathogenesis of GUCA1A mutations. RESULTS A novel mutation, GUCA1A p.R120L, was identified in the family and predicted to alter the tertiary structure of guanylyl cyclase-activating protein 1, a photoreceptor-expressed protein encoded by the GUCA1A gene. The mutation was shown in zebrafish to cause significant disruptions in photoreceptors and retinal pigment epithelium, together with atrophies of retinal vessels and choriocapillaris. Those phenotypes could not be fully rescued by exogenous wild-type GUCA1A, suggesting a likely gain-of-function mechanism for p.R120L. GUCA1A p.D100E, another mutation previously implicated in cone dystrophy, also impaired the retinal pigment epithelium and photoreceptors in zebrafish, but probably via a dominant negative effect. CONCLUSION We conclude that GUCA1A mutations could cause significant variability in maculopathies, including central areolar choroidal dystrophy, which represents a severe pattern of maculopathy. The diverse pathogenic modes of GUCA1A mutations may explain the phenotypic diversities.Genet Med advance online publication 26 January 2017.
Collapse
|
18
|
Retinal transcriptome sequencing sheds light on the adaptation to nocturnal and diurnal lifestyles in raptors. Sci Rep 2016; 6:33578. [PMID: 27645106 PMCID: PMC5028738 DOI: 10.1038/srep33578] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/31/2016] [Indexed: 01/06/2023] Open
Abstract
Owls (Strigiformes) represent a fascinating group of birds that are the ecological night-time counterparts to diurnal raptors (Accipitriformes). The nocturnality of owls, unusual within birds, has favored an exceptional visual system that is highly tuned for hunting at night, yet the molecular basis for this adaptation is lacking. Here, using a comparative evolutionary analysis of 120 vision genes obtained by retinal transcriptome sequencing, we found strong positive selection for low-light vision genes in owls, which contributes to their remarkable nocturnal vision. Not surprisingly, we detected gene loss of the violet/ultraviolet-sensitive opsin (SWS1) in all owls we studied, but two other color vision genes, the red-sensitive LWS and the blue-sensitive SWS2, were found to be under strong positive selection, which may be linked to the spectral tunings of these genes toward maximizing photon absorption in crepuscular conditions. We also detected the only other positively selected genes associated with motion detection in falcons and positively selected genes associated with bright-light vision and eye protection in other diurnal raptors (Accipitriformes). Our results suggest the adaptive evolution of vision genes reflect differentiated activity time and distinct hunting behaviors.
Collapse
|
19
|
Choo SW, Rayko M, Tan TK, Hari R, Komissarov A, Wee WY, Yurchenko AA, Kliver S, Tamazian G, Antunes A, Wilson RK, Warren WC, Koepfli KP, Minx P, Krasheninnikova K, Kotze A, Dalton DL, Vermaak E, Paterson IC, Dobrynin P, Sitam FT, Rovie-Ryan JJ, Johnson WE, Yusoff AM, Luo SJ, Karuppannan KV, Fang G, Zheng D, Gerstein MB, Lipovich L, O'Brien SJ, Wong GJ. Pangolin genomes and the evolution of mammalian scales and immunity. Genome Res 2016; 26:1312-1322. [PMID: 27510566 PMCID: PMC5052048 DOI: 10.1101/gr.203521.115] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 08/04/2016] [Indexed: 11/24/2022]
Abstract
Pangolins, unique mammals with scales over most of their body, no teeth, poor vision, and an acute olfactory system, comprise the only placental order (Pholidota) without a whole-genome map. To investigate pangolin biology and evolution, we developed genome assemblies of the Malayan (Manis javanica) and Chinese (M. pentadactyla) pangolins. Strikingly, we found that interferon epsilon (IFNE), exclusively expressed in epithelial cells and important in skin and mucosal immunity, is pseudogenized in all African and Asian pangolin species that we examined, perhaps impacting resistance to infection. We propose that scale development was an innovation that provided protection against injuries or stress and reduced pangolin vulnerability to infection. Further evidence of specialized adaptations was evident from positively selected genes involving immunity-related pathways, inflammation, energy storage and metabolism, muscular and nervous systems, and scale/hair development. Olfactory receptor gene families are significantly expanded in pangolins, reflecting their well-developed olfaction system. This study provides insights into mammalian adaptation and functional diversification, new research tools and questions, and perhaps a new natural IFNE-deficient animal model for studying mammalian immunity.
Collapse
Affiliation(s)
- Siew Woh Choo
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia; Genome Solutions Sdn Bhd, Research Management & Innovation Complex, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mike Rayko
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia 199004
| | - Tze King Tan
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ranjeev Hari
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Aleksey Komissarov
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia 199004
| | - Wei Yee Wee
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Andrey A Yurchenko
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia 199004
| | - Sergey Kliver
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia 199004
| | - Gaik Tamazian
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia 199004
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-123 Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Richard K Wilson
- McDonnell Genome Institute, Washington University, St. Louis, Missouri 63108, USA
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University, St. Louis, Missouri 63108, USA
| | - Klaus-Peter Koepfli
- National Zoological Park, Smithsonian Conservation Biology Institute, Washington, DC 20008, USA
| | - Patrick Minx
- McDonnell Genome Institute, Washington University, St. Louis, Missouri 63108, USA
| | - Ksenia Krasheninnikova
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia 199004
| | - Antoinette Kotze
- National Zoological Gardens of South Africa, Pretoria 0001, South Africa; Department of Genetics, University of the Free State, Bloemfontein, 9300, South Africa
| | - Desire L Dalton
- National Zoological Gardens of South Africa, Pretoria 0001, South Africa; Department of Genetics, University of the Free State, Bloemfontein, 9300, South Africa
| | - Elaine Vermaak
- National Zoological Gardens of South Africa, Pretoria 0001, South Africa
| | - Ian C Paterson
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia; Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pavel Dobrynin
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia 199004
| | - Frankie Thomas Sitam
- Ex-Situ Conservation Division, Department of Wildlife and National Parks, 56100 Kuala Lumpur, Malaysia
| | - Jeffrine J Rovie-Ryan
- Ex-Situ Conservation Division, Department of Wildlife and National Parks, 56100 Kuala Lumpur, Malaysia
| | - Warren E Johnson
- National Zoological Park, Smithsonian Conservation Biology Institute, Washington, DC 20008, USA
| | - Aini Mohamed Yusoff
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shu-Jin Luo
- Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, China 100871
| | - Kayal Vizi Karuppannan
- Ex-Situ Conservation Division, Department of Wildlife and National Parks, 56100 Kuala Lumpur, Malaysia
| | - Gang Fang
- NYU Shanghai, Pudong, Shanghai, China 200122
| | - Deyou Zheng
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Mark B Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA; Department of Computer Science, Yale University, New Haven, Connecticut 06520, USA
| | - Leonard Lipovich
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA; Department of Neurology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia 199004; Oceanographic Center, Nova Southeastern University, Ft. Lauderdale, Florida 33004, USA
| | - Guat Jah Wong
- Genome Informatics Research Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Pinto CL, Kalasekar SM, McCollum CW, Riu A, Jonsson P, Lopez J, Swindell EC, Bouhlatouf A, Balaguer P, Bondesson M, Gustafsson JÅ. Lxr regulates lipid metabolic and visual perception pathways during zebrafish development. Mol Cell Endocrinol 2016; 419:29-43. [PMID: 26427652 PMCID: PMC4684448 DOI: 10.1016/j.mce.2015.09.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/05/2015] [Accepted: 09/25/2015] [Indexed: 10/23/2022]
Abstract
The Liver X Receptors (LXRs) play important roles in multiple metabolic pathways, including fatty acid, cholesterol, carbohydrate and energy metabolism. To expand the knowledge of the functions of LXR signaling during embryonic development, we performed a whole-genome microarray analysis of Lxr target genes in zebrafish larvae treated with either one of the synthetic LXR ligands T0901317 or GW3965. Assessment of the biological processes enriched by differentially expressed genes revealed a prime role for Lxr in regulating lipid metabolic processes, similarly to the function of LXR in mammals. In addition, exposure to the Lxr ligands induced changes in expression of genes in the neural retina and lens of the zebrafish eye, including the photoreceptor guanylate cyclase activators and lens gamma crystallins, suggesting a potential novel role for Lxr in modulating the transcription of genes associated with visual function in zebrafish. The regulation of expression of metabolic genes was phenotypically reflected in an increased absorption of yolk in the zebrafish larvae, and changes in the expression of genes involved in visual perception were associated with morphological alterations in the retina and lens of the developing zebrafish eye. The regulation of expression of both lipid metabolic and eye specific genes was sustained in 1 month old fish. The transcriptional networks demonstrated several conserved effects of LXR activation between zebrafish and mammals, and also identified potential novel functions of Lxr, supporting zebrafish as a promising model for investigating the role of Lxr during development.
Collapse
Affiliation(s)
- Caroline Lucia Pinto
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Sharanya Maanasi Kalasekar
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Catherine W McCollum
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Anne Riu
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Philip Jonsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Justin Lopez
- Department of Pediatrics, University of Texas Medical School, Houston, TX 77030, USA
| | - Eric C Swindell
- Department of Pediatrics, University of Texas Medical School, Houston, TX 77030, USA
| | - Abdel Bouhlatouf
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherche Médicale U896, Université Montpellier 1, 34298 Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherche Médicale U896, Université Montpellier 1, 34298 Montpellier, France
| | - Maria Bondesson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA; Department of Biosciences and Nutrition, Novum, Karolinska Institutet, 141 83 Huddinge, Sweden
| |
Collapse
|
21
|
Lim S, Peshenko IV, Olshevskaya EV, Dizhoor AM, Ames JB. Structure of Guanylyl Cyclase Activator Protein 1 (GCAP1) Mutant V77E in a Ca2+-free/Mg2+-bound Activator State. J Biol Chem 2015; 291:4429-41. [PMID: 26703466 DOI: 10.1074/jbc.m115.696161] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Indexed: 12/27/2022] Open
Abstract
GCAP1, a member of the neuronal calcium sensor subclass of the calmodulin superfamily, confers Ca(2+)-sensitive activation of retinal guanylyl cyclase 1 (RetGC1). We present NMR resonance assignments, residual dipolar coupling data, functional analysis, and a structural model of GCAP1 mutant (GCAP1(V77E)) in the Ca(2+)-free/Mg(2+)-bound state. NMR chemical shifts and residual dipolar coupling data reveal Ca(2+)-dependent differences for residues 170-174. An NMR-derived model of GCAP1(V77E) contains Mg(2+) bound at EF2 and looks similar to Ca(2+) saturated GCAP1 (root mean square deviations = 2.0 Å). Ca(2+)-dependent structural differences occur in the fourth EF-hand (EF4) and adjacent helical region (residues 164-174 called the Ca(2+) switch helix). Ca(2+)-induced shortening of the Ca(2+) switch helix changes solvent accessibility of Thr-171 and Leu-174 that affects the domain interface. Although the Ca(2+) switch helix is not part of the RetGC1 binding site, insertion of an extra Gly residue between Ser-173 and Leu-174 as well as deletion of Arg-172, Ser-173, or Leu-174 all caused a decrease in Ca(2+) binding affinity and abolished RetGC1 activation. We conclude that Ca(2+)-dependent conformational changes in the Ca(2+) switch helix are important for activating RetGC1 and provide further support for a Ca(2+)-myristoyl tug mechanism.
Collapse
Affiliation(s)
- Sunghyuk Lim
- From the Department of Chemistry, University of California, Davis, California 95616 and
| | - Igor V Peshenko
- Department of Research, Salus University, Elkins Park, Pennsylvania 19027
| | | | | | - James B Ames
- From the Department of Chemistry, University of California, Davis, California 95616 and
| |
Collapse
|
22
|
The pros and cons of vertebrate animal models for functional and therapeutic research on inherited retinal dystrophies. Prog Retin Eye Res 2015; 48:137-59. [DOI: 10.1016/j.preteyeres.2015.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/12/2015] [Accepted: 04/16/2015] [Indexed: 01/19/2023]
|
23
|
Boye SL, Peterson JJ, Choudhury S, Min SH, Ruan Q, McCullough KT, Zhang Z, Olshevskaya EV, Peshenko IV, Hauswirth WW, Ding XQ, Dizhoor AM, Boye SE. Gene Therapy Fully Restores Vision to the All-Cone Nrl(-/-) Gucy2e(-/-) Mouse Model of Leber Congenital Amaurosis-1. Hum Gene Ther 2015; 26:575-92. [PMID: 26247368 DOI: 10.1089/hum.2015.053] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mutations in GUCY2D are the cause of Leber congenital amaurosis type 1 (LCA1). GUCY2D encodes retinal guanylate cyclase-1 (retGC1), a protein expressed exclusively in outer segments of photoreceptors and essential for timely recovery from photoexcitation. Recent clinical data show that, despite a high degree of visual disturbance stemming from a loss of cone function, LCA1 patients retain normal photoreceptor architecture, except for foveal cone outer segment abnormalities and, in some patients, foveal cone loss. These results point to the cone-rich central retina as a target for GUCY2D replacement. LCA1 gene replacement studies thus far have been conducted in rod-dominant models (mouse) or with vectors and organisms lacking clinical translatability. Here we investigate gene replacement in the Nrl(-/-) Gucy2e(-/-) mouse, an all-cone model deficient in retGC1. We show that AAV-retGC1 treatment fully restores cone function, cone-mediated visual behavior, and guanylate cyclase activity, and preserves cones in treated Nrl(-/-) Gucy2e(-/-) mice over the long-term. A novel finding was that retinal function could be restored to levels above that in Nrl(-/-) controls, contrasting results in other models of retGC1 deficiency. We attribute this to increased cyclase activity in treated Nrl(-/-) Gucy2e(-/-) mice relative to Nrl(-/-) controls. Thus, Nrl(-/-) Gucy2e(-/-) mice possess an expanded dynamic range in ERG response to gene replacement relative to other models. Lastly, we show that a candidate clinical vector, AAV5-GRK1-GUCY2D, when delivered to adult Nrl(-/-) Gucy2e(-/-) mice, restores retinal function that persists for at least 6 months. Our results provide strong support for clinical application of a gene therapy targeted to the cone-rich, central retina of LCA1 patients.
Collapse
Affiliation(s)
- Sanford L Boye
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - James J Peterson
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - Shreyasi Choudhury
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - Seok Hong Min
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - Qing Ruan
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - K Tyler McCullough
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - Zhonghong Zhang
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - Elena V Olshevskaya
- 2 Department of Basic Sciences Research, Salus University , Elkins Park, Pennsylvania
| | - Igor V Peshenko
- 2 Department of Basic Sciences Research, Salus University , Elkins Park, Pennsylvania
| | - William W Hauswirth
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - Xi-Qin Ding
- 3 Department of Cell Biology, College of Medicine, University of Oklahoma , Oklahoma City, Oklahoma
| | - Alexander M Dizhoor
- 2 Department of Basic Sciences Research, Salus University , Elkins Park, Pennsylvania
| | - Shannon E Boye
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| |
Collapse
|
24
|
Lagman D, Callado-Pérez A, Franzén IE, Larhammar D, Abalo XM. Transducin duplicates in the zebrafish retina and pineal complex: differential specialisation after the teleost tetraploidisation. PLoS One 2015; 10:e0121330. [PMID: 25806532 PMCID: PMC4373759 DOI: 10.1371/journal.pone.0121330] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 01/30/2015] [Indexed: 01/08/2023] Open
Abstract
Gene duplications provide raw materials that can be selected for functional adaptations by evolutionary mechanisms. We describe here the results of 350 million years of evolution of three functionally related gene families: the alpha, beta and gamma subunits of transducins, the G protein involved in vision. Early vertebrate tetraploidisations resulted in separate transducin heterotrimers: gnat1/gnb1/gngt1 for rods, and gnat2/gnb3/gngt2 for cones. The teleost-specific tetraploidisation generated additional duplicates for gnb1, gnb3 and gngt2. We report here that the duplicates have undergone several types of subfunctionalisation or neofunctionalisation in the zebrafish. We have found that gnb1a and gnb1b are co-expressed at different levels in rods; gnb3a and gnb3b have undergone compartmentalisation restricting gnb3b to the dorsal and medial retina, however, gnb3a expression was detected only at very low levels in both larvae and adult retina; gngt2b expression is restricted to the dorsal and medial retina, whereas gngt2a is expressed ventrally. This dorsoventral distinction could be an adaptation to protect the lower part of the retina from intense light damage. The ontogenetic analysis shows earlier onset of expression in the pineal complex than in the retina, in accordance with its earlier maturation. Additionally, gnb1a but not gnb1b is expressed in the pineal complex, and gnb3b and gngt2b are transiently expressed in the pineal during ontogeny, thus showing partial temporal subfunctionalisation. These retina-pineal distinctions presumably reflect their distinct functional roles in vision and circadian rhythmicity. In summary, this study describes several functional differences between transducin gene duplicates resulting from the teleost-specific tetraploidisation.
Collapse
Affiliation(s)
- David Lagman
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Amalia Callado-Pérez
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ilkin E. Franzén
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Dan Larhammar
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Xesús M. Abalo
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
25
|
Brennenstuhl C, Tanimoto N, Burkard M, Wagner R, Bolz S, Trifunovic D, Kabagema-Bilan C, Paquet-Durand F, Beck SC, Huber G, Seeliger MW, Ruth P, Wissinger B, Lukowski R. Targeted ablation of the Pde6h gene in mice reveals cross-species differences in cone and rod phototransduction protein isoform inventory. J Biol Chem 2015; 290:10242-55. [PMID: 25739440 DOI: 10.1074/jbc.m114.611921] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Indexed: 11/06/2022] Open
Abstract
Phosphodiesterase-6 (PDE6) is a multisubunit enzyme that plays a key role in the visual transduction cascade in rod and cone photoreceptors. Each type of photoreceptor utilizes discrete catalytic and inhibitory PDE6 subunits to fulfill its physiological tasks, i.e. the degradation of cyclic guanosine-3',5'-monophosphate at specifically tuned rates and kinetics. Recently, the human PDE6H gene was identified as a novel locus for autosomal recessive (incomplete) color blindness. However, the three different classes of cones were not affected to the same extent. Short wave cone function was more preserved than middle and long wave cone function indicating that some basic regulation of the PDE6 multisubunit enzyme was maintained albeit by a unknown mechanism. To study normal and disease-related functions of cone Pde6h in vivo, we generated Pde6h knock-out (Pde6h(-/-)) mice. Expression of PDE6H in murine eyes was restricted to both outer segments and synaptic terminals of short and long/middle cone photoreceptors, whereas Pde6h(-/-) retinae remained PDE6H-negative. Combined in vivo assessment of retinal morphology with histomorphological analyses revealed a normal overall integrity of the retinal organization and an unaltered distribution of the different cone photoreceptor subtypes upon Pde6h ablation. In contrast to human patients, our electroretinographic examinations of Pde6h(-/-) mice suggest no defects in cone/rod-driven retinal signaling and therefore preserved visual functions. To this end, we were able to demonstrate the presence of rod PDE6G in cones indicating functional substitution of PDE6. The disparities between human and murine phenotypes caused by mutant Pde6h/PDE6H suggest species-to-species differences in the vulnerability of biochemical and neurosensory pathways of the visual signal transduction system.
Collapse
Affiliation(s)
- Christina Brennenstuhl
- From the Institute of Pharmacy, Department of Pharmacology, Toxicology and Clinical Pharmacy
| | | | - Markus Burkard
- From the Institute of Pharmacy, Department of Pharmacology, Toxicology and Clinical Pharmacy
| | - Rebecca Wagner
- From the Institute of Pharmacy, Department of Pharmacology, Toxicology and Clinical Pharmacy
| | | | | | - Clement Kabagema-Bilan
- From the Institute of Pharmacy, Department of Pharmacology, Toxicology and Clinical Pharmacy
| | | | | | | | | | - Peter Ruth
- From the Institute of Pharmacy, Department of Pharmacology, Toxicology and Clinical Pharmacy
| | - Bernd Wissinger
- the Molecular Genetics Laboratory, Centre for Ophthalmology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Robert Lukowski
- From the Institute of Pharmacy, Department of Pharmacology, Toxicology and Clinical Pharmacy,
| |
Collapse
|
26
|
Zulliger R, Naash MI, Rajala RVS, Molday RS, Azadi S. Impaired association of retinal degeneration-3 with guanylate cyclase-1 and guanylate cyclase-activating protein-1 leads to leber congenital amaurosis-1. J Biol Chem 2014; 290:3488-99. [PMID: 25477517 DOI: 10.1074/jbc.m114.616656] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
One-fifth of all cases of Leber congenital amaurosis are type 1 (LCA1). LCA1 is a severe form of retinal dystrophy caused by loss-of-function mutations in guanylate cyclase 1 (GC1), a key member of the phototransduction cascade involved in modulating the photocurrents. Although GC1 has been studied for some time, the mechanisms responsible for its regulation and membrane targeting are not fully understood. We reported earlier that retinal degeneration 3 (RD3) protein interacts with GC1 and promotes its targeting to the photoreceptor outer segments (POS). Here, we extend our studies to show a direct association between RD3 and guanylate cyclase activating protein 1 (GCAP1). Furthermore, we demonstrate that this functional interaction is important for GC1 targeting to POS. We also show that most LCA1-causing mutations in GC1 result in lost GC1 interaction with RD3 or GC1 being targeted to the plasma membrane. Our data suggest that GC1, GCAP1, and RD3 form a complex in the endoplasmic reticulum that targets GC1 to POS. Interruption of this assembly is likely the underlying mechanism for a subset of LCA1. This study offers insights for the development of therapeutic strategies to treat this severe form of blindness.
Collapse
Affiliation(s)
| | | | - Raju V S Rajala
- From the Departments of Cell Biology, Ophthalmology, and Physiology, University of Oklahoma Health Sciences Center and the Dean McGee Eye Institute, Oklahoma City, Oklahoma 73104 and
| | - Robert S Molday
- the Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Seifollah Azadi
- From the Departments of Cell Biology, the Dean McGee Eye Institute, Oklahoma City, Oklahoma 73104 and
| |
Collapse
|
27
|
Differential effects of antidepressant drugs on mTOR signalling in rat hippocampal neurons. Int J Neuropsychopharmacol 2014; 17:1831-46. [PMID: 24901414 DOI: 10.1017/s1461145714000534] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Recent studies suggest that ketamine produces antidepressant actions via stimulation of mammalian target of rapamycin (mTOR), leading to increased levels of synaptic proteins in the prefrontal cortex. Thus, mTOR activation may be related to antidepressant action. However, the mTOR signalling underlying antidepressant drug action has not been well investigated. The aim of the present study was to determine whether alterations in mTOR signalling were observed following treatment with antidepressant drugs, using ketamine as a positive control. Using Western blotting, we measured changes in the mTOR-mediated proteins and synaptic proteins in rat hippocampal cultures. Dendritic outgrowth was determined by neurite assay. Our findings demonstrated that escitalopram, paroxetine and tranylcypromine significantly increased levels of phospho-mTOR and its down-stream regulators (phospho-4E-BP-1 and phospho-p70S6K); fluoxetine, sertraline and imipramine had no effect. All drugs tested increased up-stream regulators (phospho-Akt and phospho-ERK) levels. Increased phospho-mTOR induced by escitalopram, paroxetine or tranylcypromine was significantly blocked in the presence of specific PI3K, MEK or mTOR inhibitors, respectively. All drugs tested also increased hippocampal dendritic outgrowth and synaptic proteins levels. The mTOR inhibitor, rapamycin, significantly blocked these effects on escitalopram, paroxetine and tranylcypromine whereas fluoxetine, sertraline and imipramine effects were not affected. The effects of escitalopram, paroxetine and tranylcypromine paralleled those of ketamine. This study presents novel in vitro evidence indicating that some antidepressant drugs promote dendritic outgrowth and increase synaptic protein levels through mTOR signalling; however, other antidepressant drugs seem to act via a different pathway. mTOR signalling may be a promising target for the development of new antidepressant drugs.
Collapse
|
28
|
Palczewski K. Chemistry and biology of the initial steps in vision: the Friedenwald lecture. Invest Ophthalmol Vis Sci 2014; 55:6651-72. [PMID: 25338686 DOI: 10.1167/iovs.14-15502] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Visual transduction is the process in the eye whereby absorption of light in the retina is translated into electrical signals that ultimately reach the brain. The first challenge presented by visual transduction is to understand its molecular basis. We know that maintenance of vision is a continuous process requiring the activation and subsequent restoration of a vitamin A-derived chromophore through a series of chemical reactions catalyzed by enzymes in the retina and retinal pigment epithelium (RPE). Diverse biochemical approaches that identified key proteins and reactions were essential to achieve a mechanistic understanding of these visual processes. The three-dimensional arrangements of these enzymes' polypeptide chains provide invaluable insights into their mechanisms of action. A wealth of information has already been obtained by solving high-resolution crystal structures of both rhodopsin and the retinoid isomerase from pigment RPE (RPE65). Rhodopsin, which is activated by photoisomerization of its 11-cis-retinylidene chromophore, is a prototypical member of a large family of membrane-bound proteins called G protein-coupled receptors (GPCRs). RPE65 is a retinoid isomerase critical for regeneration of the chromophore. Electron microscopy (EM) and atomic force microscopy have provided insights into how certain proteins are assembled to form much larger structures such as rod photoreceptor cell outer segment membranes. A second challenge of visual transduction is to use this knowledge to devise therapeutic approaches that can prevent or reverse conditions leading to blindness. Imaging modalities like optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) applied to appropriate animal models as well as human retinal imaging have been employed to characterize blinding diseases, monitor their progression, and evaluate the success of therapeutic agents. Lately two-photon (2-PO) imaging, together with biochemical assays, are revealing functional aspects of vision at a new molecular level. These multidisciplinary approaches combined with suitable animal models and inbred mutant species can be especially helpful in translating provocative cell and tissue culture findings into therapeutic options for further development in animals and eventually in humans. A host of different approaches and techniques is required for substantial progress in understanding fundamental properties of the visual system.
Collapse
Affiliation(s)
- Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
29
|
Submembrane assembly and renewal of rod photoreceptor cGMP-gated channel: insight into the actin-dependent process of outer segment morphogenesis. J Neurosci 2014; 34:8164-74. [PMID: 24920621 DOI: 10.1523/jneurosci.1282-14.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The photoreceptor outer segment (OS) is comprised of two compartments: plasma membrane (PM) and disk membranes. It is unknown how the PM renewal is coordinated with that of the disk membranes. Here we visualized the localization and trafficking process of rod cyclic nucleotide-gated channel α-subunit (CNGA1), a PM component essential for phototransduction. The localization was visualized by fusing CNGA1 to a fluorescent protein Dendra2 and expressing in Xenopus laevis rod photoreceptors. Dendra2 allowed us to label CNGA1 in a spatiotemporal manner and therefore discriminate between old and newly trafficked CNGA1-Dendra2 in the OS PM. Newly synthesized CNGA1 was preferentially trafficked to the basal region of the lateral OS PM where newly formed and matured disks are also added. Unique trafficking pattern and diffusion barrier excluded CNGA1 from the PM domains, which are the proposed site of disk membrane maturation. Such distinct compartmentalization allows the confinement of cyclic nucleotide-gated channel in the PM, while preventing the disk membrane incorporation. Cytochalasin D and latrunculin A treatments, which are known to disrupt F-actin-dependent disk membrane morphogenesis, prevented the entrance of newly synthesized CNGA1 to the OS PM, but did not prevent the entrance of rhodopsin and peripherin/rds to the membrane evaginations believed to be disk membrane precursors. Uptake of rhodopsin and peripherin/rds coincided with the overgrowth of the evaginations at the base of the OS. Thus F-actin is essential for the trafficking of CNGA1 to the ciliary PM, and coordinates the formations of disk membrane rim region and OS PM.
Collapse
|
30
|
Wen XH, Dizhoor AM, Makino CL. Membrane guanylyl cyclase complexes shape the photoresponses of retinal rods and cones. Front Mol Neurosci 2014; 7:45. [PMID: 24917784 PMCID: PMC4040495 DOI: 10.3389/fnmol.2014.00045] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/01/2014] [Indexed: 12/02/2022] Open
Abstract
In vertebrate rods and cones, photon capture by rhodopsin leads to the destruction of cyclic GMP (cGMP) and the subsequent closure of cyclic nucleotide gated ion channels in the outer segment plasma membrane. Replenishment of cGMP and reopening of the channels limit the growth of the photon response and are requisite for its recovery. In different vertebrate retinas, there may be as many as four types of membrane guanylyl cyclases (GCs) for cGMP synthesis. Ten neuronal Ca2+ sensor proteins could potentially modulate their activities. The mouse is proving to be an effective model for characterizing the roles of individual components because its relative simplicity can be reduced further by genetic engineering. There are two types of GC activating proteins (GCAPs) and two types of GCs in mouse rods, whereas cones express one type of GCAP and one type of GC. Mutant mouse rods and cones bereft of both GCAPs have large, long lasting photon responses. Thus, GCAPs normally mediate negative feedback tied to the light-induced decline in intracellular Ca2+ that accelerates GC activity to curtail the growth and duration of the photon response. Rods from other mutant mice that express a single GCAP type reveal how the two GCAPs normally work together as a team. Because of its lower Ca2+ affinity, GCAP1 is the first responder that senses the initial decrease in Ca2+ following photon absorption and acts to limit response amplitude. GCAP2, with a higher Ca2+ affinity, is recruited later during the course of the photon response as Ca2+ levels continue to decline further. The main role of GCAP2 is to provide for a timely response recovery and it is particularly important after exposure to very bright light. The multiplicity of GC isozymes and GCAP homologs in the retinas of other vertebrates confers greater flexibility in shaping the photon responses in order to tune visual sensitivity, dynamic range and frequency response.
Collapse
Affiliation(s)
- Xiao-Hong Wen
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary and Harvard Medical School Boston, MA, USA
| | - Alexander M Dizhoor
- Department of Basic Sciences Research and Pennsylvania College of Optometry, Salus University Elkins Park, PA, USA
| | - Clint L Makino
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary and Harvard Medical School Boston, MA, USA
| |
Collapse
|
31
|
Structural insights for activation of retinal guanylate cyclase by GCAP1. PLoS One 2013; 8:e81822. [PMID: 24236217 PMCID: PMC3827477 DOI: 10.1371/journal.pone.0081822] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/27/2013] [Indexed: 01/24/2023] Open
Abstract
Guanylyl cyclase activating protein 1 (GCAP1), a member of the neuronal calcium sensor (NCS) subclass of the calmodulin superfamily, confers Ca(2+)-sensitive activation of retinal guanylyl cyclase 1 (RetGC1) upon light activation of photoreceptor cells. Here we present NMR assignments and functional analysis to probe Ca(2+)-dependent structural changes in GCAP1 that control activation of RetGC. NMR assignments were obtained for both the Ca(2+)-saturated inhibitory state of GCAP1 versus a GCAP1 mutant (D144N/D148G, called EF4mut), which lacks Ca(2+) binding in EF-hand 4 and models the Ca(2+)-free/Mg(2+)-bound activator state of GCAP1. NMR chemical shifts of backbone resonances for Ca(2+)-saturated wild type GCAP1 are overall similar to those of EF4mut, suggesting a similar main chain structure for assigned residues in both the Ca(2+)-free activator and Ca(2+)-bound inhibitor states. This contrasts with large Ca(2+)-induced chemical shift differences and hence dramatic structural changes seen for other NCS proteins including recoverin and NCS-1. The largest chemical shift differences between GCAP1 and EF4mut are seen for residues in EF4 (S141, K142, V145, N146, G147, G149, E150, L153, E154, M157, E158, Q161, L166), but mutagenesis of EF4 residues (F140A, K142D, L153R, L166R) had little effect on RetGC1 activation. A few GCAP1 residues in EF-hand 1 (K23, T27, G32) also show large chemical shift differences, and two of the mutations (K23D and G32N) each decrease the activation of RetGC, consistent with a functional conformational change in EF1. GCAP1 residues at the domain interface (V77, A78, L82) have NMR resonances that are exchange broadened, suggesting these residues may be conformationally dynamic, consistent with previous studies showing these residues are in a region essential for activating RetGC1.
Collapse
|
32
|
Lim S, Peshenko IV, Dizhoor AM, Ames JB. Backbone (1)H, (13)C, and (15)N resonance assignments of guanylyl cyclase activating protein-1, GCAP1. BIOMOLECULAR NMR ASSIGNMENTS 2013; 7:39-42. [PMID: 22392341 PMCID: PMC4080920 DOI: 10.1007/s12104-012-9373-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 02/21/2012] [Indexed: 05/31/2023]
Abstract
Guanylyl cyclase activating protein 1 (GCAP1), a member of the neuronal calcium sensor subclass of the calmodulin superfamily, confers Ca(2+)-dependent activation of retinal guanylyl cyclase that regulates the visual light response. GCAP1 is genetically linked to retinal degenerative diseases. We report backbone NMR chemical shift assignments of Ca(2+)-saturated GCAP1 (BMRB no. 18026).
Collapse
Affiliation(s)
- Sunghyuk Lim
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Igor V. Peshenko
- Basic Sciences, Pennsylvania College of Optometry, Salus University, Elkins Park, PA 19027, USA
| | - Alexander M. Dizhoor
- Basic Sciences, Pennsylvania College of Optometry, Salus University, Elkins Park, PA 19027, USA
| | - James B. Ames
- Department of Chemistry, University of California, Davis, CA 95616, USA
| |
Collapse
|
33
|
Korenbrot JI. Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: facts and models. Prog Retin Eye Res 2012; 31:442-66. [PMID: 22658984 DOI: 10.1016/j.preteyeres.2012.05.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 05/19/2012] [Accepted: 05/21/2012] [Indexed: 01/06/2023]
Abstract
The light responses of rod and cone photoreceptors in the vertebrate retina are quantitatively different, yet extremely stable and reproducible because of the extraordinary regulation of the cascade of enzymatic reactions that link photon absorption and visual pigment excitation to the gating of cGMP-gated ion channels in the outer segment plasma membrane. While the molecular scheme of the phototransduction pathway is essentially the same in rods and cones, the enzymes and protein regulators that constitute the pathway are distinct. These enzymes and regulators can differ in the quantitative features of their functions or in concentration if their functions are similar or both can be true. The molecular identity and distinct function of the molecules of the transduction cascade in rods and cones are summarized. The functional significance of these molecular differences is examined with a mathematical model of the signal-transducing enzymatic cascade. Constrained by available electrophysiological, biochemical and biophysical data, the model simulates photocurrents that match well the electrical photoresponses measured in both rods and cones. Using simulation computed with the mathematical model, the time course of light-dependent changes in enzymatic activities and second messenger concentrations in non-mammalian rods and cones are compared side by side.
Collapse
Affiliation(s)
- Juan I Korenbrot
- Department of Physiology, School of Medicine, University of California San Francisco, San Francisco, CA 94920, USA.
| |
Collapse
|
34
|
Fries R, Scholten A, Säftel W, Koch KW. Operation profile of zebrafish guanylate cyclase-activating protein 3. J Neurochem 2012; 121:54-65. [PMID: 22212098 DOI: 10.1111/j.1471-4159.2011.07643.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The expression pattern and property profile of the neuronal Ca(2+) sensor guanylate cyclase-activating protein 3 (zGCAP3) was studied by immunochemical approaches, biophysical methods and enzymatic assays. Using affinity purified antibodies immunoreactivity towards zGCAP3 was weakly detected in the outer and strongly in the inner segments of cone cells as well as in the outer plexiform layer, to a lesser degree also in the inner plexiform and ganglion cell layer of the zebrafish retina. This cellular distribution was independent of a dark/light cycle. Some neuronal Ca(2+) sensors are acylated (mainly myristoylated) at the amino-terminus. Probing larval and adult stages of the developing zebrafish retina indicated that zGCAP3 was first expressed in a non-myristoylated form, but was finally present in the adult retina as a myristoylated protein. While zGCAP3 did not undergo a classical Ca(2+) -myristoyl switch as investigated by surface plasmon resonance spectroscopy, myristoylation had two main other consequences: it enhanced the Ca(2+) -sensitivity of the Ca(2+) -induced conformational change and it stabilized the protein conformation. Differences between myristoylated and non-myristoylated zGCAP3 were also observed in modulating the kinetic and catalytic parameters of the GCAP-target, a membrane bound guanylate cyclase. Thus, the stabilizing effect of the myristoyl group is apparently less important in the larval than in the adult fish.
Collapse
Affiliation(s)
- Ramona Fries
- Biochemistry group, Institute of Biology and Environmental Science, Faculty V, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | | | | | | |
Collapse
|
35
|
Wang H, Cui X, Gu Q, Chen Y, Zhou J, Kuang Y, Wang Z, Xu X. Retinol dehydrogenase 13 protects the mouse retina from acute light damage. Mol Vis 2012; 18:1021-30. [PMID: 22605914 PMCID: PMC3351414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/19/2012] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To investigate whether retinol dehydrogenase 13 (RDH13) can protect the retina from acute light-induced damage. METHODS We generated Rdh13 knockout mice using molecular biologic methods and assessed the associated morphological and functional changes under room-light conditions by hematoxylin-eosin (H&E), transmission electron microscopy (TEM), and scotopic electroretinography. Then, the light-damage model was established by exposure to diffuse white light (3,000 lx) for 48 h. Twenty-four h after light exposure, H&E was used for the histological evaluation. The thickness of the outer-plus-inner-segment and the outer nuclear layer was measured on sections parallel to the vertical meridian of the eye. An electroretinography test was performed to assess the functional change. Furthermore, the impairment of mitochondria was detected by TEM. Finally, the expression of cytochrome c (CytC) and other apoptosis-related proteins was detected by western blot. RESULTS We found that there was no obvious difference in phenotype or function between Rdh13 knockout and wild-type mice. In Rdh13(-/-) mice subjected to intense light exposure, the photoreceptor outer-plus-inner-segment and outer nuclear layer were dramatically shorter, and the amplitudes of a- and b-waves under scotopic conditions were significantly attenuated. Distinctly swollen mitochondria with disrupted cristae were observed in the photoreceptor inner segments of Rdh13(-/-) mice. Increased expression levels of CytC, CytC-responsive apoptosis proteinase activating factor-1 (Apaf-1) and caspases 3, and other mitochondria apoptosis-related genes (nuclear factor-kappa B P65 [P65] and B-cell lymphoma 2-associated X protein [Bax]) were observed in Rdh13(-/-) mice. CONCLUSIONS Rdh13 can protect the retina against acute light-induced retinopathy. The mechanism may involve inhibition of the mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Ophthalmology, Shanghai First People's Hospital, Affiliate of Shanghai Jiaotong University, Shanghai, PR China
| | - Xiaofang Cui
- Department of Medical Genetics, E-Institutes of Shanghai Universities, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Qing Gu
- Department of Ophthalmology, Shanghai First People's Hospital, Affiliate of Shanghai Jiaotong University, Shanghai, PR China
| | - Yan Chen
- Department of Medical Genetics, E-Institutes of Shanghai Universities, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Jia Zhou
- Department of Medical Genetics, E-Institutes of Shanghai Universities, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Ying Kuang
- Shanghai Research Center for Model Organisms, Shanghai, PR China
| | - Zhugang Wang
- Department of Medical Genetics, E-Institutes of Shanghai Universities, Shanghai Jiaotong University School of Medicine, Shanghai, PR China,Shanghai Research Center for Model Organisms, Shanghai, PR China
| | - Xun Xu
- Department of Ophthalmology, Shanghai First People's Hospital, Affiliate of Shanghai Jiaotong University, Shanghai, PR China
| |
Collapse
|
36
|
Sharma RK, Duda T. Ca(2+)-sensors and ROS-GC: interlocked sensory transduction elements: a review. Front Mol Neurosci 2012; 5:42. [PMID: 22509149 PMCID: PMC3321474 DOI: 10.3389/fnmol.2012.00042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 03/20/2012] [Indexed: 02/01/2023] Open
Abstract
From its initial discovery that ROS-GC membrane guanylate cyclase is a mono-modal Ca(2+)-transduction system linked exclusively with the photo-transduction machinery to the successive finding that it embodies a remarkable bimodal Ca(2+) signaling device, its widened transduction role in the general signaling mechanisms of the sensory neuron cells was envisioned. A theoretical concept was proposed where Ca(2+)-modulates ROS-GC through its generated cyclic GMP via a nearby cyclic nucleotide gated channel and creates a hyper- or depolarized sate in the neuron membrane (Ca(2+) Binding Proteins 1:1, 7-11, 2006). The generated electric potential then becomes a mode of transmission of the parent [Ca(2+)](i) signal. Ca(2+) and ROS-GC are interlocked messengers in multiple sensory transduction mechanisms. This comprehensive review discusses the developmental stages to the present status of this concept and demonstrates how neuronal Ca(2+)-sensor (NCS) proteins are the interconnected elements of this elegant ROS-GC transduction system. The focus is on the dynamism of the structural composition of this system, and how it accommodates selectivity and elasticity for the Ca(2+) signals to perform multiple tasks linked with the SENSES of vision, smell, and possibly of taste and the pineal gland. An intriguing illustration is provided for the Ca(2+) sensor GCAP1 which displays its remarkable ability for its flexibility in function from being a photoreceptor sensor to an odorant receptor sensor. In doing so it reverses its function from an inhibitor of ROS-GC to the stimulator of ONE-GC membrane guanylate cyclase.
Collapse
Affiliation(s)
- Rameshwar K. Sharma
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins ParkPA, USA
| | | |
Collapse
|
37
|
Long-term RNA interference gene therapy in a dominant retinitis pigmentosa mouse model. Proc Natl Acad Sci U S A 2011; 108:18476-81. [PMID: 22042849 DOI: 10.1073/pnas.1112758108] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA interference (RNAi) gene silencing is a potential therapeutic strategy for dominant retinal degeneration disorders. We used self-complementary (sc) AAV2/8 vector to develop an RNAi-based gene therapy in a dominant retinal degeneration mouse model expressing bovine GCAP1(Y99C). We established an in vitro shRNA screening assay based on EGFP-tagged bovine GCAP1, and identified a shRNA that effectively silenced the bovine GCAP1 transgene with ∼80% efficiency. Subretinal injection of scAAV2/8 carrying shRNA expression cassette showed robust expression as early as 1 wk after injection. The gene silencing significantly improved photoreceptor survival, delayed disease onset, and increased visual function. Our results provide a promising strategy toward effective RNAi-based gene therapy by scAAV2/8 delivery for dominant retinal diseases.
Collapse
|
38
|
Scholten A, Koch KW. Differential calcium signaling by cone specific guanylate cyclase-activating proteins from the zebrafish retina. PLoS One 2011; 6:e23117. [PMID: 21829700 PMCID: PMC3149064 DOI: 10.1371/journal.pone.0023117] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Accepted: 07/10/2011] [Indexed: 11/19/2022] Open
Abstract
Zebrafish express in their retina a higher number of guanylate cyclase-activating proteins (zGCAPs) than mammalians pointing to more complex guanylate cyclase signaling systems. All six zGCAP isoforms show distinct and partial overlapping expression profiles in rods and cones. We determined critical Ca2+-dependent parameters of their functional properties using purified zGCAPs after heterologous expression in E.coli. Isoforms 1–4 were strong, 5 and 7 were weak activators of membrane bound guanylate cyclase. They further displayed different Ca2+-sensitivities of guanylate cyclase activation, which is half maximal either at a free Ca2+ around 30 nM (zGCAP1, 2 and 3) or around 400 nM (zGCAP4, 5 and 7). Zebrafish GCAP isoforms showed also differences in their Ca2+/Mg2+-dependent conformational changes and in the Ca2+-dependent monomer-dimer equilibrium. Direct Ca2+-binding revealed that all zGCAPs bound at least three Ca2+. The corresponding apparent affinity constants reflect binding of Ca2+ with high (≤100 nM), medium (0.1–5 µM) and/or low (≥5 µM) affinity, but were unique for each zGCAP isoform. Our data indicate a Ca2+-sensor system in zebrafish rod and cone cells supporting a Ca2+-relay model of differential zGCAP operation in these cells.
Collapse
Affiliation(s)
- Alexander Scholten
- Institute of Biology and Environmental Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Institute of Biology and Environmental Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Center of Interface Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- * E-mail:
| |
Collapse
|
39
|
Peshenko IV, Olshevskaya EV, Savchenko AB, Karan S, Palczewski K, Baehr W, Dizhoor AM. Enzymatic properties and regulation of the native isozymes of retinal membrane guanylyl cyclase (RetGC) from mouse photoreceptors. Biochemistry 2011; 50:5590-600. [PMID: 21598940 DOI: 10.1021/bi200491b] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mouse photoreceptor function and survival critically depend on Ca(2+)-regulated retinal membrane guanylyl cyclase (RetGC), comprised of two isozymes, RetGC1 and RetGC2. We characterized the content, catalytic constants, and regulation of native RetGC1 and RetGC2 isozymes using mice lacking guanylyl cyclase activating proteins GCAP1 and GCAP2 and deficient for either GUCY2F or GUCY2E genes, respectively. We found that the characteristics of both native RetGC isozymes were considerably different from other reported estimates made for mammalian RetGCs: the content of RetGC1 per mouse rod outer segments (ROS) was at least 3-fold lower, the molar ratio (RetGC2:RetGC1) 6-fold higher, and the catalytic constants of both GCAP-activated isozymes between 12- and 19-fold higher than previously measured in bovine ROS. The native RetGC isozymes had different basal activity and were accelerated 5-28-fold at physiological concentrations of GCAPs. RetGC2 alone was capable of contributing as much as 135-165 μM cGMP s(-1) or almost 23-28% to the maximal cGMP synthesis rate in mouse ROS. At the maximal level of activation by GCAP, this isozyme alone could provide a significantly high rate of cGMP synthesis compared to what is expected for normal recovery of a mouse rod, and this can help explain some of the unresolved paradoxes of rod physiology. GCAP-activated native RetGC1 and RetGC2 were less sensitive to inhibition by Ca(2+) in the presence of GCAP1 (EC(50Ca) ∼132-139 nM) than GCAP2 (EC(50Ca) ∼50-59 nM), thus arguing that Ca(2+) sensor properties of GCAP in a functional RetGC/GCAP complex are defined not by a particular target isozyme but the intrinsic properties of GCAPs themselves.
Collapse
Affiliation(s)
- Igor V Peshenko
- Department of Basic Sciences and Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Coutinho P, Pavlou S, Bhatia S, Chalmers KJ, Kleinjan DA, van Heyningen V. Discovery and assessment of conserved Pax6 target genes and enhancers. Genome Res 2011; 21:1349-59. [PMID: 21617155 DOI: 10.1101/gr.124115.111] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The characterization of transcriptional networks (TNs) is essential for understanding complex biological phenomena such as development, disease, and evolution. In this study, we have designed and implemented a procedure that combines in silico target screens with zebrafish and mouse validation, in order to identify cis-elements and genes directly regulated by Pax6. We chose Pax6 as the paradigm because of its crucial roles in organogenesis and human disease. We identified over 600 putative Pax6 binding sites and more than 200 predicted direct target genes, conserved in evolution from zebrafish to human and to mouse. This was accomplished using hidden Markov models (HMMs) generated from experimentally validated Pax6 binding sites. A small sample of genes, expressed in the neural lineage, was chosen from the predictions for RNA in situ validation using zebrafish and mouse models. Validation of DNA binding to some predicted cis-elements was also carried out using chromatin immunoprecipitation (ChIP) and zebrafish reporter transgenic studies. The results show that this combined procedure is a highly efficient tool to investigate the architecture of TNs and constitutes a useful complementary resource to ChIP and expression data sets because of its inherent spatiotemporal independence. We have identified several novel direct targets, including some putative disease genes, among them Foxp2; these will allow further dissection of Pax6 function in development and disease.
Collapse
Affiliation(s)
- Pedro Coutinho
- Medical Research Council (MRC) Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, UK.
| | | | | | | | | | | |
Collapse
|
41
|
Nicotinamide adenine dinucleotide-dependent binding of the neuronal Ca2+ sensor protein GCAP2 to photoreceptor synaptic ribbons. J Neurosci 2010; 30:6559-76. [PMID: 20463219 DOI: 10.1523/jneurosci.3701-09.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Guanylate cyclase activating protein 2 (GCAP2) is a recoverin-like Ca2+-sensor protein known to modulate guanylate cyclase activity in photoreceptor outer segments. GCAP2 is also present in photoreceptor ribbon synapses where its function is unknown. Synaptic ribbons are active zone-associated presynaptic structures in the tonically active photoreceptor ribbon synapses and contain RIBEYE as a unique and major protein component. In the present study, we demonstrate by various independent approaches that GCAP2 specifically interacts with RIBEYE in photoreceptor synapses. We show that the flexible hinge 2 linker region of RIBEYE(B) domain that connects the nicotinamide adenine dinucleotide (NADH)-binding subdomain with the substrate-binding subdomain (SBD) binds to the C terminus of GCAP2. We demonstrate that the RIBEYE-GCAP2 interaction is induced by the binding of NADH to RIBEYE. RIBEYE-GCAP2 interaction is modulated by the SBD. GCAP2 is strongly expressed in synaptic terminals of light-adapted photoreceptors where GCAP2 is found close to synaptic ribbons as judged by confocal microscopy and proximity ligation assays. Virus-mediated overexpression of GCAP2 in photoreceptor synaptic terminals leads to a reduction in the number of synaptic ribbons. Therefore, GCAP2 is a prime candidate for mediating Ca2+-dependent dynamic changes of synaptic ribbons in photoreceptor synapses.
Collapse
|
42
|
Venkataraman V, Duda T, Ravichandran S, Sharma RK. Neurocalcin delta modulation of ROS-GC1, a new model of Ca(2+) signaling. Biochemistry 2010; 47:6590-601. [PMID: 18500817 DOI: 10.1021/bi800394s] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ROS-GC1 membrane guanylate cyclase is a Ca(2+) bimodal signal transduction switch. It is turned "off" by a rise in free Ca(2+) from nanomolar to the semicromolar range in the photoreceptor outer segments and the olfactory bulb neurons; by a similar rise in the bipolar and ganglion retinal neurons it is turned "on". These opposite operational modes of the switch are specified by its Ca(2+) sensing devices, respectively termed GCAPs and CD-GCAPs. Neurocalcin delta is a CD-GCAP. In the present study, the neurocalcin delta-modulated site, V(837)-L(858), in ROS-GC1 has been mapped. The location and properties of this site are unique. It resides within the core domain of the catalytic module and does not require the alpha-helical dimerization domain structural element (amino acids 767-811) for activating the catalytic module. Contrary to the current beliefs, the catalytic module is intrinsically active; it is directly regulated by the neurocalcin delta-modulated Ca(2+) signal and is dimeric in nature. A fold recognition based model of the catalytic domain of ROS-GC1 was built, and neurocalcin delta docking simulations were carried out to define the three-dimensional features of the interacting domains of the two molecules. These findings define a new transduction model for the Ca(2+) signaling of ROS-GC1.
Collapse
|
43
|
Peshenko IV, Olshevskaya EV, Yao S, Ezzeldin HH, Pittler SJ, Dizhoor AM. Activation of retinal guanylyl cyclase RetGC1 by GCAP1: stoichiometry of binding and effect of new LCA-related mutations. Biochemistry 2010; 49:709-17. [PMID: 20050595 DOI: 10.1021/bi901495y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Retinal membrane guanylyl cyclase (RetGC) and Ca(2+)/Mg(2+) sensor proteins (GCAPs) control the recovery of the photoresponse in vertebrate photoreceptors, through their molecular interactions that remain rather poorly understood and controversial. Here we have determined the main RetGC isozyme (RetGC1):GCAP1 binding stoichiometry at saturation in cyto, using fluorescently labeled RetGC1 and GCAP1 coexpressed in HEK293 cells. In a striking manner, the equimolar binding of RetGC1 with GCAP1 in transfected HEK293 cells typical for wild-type RetGC1 was eliminated by a substitution, D639Y, in the kinase homology domain of RetGC1 found in a patient with a severe form of retinal dystrophy, Leber congenital amaurosis (LCA). A similar effect was observed with another LCA-related mutation, R768W, in the same domain of RetGC1. In contrast to the completely suppressed binding and activation of RetGC1 by Mg(2+)-liganded GCAP1, neither of these two mutations eliminated the GCAP1-independent activity of RetGC stimulated by Mn(2+). These results directly implicate the D639 (and possibly R768)-containing portion of the RetGC1 kinase homology domain in its primary recognition by the Mg(2+)-bound activator form of GCAP1.
Collapse
Affiliation(s)
- Igor V Peshenko
- Hafter Research Laboratories, Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027, USA
| | | | | | | | | | | |
Collapse
|
44
|
A solid-state NMR study of the structure and dynamics of the myristoylated N-terminus of the guanylate cyclase-activating protein-2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:266-74. [DOI: 10.1016/j.bbamem.2009.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 06/16/2009] [Accepted: 06/29/2009] [Indexed: 11/30/2022]
|
45
|
Larhammar D, Nordström K, Larsson TA. Evolution of vertebrate rod and cone phototransduction genes. Philos Trans R Soc Lond B Biol Sci 2009; 364:2867-80. [PMID: 19720650 DOI: 10.1098/rstb.2009.0077] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vertebrate cones and rods in several cases use separate but related components for their signal transduction (opsins, G-proteins, ion channels, etc.). Some of these proteins are also used differentially in other cell types in the retina. Because cones, rods and other retinal cell types originated in early vertebrate evolution, it is of interest to see if their specific genes arose in the extensive gene duplications that took place in the ancestor of the jawed vertebrates (gnathostomes) by two tetraploidizations (genome doublings). The ancestor of teleost fishes subsequently underwent a third tetraploidization. Our previously reported analyses showed that several gene families in the vertebrate visual phototransduction cascade received new members in the basal tetraploidizations. We here expand these data with studies of additional gene families and vertebrate species. We conclude that no less than 10 of the 13 studied phototransduction gene families received additional members in the two basal vertebrate tetraploidizations. Also the remaining three families seem to have undergone duplications during the same time period but it is unclear if this happened as a result of the tetraploidizations. The implications of the many early vertebrate gene duplications for functional specialization of specific retinal cell types, particularly cones and rods, are discussed.
Collapse
Affiliation(s)
- Dan Larhammar
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, SE-751 24 Uppsala, Sweden.
| | | | | |
Collapse
|
46
|
Karan S, Frederick JM, Baehr W. Novel functions of photoreceptor guanylate cyclases revealed by targeted deletion. Mol Cell Biochem 2009; 334:141-55. [PMID: 20012162 DOI: 10.1007/s11010-009-0322-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Accepted: 11/04/2009] [Indexed: 02/04/2023]
Abstract
Targeted deletion of membrane guanylate cyclases (GCs) has yielded new information concerning their function. Here, we summarize briefly recent results of laboratory generated non-photoreceptor GC knockouts characterized by complex phenotypes affecting the vasculature, heart, brain, kidney, and other tissues. The main emphasis of the review, however, addresses the two GCs expressed in retinal photoreceptors, termed GC-E and GC-F. Naturally occurring GC-E (GUCY2D) null alleles in human and chicken are associated with an early onset blinding disorder, termed "Leber congenital amaurosis type 1" (LCA-1), characterized by extinguished scotopic and photopic ERGs, and retina degeneration. In mouse, a GC-E null genotype produces a recessive cone dystrophy, while rods remain functional. Rod function is supported by the presence of GC-F (Gucy2f), a close relative of GC-E. Deletion of Gucy2f has very little effect on rod and cone physiology and survival. However, a GC-E/GC-F double knockout (GCdko) phenotypically resembles human LCA-1 with extinguished ERGs and rod/cone degeneration. In GCdko rods, PDE6 and GCAPs are absent in outer segments. In contrast, GC-E(-/-) cones lack proteins of the entire phototransduction cascade. These results suggest that GC-E may participate in transport of peripheral membrane proteins from the endoplasmic reticulum (ER) to the outer segments.
Collapse
Affiliation(s)
- Sukanya Karan
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, 65 Mario Capecchi Dr., Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
47
|
Ca(2+)-modulated vision-linked ROS-GC guanylate cyclase transduction machinery. Mol Cell Biochem 2009; 334:105-15. [PMID: 19943184 DOI: 10.1007/s11010-009-0330-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 11/04/2009] [Indexed: 02/02/2023]
Abstract
Vertebrate phototransduction depends on the reciprocal relationship between two-second messengers, cyclic GMP and Ca(2+). The concentration of both is reciprocally regulated including the dynamic synthesis of cyclic GMP by a membrane bound guanylate cyclase. Different from hormone receptor guanylate cyclases, the cyclases operating in phototransduction are regulated by the intracellular Ca(2+)-concentration via small Ca(2+)-binding proteins. Based on the site of their expression and their Ca(2+) modulation, this sub-branch of the cyclase family was named sensory guanylate cyclases, of which the retina specific forms are named ROS-GCs (rod outer segment guanylate cyclases). This review focuses on the structure and function of the ROS-GC subfamily present in the mammalian retinal neurons: photoreceptors and inner layers of the retinal neurons. Portions and excerpts of the review are from a previous chapter (Curr Top Biochem Res 6:111-144, 2004).
Collapse
|
48
|
Hunt DM, Buch P, Michaelides M. Guanylate cyclases and associated activator proteins in retinal disease. Mol Cell Biochem 2009; 334:157-68. [PMID: 19941038 DOI: 10.1007/s11010-009-0331-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 11/04/2009] [Indexed: 01/15/2023]
Abstract
Two isoforms of guanylate cyclase, GC1 and GC2 encoded by GUCY2D and GUCY2F, are responsible for the replenishment of cGMP in photoreceptors after exposure to light. Both are required for the normal kinetics of photoreceptor sensitivity and recovery, although disease mutations are restricted to GUCY2D. Recessive mutations in this gene cause the severe early-onset blinding disorder Leber congenital amaurosis whereas dominant mutations result in a later onset less severe cone-rod dystrophy. Cyclase activity is regulated by Ca(2+) which binds to the GC-associated proteins, GCAP1 and GCAP2 encoded by GUCA1A and GUCA1B, respectively. No recessive mutations in either of these genes have been reported. Dominant missense mutations are largely confined to the Ca(2+)-binding EF hands of the proteins. In a similar fashion to the disease mechanism for the dominant GUCY2D mutations, these mutations generally alter the sensitivity of the cyclase to inhibition as Ca(2+) levels rise following a light flash.
Collapse
Affiliation(s)
- David M Hunt
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.
| | | | | |
Collapse
|
49
|
Rätscho N, Scholten A, Koch KW. Diversity of sensory guanylate cyclases in teleost fishes. Mol Cell Biochem 2009; 334:207-14. [PMID: 19915958 DOI: 10.1007/s11010-009-0320-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 11/04/2009] [Indexed: 01/03/2023]
Abstract
Teleost fishes like medaka fish (Oryzias latipes), zebrafish (Danio rerio), and pufferfish (Fugu rubripes) contain in their genomes a larger number of guanylate cyclases and guanylate cyclase-activating proteins than mammals. Based on amino acid sequence alignments a group of transmembrane sensory guanylate cyclases can be identified, which are mainly if not exclusively expressed in sensory organs like the retina and olfactory tissue. Retina specific guanylate cyclases and guanylate cyclase-activating proteins in the zebrafish show dynamic changes in their spatial-temporal expression patterns and transcripts of the corresponding genes appear coincidently with the beginning of cone cell maturation at 3 days post-fertilization. Expression patterns of the guanylate cyclase signaling systems during larval development are correlated with the special habitat challenges of zebrafishes in the wild.
Collapse
Affiliation(s)
- Nina Rätscho
- Biochemistry Group, Institute of Biology and Environmental Science, Faculty V, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | | | | |
Collapse
|
50
|
Abstract
Cones show briefer light responses than rods and do not saturate even under very bright light. Using purified rod and cone homogenates, we measured the activity of guanylate cyclase (GC), an enzyme responsible for cGMP synthesis and therefore recovery of a light response. The basal GC activity was 36 times higher in cones than in rods: It was mainly caused by higher expression levels of GC in cones (GC-C) than in rods (GC-R). With identification and quantification of GC-activating protein (GCAP) subtypes expressed in rods and cones together with determination of kinetic parameters of GC activation in the presence and absence of GCAP, we estimated the in situ GC activity in rods and cones at low and high Ca(2+) concentrations. It was revealed that the GC activity would be >10 times higher in cones than in rods in both the dark-adapted and the light-adapted states. Electrophysiological estimation of the GC activity measured in the truncated preparations of rod and cone outer segments gave consistent results. Our estimation of the in situ GC activity reasonably explained the rapid recovery and nonsaturating behavior of cone light responses.
Collapse
|