1
|
Urbanová V, Lu S, Kalinová E, Martins L, Kozelková T, Dyčka F, Ribeiro JM, Hajdušek O, Perner J, Kopáček P. From the fat body to the hemolymph: Profiling tick immune and storage proteins through transcriptomics and proteomics. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104072. [PMID: 38185274 DOI: 10.1016/j.ibmb.2024.104072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Ticks are blood-feeding arachnids that are known to transmit various pathogenic microorganisms to their hosts. During blood feeding, ticks activate their metabolism and immune system to efficiently utilise nutrients from the host's blood and complete the feeding process. In contrast to insects, in which the fat body is known to be a central organ that controls essential metabolic processes and immune defense mechanisms, the function of the fat body in tick physiology is still relatively unexplored. To fill this gap, we sought to uncover the repertoire of genes expressed in the fat body associated with trachea (FB/Tr) by analyzing the transcriptome of individual, partially fed (previtellogenic) Ixodes ricinus females. The resulting catalog of individual mRNA sequences reveals a broad repertoire of transcripts encoding proteins involved in nutrient storage and distribution, as well as components of the tick immune system. To gain a detailed insight into the secretory products of FB/Tr specifically involved in inter-tissue transport and humoral immunity, the transcriptomic data were complemented with the proteome of soluble proteins in the hemolymph of partially fed female ticks. Among these proteins, the hemolipoglyco-carrier proteins were predominant. When comparing immune peptides and proteins from the fat body with those produced by hemocytes, we found that the fat body serves as a unique producer of certain immune components. Finally, time-resolved transcriptional regulation of selected immune transcripts from the FB/Tr was examined in response to experimental challenges with model microbes and analyzed by RT-qPCR. Overall, our data show that the fat body of ticks, similar to insects, is an important metabolic tissue that also plays a remarkable role in immune defense against invading microbes. These findings improve our understanding of tick biology and its impact on the transmission of tick-borne pathogens.
Collapse
Affiliation(s)
- Veronika Urbanová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Eliška Kalinová
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Larissa Martins
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories - NIH/NIAID, Hamilton, MT, USA
| | - Tereza Kozelková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Filip Dyčka
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - José M Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Ondřej Hajdušek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Jan Perner
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.
| |
Collapse
|
2
|
Fiuza JA, Gannavaram S, Gaze ST, de Ornellas LG, Alves ÉA, Ismail N, Nakhasi HL, Correa-Oliveira R. Deletion of MIF gene from live attenuated LdCen -/- parasites enhances protective CD4 + T cell immunity. Sci Rep 2023; 13:7362. [PMID: 37147351 PMCID: PMC10163264 DOI: 10.1038/s41598-023-34333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/27/2023] [Indexed: 05/07/2023] Open
Abstract
Vaccination with live attenuated Leishmania parasites such as centrin deleted Leishmania donovani (LdCen-/-) against visceral leishmaniasis has been reported extensively. The protection induced by LdCen-/- parasites was mediated by both CD4+ and CD8+ T cells. While the host immune mediators of protection are known, parasite determinants that affect the CD4+ and CD8+ T cell populations remain unknown. Parasite encoded inflammatory cytokine MIF has been shown to modulate the T cell differentiation characteristics by altering the inflammation induced apoptosis during contraction phase in experimental infections with Leishmania or Plasmodium. Neutralization of parasite encoded MIF either by antibodies or gene deletion conferred protection in Plasmodium and Leishmania studies. We investigated if the immunogenicity and protection induced by LdCen-/- parasites is affected by deleting MIF genes from this vaccine strain. Our results showed that LdCen-/-MIF-/- immunized group presented higher percentage of CD4+ and CD8+ central memory T cells, increased CD8+ T cell proliferation after challenge compared to LdCen-/- immunization. LdCen-/-MIF-/- immunized group presented elevated production of IFN-γ+ and TNF-α+ CD4+ T cells concomitant with a reduced parasite load in spleen and liver compared to LdCen-/-group following challenge with L. infantum. Our results demonstrate the role of parasite induced factors involved in protection and long-term immunity of vaccines against VL.
Collapse
Affiliation(s)
- Jacqueline Araújo Fiuza
- Cellular and Molecular Immunology Research Group, René Rachou Institute (FIOCRUZ), Belo Horizonte, Brazil.
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA.
| | - Soraya Torres Gaze
- Cellular and Molecular Immunology Research Group, René Rachou Institute (FIOCRUZ), Belo Horizonte, Brazil
| | | | - Érica Alessandra Alves
- Cellular and Molecular Immunology Research Group, René Rachou Institute (FIOCRUZ), Belo Horizonte, Brazil
| | - Nevien Ismail
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Hira Lal Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Rodrigo Correa-Oliveira
- Cellular and Molecular Immunology Research Group, René Rachou Institute (FIOCRUZ), Belo Horizonte, Brazil
| |
Collapse
|
3
|
Ali A, Zeb I, Alouffi A, Zahid H, Almutairi MM, Ayed Alshammari F, Alrouji M, Termignoni C, Vaz IDS, Tanaka T. Host Immune Responses to Salivary Components - A Critical Facet of Tick-Host Interactions. Front Cell Infect Microbiol 2022; 12:809052. [PMID: 35372098 PMCID: PMC8966233 DOI: 10.3389/fcimb.2022.809052] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
Tick sialome is comprised of a rich cocktail of bioactive molecules that function as a tool to disarm host immunity, assist blood-feeding, and play a vibrant role in pathogen transmission. The adaptation of the tick's blood-feeding behavior has lead to the evolution of bioactive molecules in its saliva to assist them to overwhelm hosts' defense mechanisms. During a blood meal, a tick secretes different salivary molecules including vasodilators, platelet aggregation inhibitors, anticoagulants, anti-inflammatory proteins, and inhibitors of complement activation; the salivary repertoire changes to meet various needs such as tick attachment, feeding, and modulation or impairment of the local dynamic and vigorous host responses. For instance, the tick's salivary immunomodulatory and cement proteins facilitate the tick's attachment to the host to enhance prolonged blood-feeding and to modulate the host's innate and adaptive immune responses. Recent advances implemented in the field of "omics" have substantially assisted our understanding of host immune modulation and immune inhibition against the molecular dynamics of tick salivary molecules in a crosstalk between the tick-host interface. A deep understanding of the tick salivary molecules, their substantial roles in multifactorial immunological cascades, variations in secretion, and host immune responses against these molecules is necessary to control these parasites. In this article, we reviewed updated knowledge about the molecular mechanisms underlying host responses to diverse elements in tick saliva throughout tick invasion, as well as host defense strategies. In conclusion, understanding the mechanisms involved in the complex interactions between the tick salivary components and host responses is essential to decipher the host defense mechanisms against the tick evasion strategies at tick-host interface which is promising in the development of effective anti-tick vaccines and drug therapeutics.
Collapse
Affiliation(s)
- Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ismail Zeb
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Hafsa Zahid
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahdah Ayed Alshammari
- College of Sciences and Literature Microbiology, Nothern Border University, Rafha, Saudi Arabia
| | - Mohammed Alrouji
- College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
4
|
Schneider CA, Calvo E, Peterson KE. Arboviruses: How Saliva Impacts the Journey from Vector to Host. Int J Mol Sci 2021; 22:ijms22179173. [PMID: 34502092 PMCID: PMC8431069 DOI: 10.3390/ijms22179173] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 12/21/2022] Open
Abstract
Arthropod-borne viruses, referred to collectively as arboviruses, infect millions of people worldwide each year and have the potential to cause severe disease. They are predominately transmitted to humans through blood-feeding behavior of three main groups of biting arthropods: ticks, mosquitoes, and sandflies. The pathogens harbored by these blood-feeding arthropods (BFA) are transferred to animal hosts through deposition of virus-rich saliva into the skin. Sometimes these infections become systemic and can lead to neuro-invasion and life-threatening viral encephalitis. Factors intrinsic to the arboviral vectors can greatly influence the pathogenicity and virulence of infections, with mounting evidence that BFA saliva and salivary proteins can shift the trajectory of viral infection in the host. This review provides an overview of arbovirus infection and ways in which vectors influence viral pathogenesis. In particular, we focus on how saliva and salivary gland extracts from the three dominant arbovirus vectors impact the trajectory of the cellular immune response to arbovirus infection in the skin.
Collapse
Affiliation(s)
- Christine A. Schneider
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA;
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA;
| | - Karin E. Peterson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA;
- Correspondence:
| |
Collapse
|
5
|
Kitsou C, Fikrig E, Pal U. Tick host immunity: vector immunomodulation and acquired tick resistance. Trends Immunol 2021; 42:554-574. [PMID: 34074602 PMCID: PMC10089699 DOI: 10.1016/j.it.2021.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/25/2022]
Abstract
Ticks have an unparalleled ability to parasitize diverse land vertebrates. Their natural persistence and vector competence are supported by the evolution of sophisticated hematophagy and remarkable host immune-evasion activities. We analyze the immunomodulatory roles of tick saliva which facilitates their acquisition of a blood meal from natural hosts and allows pathogen transmission. We also discuss the contrasting immunological events of tick-host associations in non-reservoir or incidental hosts, in which the development of acquired tick resistance can deter tick attachment. A critical appraisal of the intricate immunobiology of tick-host associations can plant new seeds of innovative research and contribute to the development of novel preventive strategies against ticks and tick-transmitted infections.
Collapse
Affiliation(s)
- Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA; Virginia-Maryland College of Veterinary Medicine, College Park, MD, USA.
| |
Collapse
|
6
|
Changing the Recipe: Pathogen Directed Changes in Tick Saliva Components. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041806. [PMID: 33673273 PMCID: PMC7918122 DOI: 10.3390/ijerph18041806] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/27/2022]
Abstract
Ticks are obligate hematophagous parasites and are important vectors of a wide variety of pathogens. These pathogens include spirochetes in the genus Borrelia that cause Lyme disease, rickettsial pathogens, and tick-borne encephalitis virus, among others. Due to their prolonged feeding period of up to two weeks, hard ticks must counteract vertebrate host defense reactions in order to survive and reproduce. To overcome host defense mechanisms, ticks have evolved a large number of pharmacologically active molecules that are secreted in their saliva, which inhibits or modulates host immune defenses and wound healing responses upon injection into the bite site. These bioactive molecules in tick saliva can create a privileged environment in the host’s skin that tick-borne pathogens take advantage of. In fact, evidence is accumulating that tick-transmitted pathogens manipulate tick saliva composition to enhance their own survival, transmission, and evasion of host defenses. We review what is known about specific and functionally characterized tick saliva molecules in the context of tick infection with the genus Borrelia, the intracellular pathogen Anaplasma phagocytophilum, and tick-borne encephalitis virus. Additionally, we review studies analyzing sialome-level responses to pathogen challenge.
Collapse
|
7
|
Coates LC, Mahoney J, Ramsey JS, Warwick E, Johnson R, MacCoss MJ, Krasnoff SB, Howe KJ, Moulton K, Saha S, Mueller LA, Hall DG, Shatters RG, Heck ML, Slupsky CM. Development on Citrus medica infected with 'Candidatus Liberibacter asiaticus' has sex-specific and -nonspecific impacts on adult Diaphorina citri and its endosymbionts. PLoS One 2020; 15:e0239771. [PMID: 33022020 PMCID: PMC7537882 DOI: 10.1371/journal.pone.0239771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Huanglongbing (HLB) is a deadly, incurable citrus disease putatively caused by the unculturable bacterium, 'Candidatus Liberibacter asiaticus' (CLas), and transmitted by Diaphorina citri. Prior studies suggest D. citri transmits CLas in a circulative and propagative manner; however, the precise interactions necessary for CLas transmission remain unknown, and the impact of insect sex on D. citri-CLas interactions is poorly understood despite reports of sex-dependent susceptibilities to CLas. We analyzed the transcriptome, proteome, metabolome, and microbiome of male and female adult D. citri reared on healthy or CLas-infected Citrus medica to determine shared and sex-specific responses of D. citri and its endosymbionts to CLas exposure. More sex-specific than shared D. citri responses to CLas were observed, despite there being no difference between males and females in CLas density or relative abundance. CLas exposure altered the abundance of proteins involved in immunity and cellular and oxidative stress in a sex-dependent manner. CLas exposure impacted cuticular proteins and enzymes involved in chitin degradation, as well as energy metabolism and abundance of the endosymbiont 'Candidatus Profftella armatura' in both sexes similarly. Notably, diaphorin, a toxic Profftella-derived metabolite, was more abundant in both sexes with CLas exposure. The responses reported here resulted from a combination of CLas colonization of D. citri as well as the effect of CLas infection on C. medica. Elucidating these impacts on D. citri and their endosymbionts contributes to our understanding of the HLB pathosystem and identifies the responses potentially critical to limiting or promoting CLas acquisition and propagation in both sexes.
Collapse
Affiliation(s)
- Laurynne C. Coates
- Department of Food Science and Technology, University of California, Davis, California, United States of America
| | - Jaclyn Mahoney
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - John S. Ramsey
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
- Robert W. Holley Center for Agriculture and Health, Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, New York, United States of America
| | - EricaRose Warwick
- Plant Pathology, University of Florida Citrus Research and Education Center, Lake Alfred, Florida, United States of America
| | - Richard Johnson
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Stuart B. Krasnoff
- Robert W. Holley Center for Agriculture and Health, Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, New York, United States of America
| | - Kevin J. Howe
- Robert W. Holley Center for Agriculture and Health, Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, New York, United States of America
| | - Kathy Moulton
- U.S. Horticultural Research Laboratory, Unit of Subtropical Insects and Horticulture, USDA Agricultural Research Service, Fort Pierce, Florida, United States of America
| | - Surya Saha
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - Lukas A. Mueller
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
| | - David G. Hall
- U.S. Horticultural Research Laboratory, Unit of Subtropical Insects and Horticulture, USDA Agricultural Research Service, Fort Pierce, Florida, United States of America
| | - Robert G. Shatters
- U.S. Horticultural Research Laboratory, Unit of Subtropical Insects and Horticulture, USDA Agricultural Research Service, Fort Pierce, Florida, United States of America
| | - Michelle L. Heck
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America
- Robert W. Holley Center for Agriculture and Health, Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, New York, United States of America
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
| | - Carolyn M. Slupsky
- Department of Food Science and Technology, University of California, Davis, California, United States of America
| |
Collapse
|
8
|
Aounallah H, Bensaoud C, M'ghirbi Y, Faria F, Chmelar JI, Kotsyfakis M. Tick Salivary Compounds for Targeted Immunomodulatory Therapy. Front Immunol 2020; 11:583845. [PMID: 33072132 PMCID: PMC7538779 DOI: 10.3389/fimmu.2020.583845] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Immunodeficiency disorders and autoimmune diseases are common, but a lack of effective targeted drugs and the side-effects of existing drugs have stimulated interest in finding therapeutic alternatives. Naturally derived substances are a recognized source of novel drugs, and tick saliva is increasingly recognized as a rich source of bioactive molecules with specific functions. Ticks use their saliva to overcome the innate and adaptive host immune systems. Their saliva is a rich cocktail of molecules including proteins, peptides, lipid derivatives, and recently discovered non-coding RNAs that inhibit or modulate vertebrate immune reactions. A number of tick saliva and/or salivary gland molecules have been characterized and shown to be promising candidates for drug development for vertebrate immune diseases. However, further validation of these molecules at the molecular, cellular, and organism levels is now required to progress lead candidates to clinical testing. In this paper, we review the data on the immuno-pharmacological aspects of tick salivary compounds characterized in vitro and/or in vivo and present recent findings on non-coding RNAs that might be exploitable as immunomodulatory therapies.
Collapse
Affiliation(s)
- Hajer Aounallah
- Institut Pasteur de Tunis, LR19IPTX, Service d'Entomologie Médicale, Université de Tunis El Manar, Tunis, Tunisia.,Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo, Brazil
| | - Chaima Bensaoud
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Youmna M'ghirbi
- Institut Pasteur de Tunis, LR19IPTX, Service d'Entomologie Médicale, Université de Tunis El Manar, Tunis, Tunisia
| | - Fernanda Faria
- Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo, Brazil
| | - Jindr Ich Chmelar
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.,Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| |
Collapse
|
9
|
Bakshi M, Kim TK, Porter L, Mwangi W, Mulenga A. Amblyomma americanum ticks utilizes countervailing pro and anti-inflammatory proteins to evade host defense. PLoS Pathog 2019; 15:e1008128. [PMID: 31756216 PMCID: PMC6897422 DOI: 10.1371/journal.ppat.1008128] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/06/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023] Open
Abstract
Feeding and transmission of tick-borne disease (TBD) agents by ticks are facilitated by tick saliva proteins (TSP). Thus, defining functional roles of TSPs in tick evasion is expected to reveal potential targets in tick-antigen based vaccines to prevent TBD infections. This study describes two types of Amblyomma americanum TSPs: those that are similar to LPS activate macrophage (MΦ) to express pro-inflammation (PI) markers and another set that suppresses PI marker expression by activated MΦ. We show that similar to LPS, three recombinant (r) A. americanum insulin-like growth factor binding-related proteins (rAamIGFBP-rP1, rAamIGFBP-rP6S, and rAamIGFBP-rP6L), hereafter designated as PI-rTSPs, stimulated both PBMC -derived MΦ and mice RAW 267.4 MΦ to express PI co-stimulatory markers, CD40, CD80, and CD86 and cytokines, TNFα, IL-1, and IL-6. In contrast, two A. americanum tick saliva serine protease inhibitors (serpins), AAS27 and AAS41, hereafter designated as anti-inflammatory (AI) rTSPs, on their own did not affect MΦ function or suppress expression of PI markers, but enhanced expression of AI cytokines (IL-10 and TGFβ) in MΦ that were pre-activated by LPS or PI-rTSPs. Mice paw edema test demonstrated that in vitro validated PI- and AI-rTSPs are functional in vivo since injection of HEK293-expressed PI-rTSPs (individually or as a cocktail) induced edema comparable to carrageenan-induced edema and was characterized by upregulation of CD40, CD80, CD86, TNF-α, IL-1, IL-6, and chemokines: CXCL1, CCL2, CCL3, CCL5, and CCL11, whereas the AI-rTSPs (individually and cocktail) were suppressive. We propose that the tick may utilize countervailing PI and AI TSPs to regulate evasion of host immune defenses whereby TSPs such as rAamIGFBP-rPs activate host immune cells and proteins such as AAS27 and AAS41 suppress the activated immune cells. Several studies have documented immuno-suppressive activities in whole tick saliva and salivary gland protein extracts. We have made contribution toward understanding the molecular basis of tick feeding, as we have described functions of defined tick saliva immuno-modulatory proteins. We have shown that A. americanum injects two groups of functionally opposed tick saliva proteins: those that could counter-intuitively be characterized as pro-host defense, and those that are expected to have anti-host immune defense functions. Based on our data, we propose that the tick evades host defense using countervailing pro- and anti- inflammatory proteins in which the pro-host defense tick saliva proteins stimulate host immune cells such as macrophages, and the anti-host defense tick saliva proteins suppress functions of the activated immune cells.
Collapse
Affiliation(s)
- Mariam Bakshi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, TAMU, College Station, Texas, United States of America
| | - Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, TAMU, College Station, Texas, United States of America
| | - Lindsay Porter
- Department of Veterinary Pathobiology, College of Veterinary Medicine, TAMU, College Station, Texas, United States of America
| | - Waithaka Mwangi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, TAMU, College Station, Texas, United States of America
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, TAMU, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
10
|
|
11
|
Wang D, Yang D, Wang Q, Zhao Y, Li C, Wei Q, Han Y, Zhao J. Two macrophage migration inhibitory factors (MIFs) from the clam Ruditapes philippinarum: Molecular characterization, localization and enzymatic activities. FISH & SHELLFISH IMMUNOLOGY 2018; 78:158-168. [PMID: 29679760 DOI: 10.1016/j.fsi.2018.04.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/24/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is an evolutionarily ancient cytokine-like factor and plays a critical role in both innate and adaptive immunity. In the present study, two MIFs (designed as RpMIF-1 and RpMIF-2, respectively) were identified and characterized from the clam Ruditapes philippinarum by rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of RpMIF-1 and RpMFI-2 consisted of 531 and 722 nucleotides, encoding a polypeptide of 113 and 114 amino acid residues, respectively. Multiple alignments and phylogenetic analysis revealed that both RpMIF-1 and RpMIF-2 belonged to the MIF family. The conserved catalytic-site Pro2 for tautomerase activity was identified in the deduced amino acid sequences of RpMIFs. Both RpMIF-1 and RpMIF-2 transcripts were constitutively expressed in examined tissues of R. philippinarum with dominant expression in hepatopancreas, gills and hemocytes. Immunolocalization analysis showed that RpMIF-1 and RpMIF-2 proteins were expressed in examined tissues with the exception of adductor muscle and foot. After Vibrio anguillarum and Micrococcus luteus challenge, the mRNA expression of RpMIFs was significantly modulated in hemocytes, gills and hepatopancreas. Recombinant RpMIF-1 and RpMIF-2 proteins possessed significant tautomerase activity and oxidoreductase activity, indicating that these two proteins was perhaps involved in inflammatory responses. In summary, our results suggested that RpMIF-1 and RpMIF-2 played an important role in the innate immunity of R. philippinarum.
Collapse
Affiliation(s)
- Dan Wang
- Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Dinglong Yang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China
| | - Qing Wang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China.
| | - Ye Zhao
- Ocean School, Yantai University, Yantai, 264005, PR China
| | - Chenghua Li
- Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Qianyu Wei
- Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Yijing Han
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianmin Zhao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China.
| |
Collapse
|
12
|
Bensaoud C, Abdelkafi-Koubaa Z, Ben Mabrouk H, Morjen M, Hmila I, Rhim A, Ayeb ME, Marrakchi N, Bouattour A, M'ghirbi Y. Hyalomma dromedarii (Acari: Ixodidae) Salivary Gland Extract Inhibits Angiogenesis and Exhibits In Vitro Antitumor Effects. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:1476-1482. [PMID: 29029126 DOI: 10.1093/jme/tjx153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Hard ticks (Acari: Ixodidae) are blood-sucking ectoparasites characterized by the extended period of their attachment to their host. To access their bloodmeal, ticks secrete saliva containing a range of molecules that target the host's inflammation, immune system, and hemostatic components. Some of these molecules reportedly possess antiangiogenic and antitumor properties. The present study describes our investigation, the first of its kind, of the antiangiogenic and antitumoral effects of the Hyalomma dromedarii Koch, 1844 (Acari: Ixodidae), salivary gland extract (SGE), which inhibited the adhesion and migration of Human Umbilical Vein Endothelial Cells (HUVECs) in a dose-dependent manner, as well as angiogenesis in the Chick Chorioallantoic Membrane model. Interestingly, H. dromedarii SGE exerted an antiproliferative effect on U87 glioblastoma cells and inhibited their adhesion and migration to fibrinogen. These results open up new possibilities for characterizing and developing new molecules involved in the key steps of tumor progression.
Collapse
Affiliation(s)
- Chaima Bensaoud
- Service d'entomologie médicale (LR11IPT03), Université Tunis El Manar, Institut Pasteur de Tunis, 1002 Tunis, Tunisia
| | - Zaineb Abdelkafi-Koubaa
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08), Institut Pasteur de Tunis, Université de Tunis El Manar, 1002 Tunis, Tunisia
| | - Hazem Ben Mabrouk
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08), Institut Pasteur de Tunis, Université de Tunis El Manar, 1002 Tunis, Tunisia
| | - Maram Morjen
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08), Institut Pasteur de Tunis, Université de Tunis El Manar, 1002 Tunis, Tunisia
| | - Issam Hmila
- laboratoire d'Epidémiologie et microbiologie vétérinaire (LR11IPT03), Université de Tunis El Manar, Institut Pasteur de Tunis, 1002 Tunis, Tunisia
| | - Adel Rhim
- Service d'entomologie médicale (LR11IPT03), Université Tunis El Manar, Institut Pasteur de Tunis, 1002 Tunis, Tunisia
| | - Mohamed El Ayeb
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08), Institut Pasteur de Tunis, Université de Tunis El Manar, 1002 Tunis, Tunisia
| | - Naziha Marrakchi
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08), Institut Pasteur de Tunis, Université de Tunis El Manar, 1002 Tunis, Tunisia
| | - Ali Bouattour
- Service d'entomologie médicale (LR11IPT03), Université Tunis El Manar, Institut Pasteur de Tunis, 1002 Tunis, Tunisia
| | - Youmna M'ghirbi
- Service d'entomologie médicale (LR11IPT03), Université Tunis El Manar, Institut Pasteur de Tunis, 1002 Tunis, Tunisia
| |
Collapse
|
13
|
Kazimírová M, Thangamani S, Bartíková P, Hermance M, Holíková V, Štibrániová I, Nuttall PA. Tick-Borne Viruses and Biological Processes at the Tick-Host-Virus Interface. Front Cell Infect Microbiol 2017; 7:339. [PMID: 28798904 PMCID: PMC5526847 DOI: 10.3389/fcimb.2017.00339] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/11/2017] [Indexed: 01/08/2023] Open
Abstract
Ticks are efficient vectors of arboviruses, although less than 10% of tick species are known to be virus vectors. Most tick-borne viruses (TBV) are RNA viruses some of which cause serious diseases in humans and animals world-wide. Several TBV impacting human or domesticated animal health have been found to emerge or re-emerge recently. In order to survive in nature, TBV must infect and replicate in both vertebrate and tick cells, representing very different physiological environments. Information on molecular mechanisms that allow TBV to switch between infecting and replicating in tick and vertebrate cells is scarce. In general, ticks succeed in completing their blood meal thanks to a plethora of biologically active molecules in their saliva that counteract and modulate different arms of the host defense responses (haemostasis, inflammation, innate and acquired immunity, and wound healing). The transmission of TBV occurs primarily during tick feeding and is a complex process, known to be promoted by tick saliva constituents. However, the underlying molecular mechanisms of TBV transmission are poorly understood. Immunomodulatory properties of tick saliva helping overcome the first line of defense to injury and early interactions at the tick-host skin interface appear to be essential in successful TBV transmission and infection of susceptible vertebrate hosts. The local host skin site of tick attachment, modulated by tick saliva, is an important focus of virus replication. Immunomodulation of the tick attachment site also promotes co-feeding transmission of viruses from infected to non-infected ticks in the absence of host viraemia (non-viraemic transmission). Future research should be aimed at identification of the key tick salivary molecules promoting virus transmission, and a molecular description of tick-host-virus interactions and of tick-mediated skin immunomodulation. Such insights will enable the rationale design of anti-tick vaccines that protect against disease caused by tick-borne viruses.
Collapse
Affiliation(s)
- Mária Kazimírová
- Department of Medical Zoology, Institute of Zoology, Slovak Academy of SciencesBratislava, Slovakia
| | - Saravanan Thangamani
- Department of Pathology, University of Texas Medical BranchGalveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, United States
- Center for Tropical Diseases, University of Texas Medical BranchGalveston, TX, United States
| | - Pavlína Bartíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Meghan Hermance
- Department of Pathology, University of Texas Medical BranchGalveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, United States
- Center for Tropical Diseases, University of Texas Medical BranchGalveston, TX, United States
| | - Viera Holíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Iveta Štibrániová
- Biomedical Research Center, Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Patricia A. Nuttall
- Department of Zoology, University of OxfordOxford, United Kingdom
- Centre for Ecology and HydrologyWallingford, United Kingdom
| |
Collapse
|
14
|
Identification and functional characterization of Oncomelania hupensis macrophage migration inhibitory factor involved in the snail host innate immune response to the parasite Schistosoma japonicum. Int J Parasitol 2017; 47:485-499. [DOI: 10.1016/j.ijpara.2017.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 01/09/2023]
|
15
|
Velásquez JJ, Navarro-Vargas JR, Moncada L. Potential pharmacological use of salivary compounds from hematophagous organisms. REVISTA DE LA FACULTAD DE MEDICINA 2017. [DOI: 10.15446/revfacmed.v65n3.52835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introducción. La saliva de los artrópodos hematófagos contiene un arsenal de compuestos que les permite acceder a la sangre de sus hospederos vertebrados sin ser detectados.Objetivo. Explorar los compuestos salivares de insectos hematófagos que tienen propiedades vasodilatadoras, anticoagulantes, antiinflamatorias, inmunomoduladoras y anestésicas, las cuales se pueden aprovechar por su alto potencial farmacológico.Materiales y métodos. Se realizó una revisión no sistemática de la literatura mediante búsqueda electrónica en las bases de datos PubMed, EMBASE, OvidSP y ScienceDirect; la búsqueda no se limitó por fecha, idioma ni tipo de artículo. Se buscaron artículos sobre los compuestos salivares de los insectos hematófagos, cuyo tema central fuese los efectos en la hemostasia, inmunomodulación y uso farmacológico. Se encontraron 59 artículos que cumplían con los criterios para ser incluidos en la revisión.Conclusión. La saliva de los insectos hematófagos posee gran variedad de moléculas, lo que ofrece una fuente de investigación y un potencial incalculable para el descubrimiento de compuestos que podrían llegar a tener utilidad farmacológica.
Collapse
|
16
|
Šimo L, Kazimirova M, Richardson J, Bonnet SI. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission. Front Cell Infect Microbiol 2017; 7:281. [PMID: 28690983 PMCID: PMC5479950 DOI: 10.3389/fcimb.2017.00281] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/08/2017] [Indexed: 12/30/2022] Open
Abstract
As long-term pool feeders, ticks have developed myriad strategies to remain discreetly but solidly attached to their hosts for the duration of their blood meal. The critical biological material that dampens host defenses and facilitates the flow of blood-thus assuring adequate feeding-is tick saliva. Saliva exhibits cytolytic, vasodilator, anticoagulant, anti-inflammatory, and immunosuppressive activity. This essential fluid is secreted by the salivary glands, which also mediate several other biological functions, including secretion of cement and hygroscopic components, as well as the watery component of blood as regards hard ticks. When salivary glands are invaded by tick-borne pathogens, pathogens may be transmitted via saliva, which is injected alternately with blood uptake during the tick bite. Both salivary glands and saliva thus play a key role in transmission of pathogenic microorganisms to vertebrate hosts. During their long co-evolution with ticks and vertebrate hosts, microorganisms have indeed developed various strategies to exploit tick salivary molecules to ensure both acquisition by ticks and transmission, local infection and systemic dissemination within the vertebrate host.
Collapse
Affiliation(s)
- Ladislav Šimo
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of SciencesBratislava, Slovakia
| | - Jennifer Richardson
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| | - Sarah I. Bonnet
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| |
Collapse
|
17
|
Sparkes A, De Baetselier P, Roelants K, De Trez C, Magez S, Van Ginderachter JA, Raes G, Bucala R, Stijlemans B. Reprint of: The non-mammalian MIF superfamily. Immunobiology 2017; 222:858-867. [PMID: 28552269 DOI: 10.1016/j.imbio.2017.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 01/31/2023]
Abstract
Macrophage migration inhibitory factor (MIF) was first described as a cytokine 50 years ago, and emerged in mammals as a pleiotropic protein with pro-inflammatory, chemotactic, and growth-promoting activities. In addition, MIF has gained substantial attention as a pivotal upstream mediator of innate and adaptive immune responses and with pathologic roles in several diseases. Of less importance in mammals is an intrinsic but non-physiologic enzymatic activity that points to MIF's evolution from an ancient defense molecule. Therefore, it is not surprising that mif-like genes also have been found across a range of different organisms including bacteria, plants, protozoa, helminths, molluscs, arthropods, fish, amphibians and birds. While Genebank analysis identifying mif-like genes across species is extensive, contained herein is an overview of the non-mammalian MIF-like proteins that have been most well studied experimentally. For many of these organisms, MIF contributes to an innate defense system or plays a role in development. For parasitic organisms however, MIF appears to function as a virulence factor aiding in the establishment or persistence of infection by modulating the host immune response. Consequently, a combined targeting of both parasitic and host MIF could lead to more effective treatment strategies for parasitic diseases of socioeconomic importance.
Collapse
Affiliation(s)
- Amanda Sparkes
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Kim Roelants
- Amphibian Evolution Lab, Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; VIB Structural Biology Research Center, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; VIB Structural Biology Research Center, Brussels, Belgium; Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon, South Korea
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Geert Raes
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Benoît Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium.
| |
Collapse
|
18
|
Sparkes A, De Baetselier P, Roelants K, De Trez C, Magez S, Van Ginderachter JA, Raes G, Bucala R, Stijlemans B. The non-mammalian MIF superfamily. Immunobiology 2017; 222:473-482. [PMID: 27780588 PMCID: PMC5293613 DOI: 10.1016/j.imbio.2016.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 01/09/2023]
Abstract
Macrophage migration inhibitory factor (MIF) was first described as a cytokine 50 years ago, and emerged in mammals as a pleiotropic protein with pro-inflammatory, chemotactic, and growth-promoting activities. In addition, MIF has gained substantial attention as a pivotal upstream mediator of innate and adaptive immune responses and with pathologic roles in several diseases. Of less importance in mammals is an intrinsic but non-physiologic enzymatic activity that points to MIF's evolution from an ancient defense molecule. Therefore, it is not surprising that mif-like genes also have been found across a range of different organisms including bacteria, plants, protozoa, helminths, molluscs, arthropods, fish, amphibians and birds. While Genebank analysis identifying mif-like genes across species is extensive, contained herein is an overview of the non-mammalian MIF-like proteins that have been most well studied experimentally. For many of these organisms, MIF contributes to an innate defense system or plays a role in development. For parasitic organisms however, MIF appears to function as a virulence factor aiding in the establishment or persistence of infection by modulating the host immune response. Consequently, a combined targeting of both parasitic and host MIF could lead to more effective treatment strategies for parasitic diseases of socioeconomic importance.
Collapse
Affiliation(s)
- Amanda Sparkes
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Gent, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Gent, Belgium
| | - Kim Roelants
- Amphibian Evolution Lab, Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; VIB Structural Biology Research Center, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; VIB Structural Biology Research Center, Brussels, Belgium; Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon, South Korea
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Gent, Belgium
| | - Geert Raes
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Gent, Belgium
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Benoît Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Gent, Belgium.
| |
Collapse
|
19
|
Schoeler GB, Wikel SK. Modulation of host immunity by haematophagous arthropods. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.2001.11813695] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Xie B, Fu M, Zhao C, Shi J, Shi G, Jiao Z, Qiu L. Cloning, characterization, and expression of the macrophage migration inhibitory factor gene from the black tiger shrimp (Penaeus monodon). FISH & SHELLFISH IMMUNOLOGY 2016; 56:489-495. [PMID: 27514787 DOI: 10.1016/j.fsi.2016.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/19/2016] [Accepted: 08/07/2016] [Indexed: 06/06/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is an ancient cytokine that engages in innate immune system of vertebrates and invertebrates. In this study, the MIF gene homologue (PmMIF) was cloned from the black tiger shrimp, Penaeus monodon. The full-length cDNA sequence of PmMIF was 838 bp and contained 78 bp 5' untranslated region (UTR) and 397 bp 3' UTR, and an open reading frame (ORF) of 363 bp which coded 120 amino acids (aa). Multiple alignment analysis showed that the deduced amino acid sequence shared 98% identities with MIF from closely related species of Litopenaeus vannamei. Quantitative real-time PCR (qRT-PCR) analysis indicated that PmMIF was highly expression observed in hepatotpancreas and gills. After Vibrio harveyi challenge, PmMIF mRNA level in hepatopancreas and gills were sharply up-regulated at 6 h post-injection, and reached the maximum at 12 h. PmMIF expression level in the hepatopancreas and gills were up-regulated markedly under low (2.3%) and high (4.3%) salinity exposure, respectively. PmMIF expression level in gills increased significantly at 12 h and reached peak values (2.5- fold, 6.4-fold and 1.8-fold compared with the control) at 12 h, 48 h and 12 h after zinc, cadmium and copper exposure, respectively. In the hepatopancreas, the expression of PmMIF reached maximum levels (8.5- fold, 6.2-fold and 2.1-fold compared with the control) at 24 h, 6 h and 48 h after zinc, cadmium and copper exposure, respectively. All the results indicate that PmMIF plays an important role in responding in the innate immune system of shrimps.
Collapse
Affiliation(s)
- Bobo Xie
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China
| | - Mingjun Fu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China
| | - Chao Zhao
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China
| | - Jinxuan Shi
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China
| | - Gongfang Shi
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China
| | - Zongyao Jiao
- Guangzhou Marine Engineering Vocational and Technical School, Guangzhou, 510320, PR China
| | - Lihua Qiu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China; Tropical Aquaculture Research and Development Center of South China Sea Fisheries Research Institute, Sanya, PR China.
| |
Collapse
|
21
|
Mans BJ, de Castro MH, Pienaar R, de Klerk D, Gaven P, Genu S, Latif AA. Ancestral reconstruction of tick lineages. Ticks Tick Borne Dis 2016; 7:509-35. [DOI: 10.1016/j.ttbdis.2016.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 01/15/2023]
|
22
|
Abstract
To survive and complete their life cycle, herbivorous insects face the difficult challenge of coping with the arsenal of plant defences. A new study reports that aphids secrete evolutionarily conserved cytokines in their saliva to suppress host immune responses.
Collapse
Affiliation(s)
- Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland.
| | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois, and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
23
|
Huang WS, Duan LP, Huang B, Wang KJ, Zhang CL, Jia QQ, Nie P, Wang T. Macrophage migration inhibitory factor (MIF) family in arthropods: Cloning and expression analysis of two MIF and one D-dopachrome tautomerase (DDT) homologues in mud crabs, Scylla paramamosain. FISH & SHELLFISH IMMUNOLOGY 2016; 50:142-149. [PMID: 26826424 DOI: 10.1016/j.fsi.2016.01.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/22/2016] [Accepted: 01/22/2016] [Indexed: 06/05/2023]
Abstract
The macrophage migration inhibitory factor (MIF) family, consisting of MIF and D-dopachrome tautomerase (DDT) in vertebrates, is evolutionarily ancient and has been found across Kingdoms including vertebrates, invertebrates, plants and bacteria. The mammalian MIF family are chemokines at the top of the inflammatory cascade in combating infections. They also possess enzymatic activities, e.g. DDT catalysis results in the production of 5,6-dihydroxyindole (DHI), a precursor of eumelanin. MIF-like genes are widely distributed, but DDT-like genes have only been described in vertebrates and a nematode. In this report, we cloned a DDT-like gene, for the first time in arthropods, and a second MIF in mud crab. The mud crab MIF family have a three exon/two intron structure as seen in vertebrates. The identification of a DDT-like gene in mud crab and other arthropods suggests that the separation of MIF and DDT preceded the divergence of protostomes and deuterostomes. The MIF family is differentially expressed in tissues of adults and during embryonic development and early life. The high level expression of the MIF family in immune tissues, such as intestine and hepatopancreas, suggests an important role in mud crab innate immunity. Mud crab DDT is highly expressed in early embryos, in megalops and crablets and this coincides with the requirement for melanisation in egg chorion tanning and cuticular hardening in arthropods, suggesting a potential novel role of DDT in melanogenesis via its tautomerase activity to produce DHI in mud crab. The clarification of the presence of both MIF and DDT in this report paves the way for further investigation of their functional roles in immunity and in melanogenesis in mud crab and other arthropods.
Collapse
Affiliation(s)
- Wen-Shu Huang
- Fishery College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education PRC, Xiamen 361021, China.
| | - Li-Peng Duan
- Fishery College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education PRC, Xiamen 361021, China
| | - Bei Huang
- Fishery College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education PRC, Xiamen 361021, China
| | - Ke-Jian Wang
- Fujian Collaborative Innovation Center for Development and Utilization of Marine Biological Resources, Xiamen 361005, China
| | - Cai-Liang Zhang
- Fishery College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education PRC, Xiamen 361021, China
| | - Qin-Qin Jia
- Fishery College, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education PRC, Xiamen 361021, China
| | - Pin Nie
- Fishery College, Jimei University, Xiamen 361021, China
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
24
|
Rider SD, Morgan MS, Arlian LG. Draft genome of the scabies mite. Parasit Vectors 2015; 8:585. [PMID: 26555130 PMCID: PMC4641413 DOI: 10.1186/s13071-015-1198-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/05/2015] [Indexed: 12/11/2022] Open
Abstract
Background The disease scabies, caused by the ectoparasitic mite, Sarcoptes scabiei, causes significant morbidity in humans and other mammals worldwide. However, there is limited data available regarding the molecular basis of host specificity and host-parasite interactions. Therefore, we sought to produce a draft genome for S. scabiei and use this to identify molecular markers that will be useful for phylogenetic population studies and to identify candidate protein-coding genes that are critical to the unique biology of the parasite. Methods S. scabiei var. canis DNA was isolated from living mites and sequenced to ultra-deep coverage using paired-end technology. Sequence reads were assembled into gapped contigs using de Bruijn graph based algorithms. The assembled genome was examined for repetitive elements and gene annotation was performed using ab initio, and homology-based methods. Results The draft genome assembly was about 56.2 Mb and included a mitochondrial genome contig. The predicted proteome contained 10,644 proteins, ~67 % of which appear to have clear orthologs in other species. The genome also contained more than 140,000 simple sequence repeat loci that may be useful for population-level studies. The mitochondrial genome contained 13 protein coding loci and 20 transfer RNAs. Hundreds of candidate salivary gland protein genes were identified by comparing the scabies mite predicted proteome with sialoproteins and transcripts identified in ticks and other hematophagous arthropods. These include serpins, ferritins, reprolysins, apyrases and new members of the macrophage migration inhibitory factor (MIF) gene family. Numerous other genes coding for salivary proteins, metabolic enzymes, structural proteins, proteins that are potentially immune modulating, and vaccine candidates were identified. The genes encoding cysteine and serine protease paralogs as well as mu-type glutathione S-transferases are represented by gene clusters. S. scabiei possessed homologs for most of the 33 dust mite allergens. Conclusion The draft genome is useful for advancing our understanding of the host-parasite interaction, the biology of the mite and its phylogenetic relationship to other Acari. The identification of antigen-producing genes, candidate immune modulating proteins and pathways, and genes responsible for acaricide resistance offers opportunities for developing new methods for diagnosing, treating and preventing this disease. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1198-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- S Dean Rider
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
| | - Marjorie S Morgan
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
| | - Larry G Arlian
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
| |
Collapse
|
25
|
Radulović ŽM, Porter LM, Kim TK, Bakshi M, Mulenga A. Amblyomma americanum tick saliva insulin-like growth factor binding protein-related protein 1 binds insulin but not insulin-like growth factors. INSECT MOLECULAR BIOLOGY 2015; 24:539-550. [PMID: 26108887 PMCID: PMC4560673 DOI: 10.1111/imb.12180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Silencing Amblyomma americanum insulin-like growth factor binding protein-related protein 1 (AamIGFBP-rP1) mRNA prevented ticks from feeding to repletion. In this study, we used recombinant (r)AamIGFBP-rP1 in a series of assays to obtain further insight into the role(s) of this protein in tick feeding regulation. Our results suggest that AamIGFBP-1 is an antigenic protein that is apparently exclusively expressed in salivary glands. We found that both males and females secrete AamIGFBP-rP1 into the host during feeding and confirmed that female ticks secrete this protein from within 24-48 h after attachment. Our data suggest that native AamIGFBP-rP1 is a functional insulin binding protein in that both yeast- and insect cell-expressed rAamIGFBP-rP1 bound insulin, but not insulin-like growth factors. When subjected to anti-blood clotting and platelet aggregation assays, rAamIGFBP-rP1 did not have any effect. Unlike human IGFBP-rP1, which is controlled by trypsinization, rAamIGFBP-rP1 is resistant to digestion, suggesting that the tick protein may not be under mammalian host control at the tick feeding site. The majority of tick-borne pathogens are transmitted 48 h after the tick has attached. Thus, the demonstrated antigenicity and secretion into the host within 24-48 h of the tick starting to feed makes AamIGFBP-rP1 an attractive target for antitick vaccine development.
Collapse
Affiliation(s)
- Ž M Radulović
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - L M Porter
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - T K Kim
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - M Bakshi
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - A Mulenga
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
26
|
A Secreted MIF Cytokine Enables Aphid Feeding and Represses Plant Immune Responses. Curr Biol 2015; 25:1898-903. [PMID: 26119751 DOI: 10.1016/j.cub.2015.05.047] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/23/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022]
Abstract
Aphids attack virtually all plant species and cause serious crop damages in agriculture. Despite their dramatic impact on food production, little is known about the molecular processes that allow aphids to exploit their host plants. To date, few aphid salivary proteins have been identified that are essential for aphid feeding, and their nature and function remain largely unknown. Here, we show that a macrophage migration inhibitory factor (MIF) is secreted in aphid saliva. In vertebrates, MIFs are important pro-inflammatory cytokines regulating immune responses. MIF proteins are also secreted by parasites of vertebrates, including nematodes, ticks, and protozoa, and participate in the modulation of host immune responses. The finding that a plant parasite secretes a MIF protein prompted us to question the role of the cytokine in the plant-aphid interaction. We show here that expression of MIF genes is crucial for aphid survival, fecundity, and feeding on a host plant. The ectopic expression of aphid MIFs in leaf tissues inhibits major plant immune responses, such as the expression of defense-related genes, callose deposition, and hypersensitive cell death. Functional complementation analyses in vivo allowed demonstrating that MIF1 is the member of the MIF protein family that allows aphids to exploit their host plants. To our knowledge, this is the first report of a cytokine that is secreted by a parasite to modulate plant immune responses. Our findings suggest a so-far unsuspected conservation of infection strategies among parasites of animal and plant species.
Collapse
|
27
|
Kazimírová M, Štibrániová I. Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Front Cell Infect Microbiol 2013; 3:43. [PMID: 23971008 PMCID: PMC3747359 DOI: 10.3389/fcimb.2013.00043] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/26/2013] [Indexed: 01/24/2023] Open
Abstract
Ticks require blood meal to complete development and reproduction. Multifunctional tick salivary glands play a pivotal role in tick feeding and transmission of pathogens. Tick salivary molecules injected into the host modulate host defence responses to the benefit of the feeding ticks. To colonize tick organs, tick-borne microorganisms must overcome several barriers, i.e., tick gut membrane, tick immunity, and moulting. Tick-borne pathogens co-evolved with their vectors and hosts and developed molecular adaptations to avoid adverse effects of tick and host defences. Large gaps exist in the knowledge of survival strategies of tick-borne microorganisms and on the molecular mechanisms of tick-host-pathogen interactions. Prior to transmission to a host, the microorganisms penetrate and multiply in tick salivary glands. As soon as the tick is attached to a host, gene expression and production of salivary molecules is upregulated, primarily to facilitate feeding and avoid tick rejection by the host. Pathogens exploit tick salivary molecules for their survival and multiplication in the vector and transmission to and establishment in the hosts. Promotion of pathogen transmission by bioactive molecules in tick saliva was described as saliva-assisted transmission (SAT). SAT candidates comprise compounds with anti-haemostatic, anti-inflammatory and immunomodulatory functions, but the molecular mechanisms by which they mediate pathogen transmission are largely unknown. To date only a few tick salivary molecules associated with specific pathogen transmission have been identified and their functions partially elucidated. Advanced molecular techniques are applied in studying tick-host-pathogen interactions and provide information on expression of vector and pathogen genes during pathogen acquisition, establishment and transmission. Understanding the molecular events on the tick-host-pathogen interface may lead to development of new strategies to control tick-borne diseases.
Collapse
Affiliation(s)
- Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences Bratislava, Slovakia.
| | | |
Collapse
|
28
|
Cote NM, Jaworski DC, Wasala NB, Morgan MS, Arlian LG. Identification and expression of macrophage migration inhibitory factor in Sarcoptes scabiei. Exp Parasitol 2013; 135:175-81. [PMID: 23831036 DOI: 10.1016/j.exppara.2013.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 06/20/2013] [Accepted: 06/24/2013] [Indexed: 12/31/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic proinflammatory cytokine produced by many mammalian tissues including skin. It is also found in many invertebrate parasites of mammals including ticks and may function to aid the parasite to evade the innate and adaptive immune responses in the host. In this study, the cDNA for a MIF gene was sequenced from Sarcoptes scabiei, the scabies mite, using RT-PCR and RACE molecular techniques. The resulting nucleotide sequence had a length of 405 base pairs and the putative amino acid sequences for the mite and tick (Dermacentor variabilis) proteins were identical. The initial steps for the project resulted in the production of expressed scabies mite cDNAs. A real time (qPCR) assay was performed with MIF from scabies mites and various tick species. Results show that mRNA encoding MIF homologues was three times more abundant in the mite samples when compared to RNA prepared from D. variabilis salivary glands and 1.3 times more abundant when compared with RNA prepared from D. variabilis midgut.
Collapse
Affiliation(s)
- N M Cote
- Oklahoma State University, Entomology and Plant Pathology Department, Stillwater, OK 74074, USA
| | | | | | | | | |
Collapse
|
29
|
Pakpour N, Akman-Anderson L, Vodovotz Y, Luckhart S. The effects of ingested mammalian blood factors on vector arthropod immunity and physiology. Microbes Infect 2013; 15:243-54. [PMID: 23370408 DOI: 10.1016/j.micinf.2013.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 12/11/2022]
Abstract
The blood feeding behavior of disease-transmitting arthropods creates a unique intersection between vertebrate and invertebrate physiology. Here, we review host blood-derived factors that persist through blood digestion to affect the lifespan, reproduction, and immune responses of some of the most common arthropod vectors of human disease.
Collapse
Affiliation(s)
- Nazzy Pakpour
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, United States.
| | | | | | | |
Collapse
|
30
|
Wasala NB, Bowen CJ, Jaworski DC. Expression and regulation of macrophage migration inhibitory factor (MIF) in feeding American dog ticks, Dermacentor variabilis. EXPERIMENTAL & APPLIED ACAROLOGY 2012; 57:179-187. [PMID: 22476444 DOI: 10.1007/s10493-012-9550-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 03/24/2012] [Indexed: 05/31/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine produced by many mammalian tissues. It is also found in ticks and may function to aid the tick in regulating host responses to tick feeding. Our hypothesis is that MIF functions in tick blood meal acquisition and pathogen transmission. This study was performed to understand the expression and regulation of MIF in the American dog tick, Dermacentor variabilis during early stages of blood feeding. We used quantitative reverse transcriptase PCR to study the gene expression during the first 96 h of feeding. Increases in MIF gene expression were observed in salivary gland and midgut tissues during the first 6 days of feeding. RNAi-mediated gene knockdown of D. variabilis MIF was demonstrated but we did not observe measureable phenotypic impact on blood meal acquisition in female ticks. These observations are consistent with previously published data on the lone star tick Amblyomma americanum and suggest that MIF may not have a direct impact on tick blood meal acquisition. Silencing of subolesin, a putative transcription factor, down-regulated MIF expression by 50 %.
Collapse
Affiliation(s)
- Nalinda B Wasala
- Department of Entomology and Plant Pathology, 127 Noble Research Center, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | |
Collapse
|
31
|
Wasala NB, Jaworski DC. Dermacentor variabilis: characterization and modeling of macrophage migration inhibitory factor with phylogenetic comparisons to other ticks, insects and parasitic nematodes. Exp Parasitol 2012; 130:232-8. [PMID: 22306068 DOI: 10.1016/j.exppara.2011.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/11/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
Abstract
We have identified and characterized the full length cDNA sequence of macrophage migration inhibitory factor (MIF) from the American dog tick, Dermacentor variabilis. The nucleotide and putative amino acid sequences from this study shared a high level of sequence conservation with other tick MIFs. The bioinformatics analysis showed across species conservation of the MIF amino acid sequence in ticks, insects and nematodes. The multiple sequence alignment identified Pro 1, 3, 55; Thr 7, 112; Asn 8, 72; Ile 64, 96; Gly 65, 110, Ser 63 and Leu 87 amino acids to be highly conserved among the sequences selected for this study. Tick MIF does not have the oxidoreductase domain as found in MIFs from other animals suggesting that tick MIF is not capable of performing as an oxidoreductase. The phylogenetic analysis revealed that tick MIFs share a closer evolutionary proximity to parasitic nematode MIFs than to insect MIFs.
Collapse
Affiliation(s)
- Nalinda B Wasala
- Department of Entomology & Plant Pathology, Oklahoma State University, 127 Noble Research Center, Stillwater, OK 74078, United States
| | | |
Collapse
|
32
|
Cui S, Zhang D, Jiang S, Pu H, Hu Y, Guo H, Chen M, Su T, Zhu C. A macrophage migration inhibitory factor like oxidoreductase from pearl oyster Pinctada fucata involved in innate immune responses. FISH & SHELLFISH IMMUNOLOGY 2011; 31:173-181. [PMID: 21496487 DOI: 10.1016/j.fsi.2011.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/07/2011] [Accepted: 03/07/2011] [Indexed: 05/30/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is an important cytokine and plays a crucial role as a pivotal regulator of innate immunity. In this study, a MIF cDNA was identified and characterized from the pearl oyster Pinctada fucata (designated as PoMIF). The full-length of PoMIF was 1544 bp and consisted of a 5'-untranslated region (UTR) of 45 bp, a 3'-UTR of 1139 bp with a polyadenylation signal (AATAAA) at 12 nucleotides upstream of the poly (A) tail. The open reading frame (ORF) of PoMIF was 360 bp which encoded a polypeptide of 120 amino acids with an estimated molecular mass of 13.3 kDa and a predicted pI of 6.1. SMART analysis showed that PoMIF contained the catalytic-sites P² and K³³ for tautomerase activity, a motif C⁵⁷GSV⁶⁰ for oxidoreductase activity and a MIF family signature D⁵⁵PCGSVEVYSIGALG⁶⁹. Homology analysis revealed that the PoMIF shared 40.3-65.5% similarity and 26.9-45.0% identity to other known MIF sequences. PoMIF mRNA was constitutively expressed in seven selected tissues of healthy pearl oysters, with the highest expression level in digestive gland. Eight hours after P. fucata was injected with Vibrio alginolyticus, the expression of PoMIF mRNA was significantly up-regulated in digestive gland, gills, hemocytes and intestine. The cDNA fragment encoding mature protein of PoMIF was subcloned to expression vector pRSET and transformed into Escherichia coli BL21 (DE3). The recombinant PoMIF (rPoMIF) was expressed and purified under optimized conditions. Function analysis showed that rPoMIF had oxidoreductase activity and could utilize dithiothreitol (DTT) as reductant to reduce insulin.
Collapse
Affiliation(s)
- Shuge Cui
- School of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Li F, Huang S, Wang L, Yang J, Zhang H, Qiu L, Li L, Song L. A macrophage migration inhibitory factor like gene from scallop Chlamys farreri: Involvement in immune response and wound healing. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:62-71. [PMID: 20804783 DOI: 10.1016/j.dci.2010.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 08/04/2010] [Accepted: 08/20/2010] [Indexed: 05/29/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is an evolutionarily ancient and highly conserved cytokine with multiple functions. In the present study, a MIF-like gene was cloned from Zhikong scallop Chlamys farreri (designated as CfMIF) based on expressed sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE) approach. The full-length cDNA of CfMIF was of 2296bp, consisting of a 5' untranslated region (UTR) of 60bp, a 3' UTR of 1903bp with a poly(A) tail and an open reading frame (ORF) of 333bp encoded 111 amino acid residues with a calculated molecular mass of 12.6kDa and a theoretical isoelectric point of 5.63. The deduced amino acid sequence of CfMIF shared 27-50.5% similarity with those of other known MIFs. A conserved MIF domain was identified in the deduced amino acid sequence of CfMIF, and conserved proline(2) and lysine(33) were also found to be present in CfMIF. Phylogenetic analysis revealed that CfMIF is one of MIF members. The tissue distribution and temporal expression of CfMIF in hemocytes of scallop after lipopolysaccharide (LPS), peptidoglycan (PGN) and β-glucan stimulation were detected by real-time RT-PCR. CfMIF gene was ubiquitously expressed in six selected tissues of healthy scallops, with the higher expression levels in hepatopancreas, mantle and gill. In comparison with the control group, the expression of CfMIF mRNA in hemocytes was up-regulated significantly at 6h, 24h and 48h after LPS treatment, and at all time points after PGN and glucan treatment. The cDNA fragment encoding mature peptide of CfMIF was recombined and expressed in Escherichia coli BL21 (DE3) pLysS. The recombinant protein of CfMIF (rCfMIF) promoted sheep fibroblast migration into scraped spaces in vitro. These results generated from the present study encourage us to suggest that CfMIF was a novel member of MIF family, and it was involved in immune response and wound healing by promoting fibroblast migration.
Collapse
Affiliation(s)
- Fengmei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Bowen CJ, Jaworski DC, Wasala NB, Coons LB. Macrophage migration inhibitory factor expression and protein localization in Amblyomma americanum (Ixodidae). EXPERIMENTAL & APPLIED ACAROLOGY 2010; 50:343-52. [PMID: 19784782 DOI: 10.1007/s10493-009-9324-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 09/14/2009] [Indexed: 05/10/2023]
Abstract
Amblyomma americanum (L.) ticks continue to emerge as disease vectors in many areas of the United States. Tick macrophage migration inhibitory factor (MIF) was first identified in A. americanum females and has been demonstrated to inhibit macrophage movement to the same extent as human MIF. This study was conducted to further characterize and elucidate the physiological role for MIF in tick feeding. A relative quantitative PCR assay was developed to determine the level of MIF gene expression during tick feeding. In addition, RNAi techniques were used to silence MIF prior to blood feeding. Physiological parameters of tick engorgement weight, length of feeding interval, and egg masses were observed to check for phenotypic manifestations of RNA silencing. Specific tick MIF antibody was used to localize MIF protein in frozen tick tissue sections. Tissue specific gene expression indicated that the midgut tissues were the most highly enriched for the MIF. Levels of gene expression did not parallel MIF protein pools seen in tissue sections. Of particular importance was the finding that unfed tick salivary glands appear to contain vesicles that are specific for MIF protein. This is the first demonstration of a pool of MIF that could be secreted during the first hours of tick feeding. While MIF silencing was demonstrated at the molecular level, no physiological phenotype was apparent. The MIF protein pools already available in the tissues may be sufficient to accomplish female tick feeding. Our studies show that the most prominent source of MIF during tick feeding is the midgut tissue. Future studies will address the role of MIF in blood feeding and nutrient digestion in the immature life stages of the tick.
Collapse
Affiliation(s)
- C J Bowen
- Department of Entomology and Plant Pathology, Oklahoma State University, 127 Noble Research Center, Stillwater, OK 74078-8031, USA
| | | | | | | |
Collapse
|
35
|
Wang B, Zhang Z, Wang Y, Zou Z, Wang G, Wang S, Jia X, Lin P. Molecular cloning and characterization of macrophage migration inhibitory factor from small abalone Haliotis diversicolor supertexta. FISH & SHELLFISH IMMUNOLOGY 2009; 27:57-64. [PMID: 19426810 DOI: 10.1016/j.fsi.2009.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 04/15/2009] [Accepted: 04/23/2009] [Indexed: 05/10/2023]
Abstract
The macrophage migration inhibitory factor (mif) cDNA and its genome were cloned from small abalone Haliotis diversicolor supertexta. Small abalone mif (samif) was originally identified from an expressed sequence tag (EST) fragment from a normalized cDNA library. It's 5' untranslated region (UTR) was obtained by 5' rapid amplification of cDNA end (RACE) techniques and its genomic DNA was cloned by PCR. The full-length cDNA of samif was of 535 bp, consisting of a 5'-terminal UTR of 49 bp, an open reading frame of 384 bp and a 3'-terminal UTR of 102 bp. The deduced protein was composed of 128 amino acids, with an estimated molecular mass of 14.0 kDa and a predicted pI of 6.90. The full-length samif genomic DNA comprises 3238 bp, containing three exons and two introns. Real time quantitative PCR analysis revealed that samif gene is constitutively expressed in 6 selected tissues, and its expression level in hepatopancreas is higher than that in the other tissues (p < 0.01). Samif expression level in the hepatopancreas at 24 and 48 h after Vibrio parahaemolyticus injection was upregulated significantly (p < 0.01), but there was no significant change after exposure to tributyltin (TBT) (p > 0.05).
Collapse
Affiliation(s)
- Baozhen Wang
- The Key Laboratory of Science and Technology for Aquaculture and Food Safety, Fisheries College, Jimei University, Yindou Road #43, Xiamen, Fujian, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Chauvin A, Moreau E, Bonnet S, Plantard O, Malandrin L. Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet Res 2009; 40:37. [PMID: 19379662 PMCID: PMC2695028 DOI: 10.1051/vetres/2009020] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 04/16/2009] [Indexed: 12/24/2022] Open
Abstract
Babesia, the causal agent of babesiosis, are tick-borne apicomplexan protozoa. True babesiae (Babesia genus sensu stricto) are biologically characterized by direct development in erythrocytes and by transovarial transmission in the tick. A large number of true Babesia species have been described in various vertebrate and tick hosts. This review presents the genus then discusses specific adaptations of Babesia spp. to their hosts to achieve efficient transmission. The main adaptations lead to long-lasting interactions which result in the induction of two reservoirs: in the vertebrate host during low long-term parasitemia and throughout the life cycle of the tick host as a result of transovarial and transstadial transmission. The molecular bases of these adaptations in vertebrate hosts are partially known but few of the tick-host interaction mechanisms have been elucidated.
Collapse
Affiliation(s)
- Alain Chauvin
- Ecole nationale vétérinaire, UMR 1300 BIOEPAR, ENVN, Atlanpôle - La Chantrerie, BP 40706, F-44307 Nantes Cedex 03, France.
| | | | | | | | | |
Collapse
|
37
|
Abstract
The saliva of hematophagous arthropods contains potent anti-inflammatory and antihemostatic activities that promote acquisition of the blood meal and enhance infection with pathogens. We have shown that polymorphonuclear leukocytes (PMN) treated with the saliva of the tick Ixodes scapularis have reduced expression of beta(2) integrins, impaired PMN adherence, and reduced killing of Borrelia burgdorferi, the causative agent of Lyme disease. Here we describe two Ixodes proteins that are induced upon tick feeding and expressed predominantly in the salivary glands. Using saliva harvested from ticks with reduced levels of ISL 929 and ISL 1373 through targeted RNA interference knockdown, as well as purified recombinant proteins, we show the effects of these proteins on downregulation of PMN integrins and inhibition of the production of O(2)(-) by PMN in vitro. Mice immunized with ISL 929/1373 had increased numbers of PMN at the site of tick attachment and a lower spirochete burden in the skin and joints 21 days after infection compared to control-immunized animals. Our results suggest that ISL 929 and ISL 1373 contribute to the inhibition of PMN functions shown previously with tick saliva and support important roles for these inhibitory proteins in the modulation of PMN function in vivo.
Collapse
|
38
|
Jaworski DC, Bowen CJ, Wasala NB. Amblyomma americanum (L): tick macrophage migration inhibitory factor peptide immunization lengthens lone star tick feeding intervals in vivo. Exp Parasitol 2008; 121:384-7. [PMID: 19111543 DOI: 10.1016/j.exppara.2008.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 10/20/2008] [Accepted: 12/01/2008] [Indexed: 10/21/2022]
Abstract
Immunizations of New Zealand White rabbits with specific macrophage migration inhibitory factor (MIF) tick peptide (PEP) produced circulating anti-tick PEP antibodies in the hosts. Antibody titers of greater than 1:5000 to tick MIF peptide were observed for crude sera from PEP-immunized rabbits. PEP- and BSA-vaccinated rabbits were infested with Amblyomma americanum adults. Feeding intervals, female weights, egg masses and percent egg hatch were measured for ticks feeding on control and immunized hosts. Feeding intervals were significantly lengthened to 13.3 days for PEP-vaccinated hosts compared to BSA-vaccinated controls at 12.4 days, while female engorgement weights and egg masses were unchanged. By immunizing hosts using specific tick PEP, we were able to alter the length of time the ticks fed on their hosts.
Collapse
Affiliation(s)
- D C Jaworski
- Department of Entomology and Plant Pathology, Oklahoma State University, 127 Noble Research Center, Stillwater, OK 74078-8031, USA.
| | | | | |
Collapse
|
39
|
Kamir D, Zierow S, Leng L, Cho Y, Diaz Y, Griffith J, McDonald C, Merk M, Mitchell RA, Trent J, Chen Y, Kwong YKA, Xiong H, Vermeire J, Cappello M, McMahon-Pratt D, Walker J, Bernhagen J, Lolis E, Bucala R. A Leishmania ortholog of macrophage migration inhibitory factor modulates host macrophage responses. THE JOURNAL OF IMMUNOLOGY 2008; 180:8250-61. [PMID: 18523291 DOI: 10.4049/jimmunol.180.12.8250] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Parasitic organisms have evolved specialized strategies to evade immune defense mechanisms. We describe herein an ortholog of the cytokine, macrophage migration inhibitory factor (MIF), which is produced by the obligate intracellular parasite, Leishmania major. The Leishmania MIF protein, Lm1740MIF, shows significant structural homology with human MIF as revealed by a high-resolution x-ray crystal structure (1.03 A). Differences between the two proteins in the N-terminal tautomerization site are evident, and we provide evidence for the selective, species-specific inhibition of MIF by small-molecule antagonists that target this site. Lm1740MIF shows significant binding interaction with the MIF receptor, CD74 (K(d) = 2.9 x 10(-8) M). Like its mammalian counterpart, Lm1740MIF induces ERK1/2 MAP kinase activation in a CD74-dependent manner and inhibits the activation-induced apoptosis of macrophages. The ability of Lm1740MIF to inhibit apoptosis may facilitate the persistence of Leishmania within the macrophage and contribute to its evasion from immune destruction.
Collapse
Affiliation(s)
- Daniela Kamir
- Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Khokhlova IS, Ghazaryan L, Krasnov BR, Degen AA. Effects of parasite specificity and previous infestation of hosts on the feeding and reproductive success of rodent-infesting fleas. Funct Ecol 2008. [DOI: 10.1111/j.1365-2435.2008.01393.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
Zanettii AS, Pornwiroon W, Kearney MT, Macaluso KR. Characterization of rickettsial infection in Amblyomma americanum (Acari: Ixodidae) by quantitative real-time polymerase chain reaction. JOURNAL OF MEDICAL ENTOMOLOGY 2008; 45:267-275. [PMID: 18402143 DOI: 10.1603/0022-2585(2008)45[267:coriia]2.0.co;2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Several species of the spotted fever group Rickettsia (SFGR), with considerable variation in vertebrate host pathogenicity, are present in ticks in the United States. In this study, quantitative real-time PCR (qPCR) was used to characterize the growth and the distribution of Rickettsia amblyommii in selected tissues (salivary glands, gut, and ovaries) of naturally infected Amblyomma americanum (L.) (Acari: Ixodidae), during bloodmeal acquisition and throughout vertical transmission to eggs and postembryonic life cycle stages (larvae and nymphs). R. amblyommii was identified in the samples at ratios of < or = 1 rickettsiae per tick cell. Significant variability in the ratio of rickettsial to tick gene copy numbers between the tissues was identified; however, no single tissue was consistently observed to have the greatest rickettsial burden throughout the feeding event. Furthermore, the ratio of rickettsial to tick gene copy numbers did not significantly differ between eggs, immature ticks, and feeding events. This is the first study to use qPCR to enumerate rickettsial growth and distribution in the tick host during bloodmeal acquisition. Deciphering SFGR tissue distribution and transmission mechanisms is necessary for the development of novel approaches to control tick-borne rickettsial diseases.
Collapse
Affiliation(s)
- Andre S Zanettii
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, SVM-3213, Baton Rouge, LA 70803 , USA
| | | | | | | |
Collapse
|
42
|
In vitro splenocyte proliferation responses of BALB/c mice to salivary gland extracts of three ixodid tick species (Acari: Ixodidae). Biologia (Bratisl) 2007. [DOI: 10.2478/s11756-007-0141-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Renner P, Roger T, Calandra T. Macrophage migration inhibitory factor: gene polymorphisms and susceptibility to inflammatory diseases. Clin Infect Dis 2007; 41 Suppl 7:S513-9. [PMID: 16237655 DOI: 10.1086/432009] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The cytokine macrophage migration inhibitory factor (MIF) is a constitutive element of the host antimicrobial defenses and stress response that promotes proinflammatory function of the innate and acquired immune systems. MIF plays an important role in the pathogenesis of acute and chronic inflammatory or autoimmune disorders, such as sepsis, acute respiratory distress syndrome, asthma, rheumatoid arthritis, and inflammatory bowel diseases. Polymorphisms of the human MIF gene (that is, guanine-to-cytosine transition at position -173 or CATT-tetranucleotide repeat at position -794) have been associated with increased susceptibility to or severity of juvenile idiopathic and adult rheumatoid arthritis, ulcerative colitis, atopy, or sarcoidosis. Whether these MIF polymorphisms affect the susceptibility to and outcome of sepsis has not yet been examined. Analyses of MIF genotypes in patients with sepsis may help to classify patients into risk categories and to identify those patients who may benefit from anti-MIF therapeutic strategies.
Collapse
Affiliation(s)
- Pascal Renner
- Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | | |
Collapse
|
44
|
Fast MD, Johnson SC, Eddy TD, Pinto D, Ross NW. Lepeophtheirus salmonis secretory/excretory products and their effects on Atlantic salmon immune gene regulation. Parasite Immunol 2007; 29:179-89. [PMID: 17371455 DOI: 10.1111/j.1365-3024.2007.00932.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have previously shown that Lepeophtheirus salmonis produces trypsin and prostaglandin E(2) (PGE(2)) that are most likely responsible for the limited inflammatory response of Atlantic salmon to infection. After removal of the dopamine and PGE(2), the immunomodulatory activity of unfractionated and pools of the fractionated secretions was determined by examining the effects of the secretions on Atlantic salmon immune gene expression. Incubation of macrophage-enriched isolates of Atlantic salmon head kidney cells with the unfractionated secretion + PGE(2) revealed a significant inhibition of interleukin-1beta (IL-1beta) and major histocompatibility class I gene expression. Inhibition of lipopolysaccharide-induced IL-1beta expression in the Atlantic salmon head kidney cell line (SHK-1) was observed when three pools of the secretory/excretory products were tested. Further purification of products within these pools revealed that fraction 1-2 could account fully for the inhibition of IL-1beta expression in SHK-1 cells observed in pooled fraction 1. This study demonstrates that there are other immunomodulatory compounds produced by L. salmonis, in addition to PGE(2) and trypsin, that can inhibit the expression of Atlantic salmon immune-related genes in vitro.
Collapse
Affiliation(s)
- M D Fast
- Institute for Marine Biosciences, National Research Council, Halifax, NS, Canada.
| | | | | | | | | |
Collapse
|
45
|
Zhong J, Jasinskas A, Barbour AG. Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS One 2007; 2:e405. [PMID: 17476327 PMCID: PMC1852332 DOI: 10.1371/journal.pone.0000405] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2007] [Accepted: 04/05/2007] [Indexed: 11/29/2022] Open
Abstract
Background The lone star tick Amblyomma americanum is a common pest and vector of infectious diseases for humans and other mammals in the southern and eastern United States. A Coxiella sp. bacterial endosymbiont was highly prevalent in both laboratory-reared and field-collected A. americanum. The Coxiella sp. was demonstrated in all stages of tick and in greatest densities in nymphs and adult females, while a Rickettsia sp. was less prevalent and in lower densities when present. Methodology/Principal Findings We manipulated the numbers of both bacterial species in laboratory-reared A. americanum by injecting engorged nymphs or engorged, mated females with single doses of an antibiotic (rifampin or tetracycline) or buffer alone. Burdens of the bacteria after molting or after oviposition were estimated by quantitative polymerase chain reaction with primers and probes specific for each bacterial species or, as an internal standard, the host tick. Post-molt adult ticks that had been treated with rifampin or tetracycline had lower numbers of the Coxiella sp. and Rickettsia sp. and generally weighed less than ticks that received buffer alone. Similarly, after oviposition, females treated previously with either antibiotic had lower burdens of both bacterial species in comparison to controls. Treatment of engorged females with either antibiotic was associated with prolonged time to oviposition, lower proportions of ticks that hatched, lower proportions of viable larvae among total larvae, and lower numbers of viable larvae per tick. These fitness estimators were associated with reduced numbers of the Coxiella sp. but not the Rickettsia sp. Conclusion/Significance The findings indicate that the Coxiella sp. is a primary endosymbiont, perhaps provisioning the obligately hematophagous parasites with essential nutrients. The results also suggest that antibiotics could be incorporated into an integrated pest management plan for control of these and other tick vectors of disease.
Collapse
Affiliation(s)
- Jianmin Zhong
- Department of Microbiology and Molecular Genetics, Department of Medicine and Pacific-Southwest Center for Biodefense and Emerging Infections, University of California Irvine, Irvine, California, United States of America
- Department of Biological Sciences, Humboldt State University, Arcata, California, United States of America
| | - Algimantas Jasinskas
- Department of Microbiology and Molecular Genetics, Department of Medicine and Pacific-Southwest Center for Biodefense and Emerging Infections, University of California Irvine, Irvine, California, United States of America
| | - Alan G. Barbour
- Department of Microbiology and Molecular Genetics, Department of Medicine and Pacific-Southwest Center for Biodefense and Emerging Infections, University of California Irvine, Irvine, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Cordery DV, Kishore U, Kyes S, Shafi MJ, Watkins KR, Williams TN, Marsh K, Urban BC. Characterization of a Plasmodium falciparum macrophage-migration inhibitory factor homologue. J Infect Dis 2007; 195:905-12. [PMID: 17299722 PMCID: PMC2640454 DOI: 10.1086/511309] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 10/13/2006] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Macrophage-migration inhibitory factor (MIF), one of the first cytokines described, has a broad range of proinflammatory properties. The genome sequencing project of Plasmodium falciparum identified a parasite homologue of MIF. The protein is expressed during the asexual blood stages of the parasite life cycle that cause malarial disease. The identification of a parasite homologue of MIF raised the question of whether it affects monocyte function in a manner similar to its human counterpart. METHODS Recombinant P. falciparum MIF (PfMIF) was generated and used in vitro to assess its influence on monocyte function. Antibodies generated against PfMIF were used to determine the expression profile and localization of the protein in blood-stage parasites. Antibody responses to PfMIF were determined in Kenyan children with acute malaria and in control subjects. RESULTS PfMIF protein was expressed in asexual blood-stage parasites, localized to the Maurer's cleft. In vitro treatment of monocytes with PfMIF inhibited random migration and reduced the surface expression of Toll-like receptor (TLR) 2, TLR4, and CD86. CONCLUSIONS These results indicate that PfMIF is released during blood-stage malaria and potentially modulates the function of monocytes during acute P. falciparum infection.
Collapse
Affiliation(s)
- Damien V. Cordery
- Centre for Clinical Vaccinology and Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Churchill Hospital, Oxford, UK
| | - Uday Kishore
- Laboratory of Human Immunology, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, West London, UK
| | - Sue Kyes
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Mohammed J. Shafi
- Wellcome Trust Research Laboratories/Kenya Medical Research Institute, Centre for Geographic Medicine Research Coast, Kilifi, Kenya
| | - Katherine R. Watkins
- Centre for Clinical Vaccinology and Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Churchill Hospital, Oxford, UK
| | - Thomas N. Williams
- Wellcome Trust Research Laboratories/Kenya Medical Research Institute, Centre for Geographic Medicine Research Coast, Kilifi, Kenya
| | - Kevin Marsh
- Wellcome Trust Research Laboratories/Kenya Medical Research Institute, Centre for Geographic Medicine Research Coast, Kilifi, Kenya
| | - Britta C. Urban
- Centre for Clinical Vaccinology and Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Churchill Hospital, Oxford, UK
| |
Collapse
|
47
|
Umemiya R, Hatta T, Liao M, Tanaka M, Zhou J, Inoue N, Fujisaki K. Haemaphysalis longicornis: Molecular characterization of a homologue of the macrophage migration inhibitory factor from the partially fed ticks. Exp Parasitol 2007; 115:135-42. [PMID: 16987517 DOI: 10.1016/j.exppara.2006.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 07/10/2006] [Accepted: 07/17/2006] [Indexed: 11/16/2022]
Abstract
The macrophage migration inhibitory factor (MIF) has been identified from some vertebrates and invertebrates. MIF is related to inflammation, tumor growth, and angiogenesis in vertebrates. Here, we report the molecular characterization of a homologue of MIF from partially fed Haemaphysalis longicornis. The sequence analysis of the H. longicornis MIF (HlMIF) indicated that its deduced amino acid sequence has an identity of 77% with the MIF of the tick Amblyomma americanum. Western blot analysis using the anti-His-HlMIF antibody showed that HlMIF was up-regulated during blood feeding. Immunohistochemistry showed that the endogenous HlMIF in partially fed ticks was localized to the midgut and epidermal cells. Moreover, the functional assay revealed that the GST-HlMIF inhibited the migration of human monocytes. In conclusion, we consider that HlMIF may facilitate blood feeding by inhibiting host macrophage migration to the feeding lesion or may participate in the proliferation and differentiation of cells in the tick body.
Collapse
Affiliation(s)
- Rika Umemiya
- Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Yanagito, Gifu 501-1193, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Tolleson DR, Teel PD, Stuth JW, Strey OF, Welsh TH, Carstens GE. Fecal NIRS: detection of tick infestations in cattle and horses. Vet Parasitol 2006; 144:146-52. [PMID: 17097809 DOI: 10.1016/j.vetpar.2006.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 09/05/2006] [Accepted: 09/11/2006] [Indexed: 11/25/2022]
Abstract
Anti-tick treatments are often applied concurrent to routine livestock management practices with little regard to actual infestation levels. Prescription treatments against ticks on grazing cattle would be facilitated by non-invasive detection methods. One such method is fecal near infrared spectroscopy (NIRS). Four studies utilizing cattle (Bos spp.) and one with horses (Equus caballus) fed varying diets and infested with either Amblyomma americanum, A. maculatum, A. cajennense or Dermacentor albipictus were conducted to determine the ability of fecal NIRS to identify samples from animals with (High stress) and without (Low stress) a tick burden. Discriminant analysis of each individual trial resulted in R(2)>0.80. Similar analyses utilizing all combinations of four studies, predicting group membership in the remaining study, yielded R(2)>0.80, but correct determinations for Low and High tick stress samples of only 53.4 and 60.1%, respectively. All five trials were combined and a random 10 or 25% of the samples were removed from the calibration. As in the previous calibrations, a high degree of discrimination was achieved (R(2)>0.89). The validation samples were correctly identified at 91.7% for Low stress and 96.3% for High stress, respectively. Difficulties in detecting differences in fecal samples due to confounding effects of trial were overcome by combining calibration sets. Overall, differences in fecal NIR spectra apparently due to tick stress were accurately detected across diet, host species, and tick species.
Collapse
Affiliation(s)
- D R Tolleson
- Department of Rangeland Ecology & Management, Mail Stop 2126 Animal Industries Bldg., Texas A&M University, College Station, TX 77843-2126, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Jasinskas A, Zhong J, Barbour AG. Highly prevalent Coxiella sp. bacterium in the tick vector Amblyomma americanum. Appl Environ Microbiol 2006; 73:334-6. [PMID: 17085709 PMCID: PMC1797106 DOI: 10.1128/aem.02009-06] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Laboratory-reared and field-collected Amblyomma americanum ticks were hosts of a Coxiella sp. and a Rickettsia sp. While the Coxiella sp. was detected in 50 of 50 field-collected ticks, the Rickettsia sp. was absent from 32% of ticks. The Coxiella sp. showed evidence of a reduced genome and may be an obligate endosymbiont.
Collapse
Affiliation(s)
- Algimantas Jasinskas
- Deparetments of Microbiology and Molecular Genetics, University of California-Irvine, Pacific-Southwest Center, 3012 Hewitt, Irvine, CA 92697-4028, USA
| | | | | |
Collapse
|
50
|
Abstract
There is now abundant evidence that vaccination with defined protein antigens is able to induce significant immunity to tick infestation. In a limited number of cases, this immunity has been duplicated by vaccination with recombinant antigens, a critical step on the pathway to commercial vaccine production. The existence of two commercial vaccines has allowed a number of field studies showing that the existing products can make an important contribution to an integrated approach to the control of ticks in the field. Under most circumstances however, the use of a tick vaccine as the single, stand alone control technology is likely to require more efficacious vaccines than those currently available. Increases in efficacy are most likely to come through the discovery of additional, effective vaccine antigens. The number of antigens with demonstrated effect is increasing, though only slowly, while the number of potential antigens that remain to be evaluated is increasing more quickly. There is limited, though convincing, evidence that some of these antigens will show effective cross-species protection, though in a poorly understood and unpredictable way. The groundwork has been laid; the potential of the field is still to be effectively exploited.
Collapse
Affiliation(s)
- P Willadsen
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Queensland 4067, Australia.
| |
Collapse
|