1
|
Ouali R, Bousbata S. Unveiling the Peptidase Network Orchestrating Hemoglobin Catabolism in Rhodnius prolixus. Mol Cell Proteomics 2024; 23:100775. [PMID: 38663568 PMCID: PMC11135036 DOI: 10.1016/j.mcpro.2024.100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/29/2024] [Accepted: 04/21/2024] [Indexed: 05/23/2024] Open
Abstract
Chagas disease is transmitted to humans by obligatory hematophagous insects of Triatominae subfamily, which feeds on various hosts to acquire their nutritional sustenance derived from blood proteins. Hemoglobin (Hb) digestion is a pivotal metabolic feature of triatomines, representing a key juncture in their competence toward Trypanosoma cruzi; however, it remains poorly understood. To explore the Hb digestion pathway in Rhodnius prolixus, a major Chagas disease vector, we employed an array of approaches for activity profiling of various midgut-associated peptidases using specific substrates and inhibitors. Dissecting the individual contribution of each peptidase family in Hb digestion has unveiled a predominant role played by aspartic proteases and cathepsin B-like peptidases. Determination of peptidase-specific cleavage sites of these key hemoglobinases, in conjunction with mass spectrometry-based identification of in vivo Hb-derived fragments, has revealed the intricate network of peptidases involved in the Hb digestion pathway. This network is initiated by aspartic proteases and subsequently sustained by cysteine proteases belonging to the C1 family. The process is continued simultaneously by amino and carboxypeptidases. The comprehensive profiling of midgut-associated aspartic proteases by quantitative proteomics has enabled the accurate revision of gene annotations within the A1 family of the R. prolixus genome. Significantly, this study also serves to illuminate a potentially important role of the anterior midgut in blood digestion. The expanded repertoire of midgut-associated proteases presented in this study holds promise for the identification of novel targets aimed at controlling the transmission of Chagas disease.
Collapse
Affiliation(s)
- Radouane Ouali
- Laboratory of Vector-Pathogen Biology, Proteomic Platform, Department of Molecular Biology, Université Libre de Bruxelles, Gosselies, Belgium.
| | - Sabrina Bousbata
- Laboratory of Vector-Pathogen Biology, Proteomic Platform, Department of Molecular Biology, Université Libre de Bruxelles, Gosselies, Belgium.
| |
Collapse
|
2
|
Diniz LCL, da Silva Junior PI. Hemoglobin Reassembly of Antimicrobial Fragments from the Midgut of Triatoma infestans. Biomolecules 2020; 10:biom10020261. [PMID: 32050591 PMCID: PMC7072205 DOI: 10.3390/biom10020261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/16/2020] [Accepted: 01/28/2020] [Indexed: 12/03/2022] Open
Abstract
Hemoglobin is one of the most important molecules of the human body. Beyond its physiological activity, hemoglobins are able to inhibit the growth of several microorganisms. Since 1999, studies have reported that antimicrobial peptides can be produced by blood-feeding insects through hemoglobin digestion, and it has been reported that Triatoma infestans can generate an antimicrobial fragment from human fibrinopeptide. Thus T. infestans intestinal content was analyzed through Reverse Phase High-Performance Liquid Chromatography (RP-HPLC), the eluted fractions were tested against Micrococcus luteus, Escherichia coli and Staphylococcus aureus, and the active fractions submitted to mass spectrometry. The data obtained were compared to hemoglobin databases to verify the presence of hemoglobin-derived fragments. Ten fractions eluted from chromatography presented antimicrobial activity, and when analyzed through mass spectrometry revealed the presence of 8 murine hemoglobin α-chain fragments and 24 fragments from murine hemoglobin β fragments. Through the compilation of the fragments is possible to obtain over 67% coverage of both sequences. Part of the amino acid sequences corresponds to the sequences already identified on other intestinal contents of arthropods, and are highly conserved between the blood of other wild animals that are the most common intermediate hosts of Chagas’ disease in Brazil and some of the main natural blood source for triatomines.
Collapse
Affiliation(s)
- Laura Cristina Lima Diniz
- Laboratory of Applied Toxinology, Butantan Institute, CEP: 05503-900, São Paulo, SP, Brazil;
- Post-Graduation Program Interunits in Biotechnology, USP/IPT/IBU, CEP 05508-900, São Paulo, SP, Brazil
| | - Pedro Ismael da Silva Junior
- Laboratory of Applied Toxinology, Butantan Institute, CEP: 05503-900, São Paulo, SP, Brazil;
- Correspondence: ; Tel.: +55-011-2627-9731
| |
Collapse
|
3
|
Santiago PB, de Araújo CN, Motta FN, Praça YR, Charneau S, Bastos IMD, Santana JM. Proteases of haematophagous arthropod vectors are involved in blood-feeding, yolk formation and immunity - a review. Parasit Vectors 2017; 10:79. [PMID: 28193252 PMCID: PMC5307778 DOI: 10.1186/s13071-017-2005-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/27/2017] [Indexed: 11/10/2022] Open
Abstract
Ticks, triatomines, mosquitoes and sand flies comprise a large number of haematophagous arthropods considered vectors of human infectious diseases. While consuming blood to obtain the nutrients necessary to carry on life functions, these insects can transmit pathogenic microorganisms to the vertebrate host. Among the molecules related to the blood-feeding habit, proteases play an essential role. In this review, we provide a panorama of proteases from arthropod vectors involved in haematophagy, in digestion, in egg development and in immunity. As these molecules act in central biological processes, proteases from haematophagous vectors of infectious diseases may influence vector competence to transmit pathogens to their prey, and thus could be valuable targets for vectorial control.
Collapse
Affiliation(s)
- Paula Beatriz Santiago
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil
| | - Carla Nunes de Araújo
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.,Faculdade de Ceilândia, Universidade de Brasília, Centro Metropolitano, Conjunto A, Lote 01, 72220-275, Brasília, DF, Brazil
| | - Flávia Nader Motta
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.,Faculdade de Ceilândia, Universidade de Brasília, Centro Metropolitano, Conjunto A, Lote 01, 72220-275, Brasília, DF, Brazil
| | - Yanna Reis Praça
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.,Programa Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil
| | - Sébastien Charneau
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil
| | - Izabela M Dourado Bastos
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil
| | - Jaime M Santana
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| |
Collapse
|
4
|
Major acid endopeptidases of the blood-feeding monogenean Eudiplozoon nipponicum (Heteronchoinea: Diplozoidae). Parasitology 2016; 143:494-506. [PMID: 26888494 DOI: 10.1017/s0031182015001808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In parasitic flatworms, acid endopeptidases are involved in crucial processes, including digestion, invasion, interactions with the host immune system, etc. In haematophagous monogeneans, however, no solid information has been available about the occurrence of these enzymes. Here we aimed to identify major cysteine and aspartic endopeptidase activities in Eudiplozoon nipponicum, an invasive haematophagous parasite of common carp. Employing biochemical, proteomic and molecular tools, we found that cysteine peptidase activities prevailed in soluble protein extracts and excretory/secretory products (ESP) of E. nipponicum; the major part was cathepsin L-like in nature supplemented with cathepsin B-like activity. Significant activity of the aspartic cathepsin D also occurred in soluble protein extracts. The degradation of haemoglobin in the presence of ESP and worm protein extracts was completely inhibited by a combination of cysteine and aspartic peptidase inhibitors, and diminished by particular cathepsin L, B and D inhibitors. Mass spectrometry revealed several tryptic peptides in ESP matching to two translated sequences of cathepsin L genes, which were amplified from cDNA of E. nipponicum and bioinformatically annotated. The dominance of cysteine peptidases of cathepsin L type in E. nipponicum resembles the situation in, e.g. fasciolid trematodes.
Collapse
|
5
|
Arockiaraj J, Chaurasia MK, Kumaresan V, Palanisamy R, Harikrishnan R, Pasupuleti M, Kasi M. Macrobrachium rosenbergii mannose binding lectin: synthesis of MrMBL-N20 and MrMBL-C16 peptides and their antimicrobial characterization, bioinformatics and relative gene expression analysis. FISH & SHELLFISH IMMUNOLOGY 2015; 43:364-374. [PMID: 25575476 DOI: 10.1016/j.fsi.2014.12.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/26/2014] [Accepted: 12/26/2014] [Indexed: 06/04/2023]
Abstract
Mannose-binding lectin (MBL), an antimicrobial protein, is an important component of innate immune system which recognizes repetitive sugar groups on the surface of bacteria and viruses leading to activation of the complement system. In this study, we reported a complete molecular characterization of cDNA encoded for MBL from freshwater prawn Macrobrachium rosenbergii (Mr). Two short peptides (MrMBL-N20: (20)AWNTYDYMKREHSLVKPYQG(39) and MrMBL-C16: (307)GGLFYVKHKEQQRKRF(322)) were synthesized from the MrMBL polypeptide. The purity of the MrMBL-N20 (89%) and MrMBL-C16 (93%) peptides were confirmed by MS analysis (MALDI-ToF). The purified peptides were used for further antimicrobial characterization including minimum inhibitory concentration (MIC) assay, kinetics of bactericidal efficiency and analysis of hemolytic capacity. The peptides exhibited antimicrobial activity towards all the Gram-negative bacteria taken for analysis, whereas they showed the activity towards only a few selected Gram-positive bacteria. MrMBL-C16 peptides produced the highest inhibition towards both the Gram-negative and Gram-positive bacteria compared to the MrMBL-N20. Both peptides do not produce any inhibition against Bacillus sps. The kinetics of bactericidal efficiency showed that the peptides drastically reduced the number of surviving bacterial colonies after 24 h incubation. The results of hemolytic activity showed that both peptides produced strong activity at higher concentration. However, MrMBL-C16 peptide produced the highest activity compared to the MrMBL-N20 peptide. Overall, the results indicated that the peptides can be used as bactericidal agents. The MrMBL protein sequence was characterized using various bioinformatics tools including phylogenetic analysis and structure prediction. We also reported the MrMBL gene expression pattern upon viral and bacterial infection in M. rosenbergii gills. It could be concluded that the prawn MBL may be one of the important molecule which is involved in antimicrobial mechanism. Moreover, MrMBL derived MrMBL-N20 and MrMBL-C16 peptides are important antimicrobial peptides for the recognition and eradication of viral and bacterial pathogens.
Collapse
Affiliation(s)
- Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| | - Mukesh Kumar Chaurasia
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Rajesh Palanisamy
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, 631 501 Kanchipuram, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, 226031 Lucknow, Uttar Pradesh, India
| | - Marimuthu Kasi
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Semeling Bedong, 08100 Bedong, Kedah, Malaysia
| |
Collapse
|
6
|
Waniek PJ, Araújo CAC, Momoli MM, Azambuja P, Jansen AM, Genta FA. Serine carboxypeptidases of Triatoma brasiliensis (Hemiptera, Reduviidae): Sequence characterization, expression pattern and activity localization. JOURNAL OF INSECT PHYSIOLOGY 2014; 63:9-20. [PMID: 24548612 DOI: 10.1016/j.jinsphys.2014.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 02/06/2014] [Accepted: 02/07/2014] [Indexed: 06/03/2023]
Abstract
Using specific oligonucleotides, 5'- and 3'-RACE and sequencing, two cDNAs encoding serine carboxypeptidases (tbscp-1 and tbscp-2) from the midgut of the blood sucking heteropteran Triatoma brasiliensis were identified. Both cDNAs with an open reading frame of 1389bp, encode serine carboxypeptidase precursors of 463 amino acid residues, which possess a signal peptide cleavage site after Ala19. Analysis of tbscp-1 and tbscp-2 genomic DNA showed an absence of introns in both sequences and the presence of a further intron-free SCP encoding gene (tbscp-2b). By reverse transcription polymerase chain reaction (RT-PCR), tbscp-1 and tbscp-2 transcript abundance was found similarly in fifth instar nymphs at different days after feeding (daf), high in the posterior midgut (small intestine), lower in the anterior midgut (stomach) and fat body and almost undetectable in the salivary glands. In the anterior, middle and posterior regions of the small intestine at 5daf the transcript abundance of both genes was almost identical. Also in adult female and male insects at 5daf both genes showed the strongest signal in the posterior midgut. Molecular modeling suggested that TBSCP-1 has carboxypeptidase D activity; activities against Hippuryl-Phenylalanine and Hippuryl-Arginine were also located at the posterior midgut, both were induced after blood feeding. Treatment of the posterior midgut extracts with the serine protease inhibitor PMSF strongly reduced carboxypeptidase activity. These findings suggest that triatomines might use serine carboxypeptidases, which are usually found in lysosomes, as digestive enzymes in the posterior midgut lumen, from which TBSCP-1 and TBSCP-2 are possible candidates to fulfill this function.
Collapse
Affiliation(s)
- Peter J Waniek
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, FIOCRUZ/RJ, Av Brasil 4365, CEP 21045-900 Rio de Janeiro, RJ, Brazil; Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, FIOCRUZ/RJ, Av Brasil 4365, CEP 21045-900 Rio de Janeiro, RJ, Brazil.
| | - Catarina A C Araújo
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, FIOCRUZ/RJ, Av Brasil 4365, CEP 21045-900 Rio de Janeiro, RJ, Brazil
| | - Marisa M Momoli
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, FIOCRUZ/RJ, Av Brasil 4365, CEP 21045-900 Rio de Janeiro, RJ, Brazil
| | - Patricia Azambuja
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, FIOCRUZ/RJ, Av Brasil 4365, CEP 21045-900 Rio de Janeiro, RJ, Brazil
| | - Ana M Jansen
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, FIOCRUZ/RJ, Av Brasil 4365, CEP 21045-900 Rio de Janeiro, RJ, Brazil
| | - Fernando A Genta
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, FIOCRUZ/RJ, Av Brasil 4365, CEP 21045-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
7
|
Ribeiro JMC, Genta FA, Sorgine MHF, Logullo R, Mesquita RD, Paiva-Silva GO, Majerowicz D, Medeiros M, Koerich L, Terra WR, Ferreira C, Pimentel AC, Bisch PM, Leite DC, Diniz MMP, Junior JLDSGV, Da Silva ML, Araujo RN, Gandara ACP, Brosson S, Salmon D, Bousbata S, González-Caballero N, Silber AM, Alves-Bezerra M, Gondim KC, Silva-Neto MAC, Atella GC, Araujo H, Dias FA, Polycarpo C, Vionette-Amaral RJ, Fampa P, Melo ACA, Tanaka AS, Balczun C, Oliveira JHM, Gonçalves RLS, Lazoski C, Rivera-Pomar R, Diambra L, Schaub GA, Garcia ES, Azambuja P, Braz GRC, Oliveira PL. An insight into the transcriptome of the digestive tract of the bloodsucking bug, Rhodnius prolixus. PLoS Negl Trop Dis 2014; 8:e2594. [PMID: 24416461 PMCID: PMC3886914 DOI: 10.1371/journal.pntd.0002594] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/04/2013] [Indexed: 12/14/2022] Open
Abstract
The bloodsucking hemipteran Rhodnius prolixus is a vector of Chagas' disease, which affects 7-8 million people today in Latin America. In contrast to other hematophagous insects, the triatomine gut is compartmentalized into three segments that perform different functions during blood digestion. Here we report analysis of transcriptomes for each of the segments using pyrosequencing technology. Comparison of transcript frequency in digestive libraries with a whole-body library was used to evaluate expression levels. All classes of digestive enzymes were highly expressed, with a predominance of cysteine and aspartic proteinases, the latter showing a significant expansion through gene duplication. Although no protein digestion is known to occur in the anterior midgut (AM), protease transcripts were found, suggesting secretion as pro-enzymes, being possibly activated in the posterior midgut (PM). As expected, genes related to cytoskeleton, protein synthesis apparatus, protein traffic, and secretion were abundantly transcribed. Despite the absence of a chitinous peritrophic membrane in hemipterans - which have instead a lipidic perimicrovillar membrane lining over midgut epithelia - several gut-specific peritrophin transcripts were found, suggesting that these proteins perform functions other than being a structural component of the peritrophic membrane. Among immunity-related transcripts, while lysozymes and lectins were the most highly expressed, several genes belonging to the Toll pathway - found at low levels in the gut of most insects - were identified, contrasting with a low abundance of transcripts from IMD and STAT pathways. Analysis of transcripts related to lipid metabolism indicates that lipids play multiple roles, being a major energy source, a substrate for perimicrovillar membrane formation, and a source for hydrocarbons possibly to produce the wax layer of the hindgut. Transcripts related to amino acid metabolism showed an unanticipated priority for degradation of tyrosine, phenylalanine, and tryptophan. Analysis of transcripts related to signaling pathways suggested a role for MAP kinases, GTPases, and LKBP1/AMP kinases related to control of cell shape and polarity, possibly in connection with regulation of cell survival, response of pathogens and nutrients. Together, our findings present a new view of the triatomine digestive apparatus and will help us understand trypanosome interaction and allow insights into hemipteran metabolic adaptations to a blood-based diet.
Collapse
Affiliation(s)
- José M. C. Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Fernando A. Genta
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos H. F. Sorgine
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Logullo
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael D. Mesquita
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela O. Paiva-Silva
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David Majerowicz
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Medeiros
- Instituto Nacional de Metrologia Qualidade e Tecnologia, Diretoria de Metrologia Aplicada às Ciências da Vida, Programa de Biotecnologia, Prédio 27, CEP 25250-020, Duque de Caxias, Rio de Janeiro, Brazil
| | - Leonardo Koerich
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CEP 21944-970, Rio de Janeiro, Brazil
| | - Walter R. Terra
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Clélia Ferreira
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - André C. Pimentel
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo M. Bisch
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel C. Leite
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michelle M. P. Diniz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Lídio da S. G. V. Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Technological Innovation, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | - Manuela L. Da Silva
- Instituto Nacional de Metrologia Qualidade e Tecnologia, Diretoria de Metrologia Aplicada às Ciências da Vida, Programa de Biotecnologia, Prédio 27, CEP 25250-020, Duque de Caxias, Rio de Janeiro, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo N. Araujo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Parasitologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Caroline P. Gandara
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sébastien Brosson
- Institute for Molecular Biology and Medicine (IBMM), Université Libre de Bruxelles, Gosselies, Belgium
| | - Didier Salmon
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sabrina Bousbata
- Institute for Molecular Biology and Medicine (IBMM), Université Libre de Bruxelles, Gosselies, Belgium
| | | | - Ariel Mariano Silber
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Michele Alves-Bezerra
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia C. Gondim
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mário Alberto C. Silva-Neto
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia C. Atella
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helena Araujo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe A. Dias
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla Polycarpo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel J. Vionette-Amaral
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Fampa
- Instituto de Biologia, DBA, UFRRJ, Seropédica, Rio de Janeiro, Brazil
| | - Ana Claudia A. Melo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aparecida S. Tanaka
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carsten Balczun
- Zoology/Parasitology Group, Ruhr-Universität, Bochum, Germany
| | - José Henrique M. Oliveira
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata L. S. Gonçalves
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiano Lazoski
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CEP 21944-970, Rio de Janeiro, Brazil
| | - Rolando Rivera-Pomar
- Centro Regional de Estudios Genomicos, Universidad Nacional de La Plata, Florencio Varela, Argentina
- Centro de Bioinvestigaciones, Universidad Nacional del Noroeste de Buenos Aires, Pergamino, Argentina
| | - Luis Diambra
- Centro Regional de Estudios Genomicos, Universidad Nacional de La Plata, Florencio Varela, Argentina
| | | | - Elói S. Garcia
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Azambuja
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glória R. C. Braz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L. Oliveira
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Metabolic signatures of triatomine vectors of Trypanosoma cruzi unveiled by metabolomics. PLoS One 2013; 8:e77283. [PMID: 24204787 PMCID: PMC3813737 DOI: 10.1371/journal.pone.0077283] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/01/2013] [Indexed: 11/25/2022] Open
Abstract
Chagas disease is a trypanosomiasis whose causative agent is the protozoan parasite Trypanosoma cruzi, which is transmitted to humans by hematophagous insects known as triatomines and affects a large proportion of South America. The digestive tract of the insect vectors in which T. cruzi develops constitutes a dynamic environment that affects the development of the parasite. Thus, we set out to investigate the chemical composition of the triatomine intestinal tract through a metabolomics approach. We performed Direct Infusion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry on fecal samples of three triatomine species (Rhodnius prolixus, Triatoma infestans, Panstrongylus megistus) fed with rabbit blood. We then identified groups of metabolites whose frequencies were either uniform in all species or enriched in each of them. By querying the Human Metabolome Database, we obtained putative identities of the metabolites of interest. We found that a core group of metabolites with uniform frequencies in all species represented approximately 80% of the molecules detected, whereas the other 20% varied among triatomine species. The uniform core was composed of metabolites of various categories, including fatty acids, steroids, glycerolipids, nucleotides, sugars, and others. Nevertheless, the metabolic fingerprint of triatomine feces differs depending on the species considered. The variable core was mainly composed of prenol lipids, amino acids, glycerolipids, steroids, phenols, fatty acids and derivatives, benzoic acid and derivatives, flavonoids, glycerophospholipids, benzopyrans, and quinolines. Triatomine feces constitute a rich and varied chemical medium whose constituents are likely to affect T. cruzi development and infectivity. The complexity of the fecal metabolome of triatomines suggests that it may affect triatomine vector competence for specific T. cruzi strains. Knowledge of the chemical environment of T. cruzi in its invertebrate host is likely to generate new ways to understand the factors influencing parasite proliferation as well as methods to control Chagas disease.
Collapse
|
9
|
Macrobrachium rosenbergii cathepsin L: molecular characterization and gene expression in response to viral and bacterial infections. Microbiol Res 2013; 168:569-79. [PMID: 23669240 DOI: 10.1016/j.micres.2013.04.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/15/2013] [Accepted: 04/15/2013] [Indexed: 11/20/2022]
Abstract
Cathepsin L (MrCathL) was identified from a constructed cDNA library of freshwater prawn Macrobrachium rosenbergii. MrCathL full-length cDNA is 1161 base pairs (bp) with an ORF of 1026bp which encodes a polypeptide of 342 amino acid (aa) long. The eukaryotic cysteine proteases, histidine and asparagine active site residues were identified in the aa sequence of MrCathL at 143-154, 286-296 and 304-323, respectively. The pair wise clustalW analysis of MrCathL showed the highest similarity (97%) with the homologous cathepsin L from Macrobrachium nipponense and the lowest similarity (70%) from human. Phylogenetic analysis revealed two distinct clusters of the invertebrates and vertebrates cathepsin L in the phylogenetic tree. MrCathL and cathepsin L from M. nipponense were clustered together, formed a sister group to cathepsin L of Penaeus monodon, and finally clustered to Lepeophtheirus salmonis. High level of (P<0.05) MrCathL gene expression was noticed in haemocyte and lowest in eyestalk. Furthermore, the MrCathL gene expression in M. rosenbergii was up-regulated in haemocyte by virus [M. rosenbergii nodovirus (MrNV) and white spot syndrome baculovirus (WSBV)] and bacteria (Vibrio harveyi and Aeromonas hydrophila). The recombinant MrCathL exhibited a wide range of activity in various pH between 3 and 10 and highest at pH 7.5. Cysteine proteinase (stefin A, stefin B and antipain) showed significant influence (100%) on recombinant MrCathL enzyme activity. The relative activity and residual activity of recombinant MrCathL against various metal ions or salts and detergent tested at different concentrations. These results indicated that the metal ions, salts and detergent had an influence on the proteinase activity of recombinant MrCathL. Conclusively, the results of this study imply that MrCathL has high pH stability and is fascinating object for further research on the function of cathepsin L in prawn innate immune system.
Collapse
|
10
|
Kamhi E, Joo EJ, Dordick JS, Linhardt RJ. Glycosaminoglycans in infectious disease. Biol Rev Camb Philos Soc 2013; 88:928-43. [DOI: 10.1111/brv.12034] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 02/07/2013] [Accepted: 02/27/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Eyal Kamhi
- Department of Chemistry and Chemical Biology; Rensselaer Polytechnic Institute; Troy New York 12180-3590 U.S.A
- Drughoming Ltd; Rehovot Israel
| | - Eun Ji Joo
- Department of Chemistry and Chemical Biology; Rensselaer Polytechnic Institute; Troy New York 12180-3590 U.S.A
| | - Jonathan S. Dordick
- Department of Biology; Rensselaer Polytechnic Institute; Troy New York 12180-3590 U.S.A
- Department of Chemical and Biological Engineering; Rensselaer Polytechnic Institute; Troy New York 12180-3590 U.S.A
- Department of Biomedical Engineering; Center for Biotechnology & Interdisciplinary Studies; Rensselaer Polytechnic Institute; Troy New York 12180-3590 U.S.A
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology; Rensselaer Polytechnic Institute; Troy New York 12180-3590 U.S.A
- Department of Biology; Rensselaer Polytechnic Institute; Troy New York 12180-3590 U.S.A
- Department of Chemical and Biological Engineering; Rensselaer Polytechnic Institute; Troy New York 12180-3590 U.S.A
- Department of Biomedical Engineering; Center for Biotechnology & Interdisciplinary Studies; Rensselaer Polytechnic Institute; Troy New York 12180-3590 U.S.A
| |
Collapse
|
11
|
Balczun C, Siemanowski J, Pausch JK, Helling S, Marcus K, Stephan C, Meyer HE, Schneider T, Cizmowski C, Oldenburg M, Höhn S, Meiser CK, Schuhmann W, Schaub GA. Intestinal aspartate proteases TiCatD and TiCatD2 of the haematophagous bug Triatoma infestans (Reduviidae): sequence characterisation, expression pattern and characterisation of proteolytic activity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:240-250. [PMID: 22210150 DOI: 10.1016/j.ibmb.2011.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 12/09/2011] [Accepted: 12/13/2011] [Indexed: 05/31/2023]
Abstract
Two aspartate protease encoding complementary deoxyribonucleic acids (cDNA) were characterised from the small intestine (posterior midgut) of Triatoma infestans and the corresponding genes were named TiCatD and TiCatD2. The deduced 390 and 393 amino acid sequences of both enzymes contain two regions characteristic for cathepsin D proteases and the conserved catalytic aspartate residues forming the catalytic dyad, but only TiCatD2 possesses an entire C-terminal proline loop. The amino acid sequences of TiCatD and TiCatD2 show 51-58% similarity to other insect cathepsin D-like proteases and, respectively, 88 and 58% similarity to the aspartate protease ASP25 from T. infestans available in the GenBank database. In phylogenetic analysis, TiCatD and ASP25 clearly separate from cathepsin D-like sequences of other insects, TiCatD2 groups with cathepsin D-like proteases with proline loop. The activity of purified TiCatD and TiCatD2 was highest between pH 2 and 4, respectively, and hence, deviate from the pH values of the lumen of the small intestine, which varied in correlation with the time after feeding between pH 5.2 and 6.7 as determined by means of micro pH electrodes. Both cathepsins, TiCatD and TiCatD2, were purified from the lumen of the small intestine using pepstatin affinity chromatography and identified by nanoLC-ESI-MS/MS analysis as those encoded by the cDNAs. The proteolytic activity of the purified enzymes is highest at pH 3 and the respective genes are expressed in the both regions of the midgut, stomach (anterior midgut) and small intestine, not in the rectum, salivary glands, Malpighian tubules or haemocytes. The temporal expression pattern of both genes in the small intestine after feeding revealed a feeding dependent regulation for TiCatD but not for TiCatD2.
Collapse
Affiliation(s)
- Carsten Balczun
- Zoology/Parasitology Group, Ruhr-Universität, Universitätsstrasse 150, 44780 Bochum, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Waniek PJ, Pacheco Costa JE, Jansen AM, Costa J, Araújo CAC. Cathepsin L of Triatoma brasiliensis (Reduviidae, Triatominae): sequence characterization, expression pattern and zymography. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:178-187. [PMID: 22100382 DOI: 10.1016/j.jinsphys.2011.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 11/06/2011] [Accepted: 11/08/2011] [Indexed: 05/31/2023]
Abstract
Triatoma brasiliensis is considered one of the main vectors of Chagas disease commonly found in semi-arid areas of northeastern Brazil. These insects use proteases, such as carboxypeptidase B, aminopeptidases and different cathepsins for blood digestion. In the present study, two genes encoding cathepsin L from the midgut of T. brasiliensis were identified and characterized. Mature T. brasiliensis cathepsin L-like proteinases (TBCATL-1, TBCATL-2) showed a high level of identity to the cathepsin L-like proteinases of other insects, with highest similarity to Rhodnius prolixus. Both cathepsin L transcripts were highly abundant in the posterior midgut region, the main region of the blood digestion. Determination of the pH in the whole intestine of unfed T. brasiliensis revealed alkaline conditions in the anterior midgut region (stomach) and acidic conditions in the posterior midgut region (small intestine). Gelatine in-gel zymography showed the activity of at least four distinct proteinases in the small intestine and the cysteine proteinase inhibitors transepoxysuccinyl-l-leucylamido-(4-guanidino)butane (E-64) and cathepsin B inhibitor and N-(l-3-trans-propylcarbamoyl-oxirane-2-carbonyl)-l-isoleucyl-l-proline (CA-074) were employed to characterize enzymatic activity. E-64 fully inhibited cysteine proteinase activity, whereas in the samples treated with CA-074 residual proteinase activity was detectable. Thus, proteolytic activity could at least partially be ascribed to cathepsin L. Western blot analysis using specific anti cathepsin L antibodies confirmed the presence of cathepsin L in the lumen of the small intestine of the insects.
Collapse
Affiliation(s)
- Peter J Waniek
- Laboratório de Biologia de Tripanosomatídeos, FIOCRUZ, Avenida Brasil, 4365 Manguinhos, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
13
|
Sojka D, Francischetti IMB, Calvo E, Kotsyfakis M. Cysteine proteases from bloodfeeding arthropod ectoparasites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 712:177-91. [PMID: 21660665 PMCID: PMC3413451 DOI: 10.1007/978-1-4419-8414-2_11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cysteine proteases have been discovered in various bloodfeeding ectoparasites. Here, we assemble the available information about the function of these peptidases and reveal their role in hematophagy and parasite development. While most of the data shed light on key proteolytic events that play a role in arthropod physiology, we also report on the association of cysteine proteases with arthropod vectorial capacity. With emphasis on ticks, specifically Ixodes ricinus, we finally propose a model about the contribution of cysteine peptidases to blood digestion and how their concerted action with other tick midgut proteases leads to the absorbance of nutrients by the midgut epithelial cells.
Collapse
Affiliation(s)
| | | | | | - Michalis Kotsyfakis
- Corresponding Author: Michalis Kotsyfakis—Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branisovska 31, 37005 Ceske Budejovice, Czech Republic.,
| |
Collapse
|
14
|
Nishinaka T, Song J, Lum K, Chiu R. Molecular cloning of cDNA for SPase, a monkey cathepsin L orthologue. ACTA ACUST UNITED AC 2009; 16:147-50. [PMID: 16147867 DOI: 10.1080/10425170500070013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
SPase is a cysteine protease isolated from an African green monkey kidney cell line, CV-1, and has selective cleavage activity toward transcription factor SP-1 and retinoblastoma susceptibility gene product RB. In this study, a cDNA encoding SPase was cloned from a cDNA library prepared from CV-1 cells. The cDNA clone encodes 333 amino acids and is 96.5% identical to human cathepsin L at the nucleotide and amino acid sequence levels. SPase appears to be translated as a preproenzyme based on the comparison between the deduced amino acid sequence and the N-terminal sequence of the purified enzyme. Northern blot analysis exhibited the considerably higher expression of SPase in CV-1 cells compared with COS-1 cells, showing a good correlation with enzymatic activity in these cell lines. Bacterially expressed SPase protein exhibited proteolytic activity toward SP-1 and RB proteins. These observations suggest that SPase is a monkey cathepsin L orthologue.
Collapse
Affiliation(s)
- Toru Nishinaka
- Oral Biology & Medicine, School of Dentistry University of California, Los Angeles, CA, 90095, USA
| | | | | | | |
Collapse
|
15
|
Liu J, Shi GP, Zhang WQ, Zhang GR, Xu WH. Cathepsin L function in insect moulting: molecular cloning and functional analysis in cotton bollworm, Helicoverpa armigera. INSECT MOLECULAR BIOLOGY 2006; 15:823-34. [PMID: 17201774 DOI: 10.1111/j.1365-2583.2006.00686.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Moulting is an essential process of insect development but little is known about cysteine proteases in the process. Here, we detail a proteolytic activity profile from fifth larval instar to new pupae of the lepidopteran Helicoverpa armigera. At fifth to sixth instar moulting, the activities were significantly higher than those in non-moulting stages, and were inhibited by the cysteine protease inhibitor, 2S, 3S-trans-epoxysuccinyl-L-leucylamido-3-methylbutane ethyl ester (E-64), or by the cathepsin L-selective inhibitor CLIK148. Further, a 1513 bp cathepsin L cDNA (Har-CL) was isolated from the H. armigera larval cuticle and epidermis layer. Har-CL gene expression, which is correlated closely with ecdysone, was higher during larval moulting. Injection of E-64 or CLIK148 resulted in delayed fifth to sixth instar moulting, suggesting an essential role for cathepsin L in larval moulting.
Collapse
Affiliation(s)
- J Liu
- Department of Molecular and Cell Biology, University of Science and Technology of China, Hefei, China
| | | | | | | | | |
Collapse
|
16
|
Borges EC, Machado EMM, Garcia ES, Azambuja P. Trypanosoma cruzi: effects of infection on cathepsin D activity in the midgut of Rhodnius prolixus. Exp Parasitol 2005; 112:130-3. [PMID: 16288741 DOI: 10.1016/j.exppara.2005.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 09/23/2005] [Accepted: 09/24/2005] [Indexed: 10/25/2022]
Abstract
Cathepsin D activity was estimated in midgut homogenates from Rhodnius prolixus, uninfected and experimentally infected with Trypanosoma cruzi, at different times after blood ingestion. No enzyme activity was found in the anterior midgut and rectum. In the posterior midgut, enzyme activity was found both in lumen and wall. In starved uninfected insects, in lumen and wall, cathepsin D activity was high, decreasing to a constant rate at 1-15 days after feeding. In insects infected with T. cruzi cathepsin D activity increased 1 and 3 days after blood meal. We suggest that these changes in cathepsin D activity in R. prolixus posterior midgut are due to the establishment of T. cruzi infection.
Collapse
Affiliation(s)
- Erika C Borges
- Laboratório de Bioquímica e Fisiologia de Insetos, Departamento de Bioquímica e Biologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, CEP 21045-900, Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
17
|
Veiga ABG, Ribeiro JMC, Guimarães JA, Francischetti IM. A catalog for the transcripts from the venomous structures of the caterpillar Lonomia obliqua: identification of the proteins potentially involved in the coagulation disorder and hemorrhagic syndrome. Gene 2005; 355:11-27. [PMID: 16023793 PMCID: PMC2909119 DOI: 10.1016/j.gene.2005.05.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2005] [Revised: 04/13/2005] [Accepted: 05/04/2005] [Indexed: 11/20/2022]
Abstract
Accidents with the caterpillar Lonomia obliqua are often associated with a coagulation disorder and hemorrhagic syndrome in humans. In the present study, we have constructed cDNA libraries from two venomous structures of the caterpillar, namely the tegument and the bristle. High-throughput sequencing and bioinformatics analyses were performed in parallel. Over one thousand cDNAs were obtained and clustered to produce a database of 538 contigs and singletons (clusters) for the tegument library and 368 for the bristle library. We have thus identified dozens of full-length cDNAs coding for proteins with sequence homology to snake venom prothrombin activator, trypsin-like enzymes, blood coagulation factors and prophenoloxidase cascade activators. We also report cDNA coding for cysteine proteases, Group III phospholipase A2, C-type lectins, lipocalins, in addition to protease inhibitors including serpins, Kazal-type inhibitors, cystatins and trypsin inhibitor-like molecules. Antibacterial proteins and housekeeping genes are also described. A significant number of sequences were devoid of database matches, suggesting that their biologic function remains to be defined. We also report the N-terminus of the most abundant proteins present in the bristle, tegument, hemolymph, and "cryosecretion". Thus, we have created a catalog that contains the predicted molecular weight, isoelectric point, accession number, and putative function for each selected molecule from the venomous structures of L. obliqua. The role of these molecules in the coagulation disorder and hemorrhagic syndrome caused by envenomation with this caterpillar is discussed. All sequence information and the , including figures and tables with hyperlinks to FASTA-formatted files for each contig and the best match to the databases, are available at http://www.ncbi.nih.gov/projects/omes.
Collapse
Affiliation(s)
- Ana B. G. Veiga
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, 12735 Twinbrook Parkway, Twinbrook III, Room 2E-28, Rockville, MD 20852 USA
- Center of Biotechnology, UFRGS, Av. Bento Gonçalves, 9500, 43421, CP 15005, Porto Alegre-RS, Brazil
| | - José M. C. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, 12735 Twinbrook Parkway, Twinbrook III, Room 2E-28, Rockville, MD 20852 USA
| | - Jorge A. Guimarães
- Center of Biotechnology, UFRGS, Av. Bento Gonçalves, 9500, 43421, CP 15005, Porto Alegre-RS, Brazil
| | - Ivo M.B. Francischetti
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, 12735 Twinbrook Parkway, Twinbrook III, Room 2E-28, Rockville, MD 20852 USA
- Corresponding author. Tel.: +1-301-402-2748; fax: +1-301-480-2571
| |
Collapse
|
18
|
Kollien AH, Waniek PJ, Nisbet AJ, Billingsley PF, Schaub GA. Activity and sequence characterization of two cysteine proteases in the digestive tract of the reduviid bug Triatoma infestans. INSECT MOLECULAR BIOLOGY 2004; 13:569-579. [PMID: 15606805 DOI: 10.1111/j.0962-1075.2004.00504.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cathepsin B- and cathepsin L-like activities were identified in gut extracts of the blood-sucking bug Triatoma infestans using specific substrates and inhibitors. Activities decreased during the first 2 days after feeding but increased to a maximum value at 5 and 10 days post feeding. The deduced 332 and 328 amino acid sequences showed high levels of identity (50-60%) to other insect cathepsin B- and L-like proteases, respectively. The three amino acid residues of the catalytic domain, CHN, and the GCNGG motif were conserved in both cathepsins, but the occluding loop, characterizing B-like cathepsins, was present only in one. ERFNIN and GNFD motifs occurred in the other sequence, defining it as cathepsin L-like. The cathepsin B-like gene was expressed at low, constitutive levels in unfed and fed T. infestans.
Collapse
Affiliation(s)
- A H Kollien
- Department of Special Zoology, Ruhr-University, Bochum, Germany.
| | | | | | | | | |
Collapse
|
19
|
Kuipers AGJ, Jongsma MA. Isolation and molecular characterization of cathepsin L-like cysteine protease cDNAs from western flower thrips (Frankliniella occidentalis). Comp Biochem Physiol B Biochem Mol Biol 2004; 139:65-75. [PMID: 15364289 DOI: 10.1016/j.cbpc.2004.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 06/11/2004] [Accepted: 06/12/2004] [Indexed: 11/30/2022]
Abstract
Cysteine proteases are predominant in thrips guts (TGs) and, therefore, a suitable target for selecting effective protease inhibitors against western flower thrips (Frankliniella occidentalis). We report the isolation of four full-length cysteine protease cDNA clones from thrips in a two-step PCR approach with degenerate oligonucleotides designed on conserved cathepsin L domains. At the deduced amino acid level, the clones possessed all functional and structural characteristics of cathepsin L, and showed high mutual identity and strong similarity with cathepsin L-like cysteine proteases from other insects and arthropods. Southern analysis indicated that a family of four closely related and 10-12 less-related genes encode the cathepsin L-like cysteine proteases in the thrips genome. Partial sequencing of genomic DNA demonstrated the presence of three introns in the coding DNA.
Collapse
Affiliation(s)
- Anja G J Kuipers
- Plant Research International B.V., P.O. Box 16, 6700 AA Wageningen, The Netherlands.
| | | |
Collapse
|
20
|
Madriz X, Martínez MB, Rodríguez MA, Sierra G, Martínez-López C, Riverón AM, Flores L, Orozco E. Expression in fibroblasts and in live animals of Entamoeba histolytica polypeptides EhCP112 and EhADH112. MICROBIOLOGY-SGM 2004; 150:1251-1260. [PMID: 15133088 DOI: 10.1099/mic.0.26938-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
EhCPADH is an immunogenic, heterodimeric protein that is formed by EhCP112 (cysteine protease) and EhADH112 (adhesin), polypeptides involved in Entamoeba histolytica's cytopathic effect, target-cell adherence and phagocytosis. The EhCPADH complex is located in the plasma membrane and cytoplasmic vacuoles. Here, the independent expression of EhCP112 and EhADH112 in fibroblasts and hamsters was analysed. Also investigated was the immunological response in animals independently inoculated with plasmid pcDNA-Ehcp112, which carries the complete cysteine protease-encoding gene, or with plasmid pcDNA-Ehadh112, which carries the C terminus of the adhesin-encoding gene, or with a mixture of both. Both proteins were expressed in the plasma membranes of the transfected fibroblasts. EhCP112 was toxic for the mammalian cells. Proteins were also independently expressed in hamsters after inoculation with the plasmids. Their expression was indirectly evaluated by the presence of antibodies in the inoculated animals. Remarkably, co-immunization of the animals with the two DNA plasmids resulted in an earlier and higher anti-E. histolytica IgG induction than immunization with separate plasmids. In contrast, the cellular immune response was not noticeably improved by the plasmid mixture. Interestingly, protection against liver abscesses was detected only in animals that received the plasmid mixture and no protection was observed in hamsters independently inoculated with plasmid pcDNA-Ehcp112 or pcDNA-Ehadh112.
Collapse
Affiliation(s)
- Xochil Madriz
- División de Biología Molecular, Instituto Finlay, AP 16017 Ciudad de la Habana, C.P. 11600, Cuba
- Escuela Nacional de Medicina y Homeopatía, IPN, Guillermo Massieu Helguera #239, DF 07320, Mexico
| | - Máximo B Martínez
- División de Biología Molecular, Instituto Finlay, AP 16017 Ciudad de la Habana, C.P. 11600, Cuba
| | - Mario A Rodríguez
- Departamento de Patología Experimental, CINVESTAV, IPN, AP 14-740, DF 07000, Mexico
| | - Gustavo Sierra
- División de Biología Molecular, Instituto Finlay, AP 16017 Ciudad de la Habana, C.P. 11600, Cuba
| | - Carolina Martínez-López
- Escuela Nacional de Medicina y Homeopatía, IPN, Guillermo Massieu Helguera #239, DF 07320, Mexico
| | - Ana M Riverón
- Departamento de Biología Molecular, CENIC, AP 6690 Ciudad de La Habana, Cuba
| | - Leopoldo Flores
- Departamento de Patología Experimental, CINVESTAV, IPN, AP 14-740, DF 07000, Mexico
| | - Esther Orozco
- Departamento de Patología Experimental, CINVESTAV, IPN, AP 14-740, DF 07000, Mexico
| |
Collapse
|