1
|
Xu X, Shen Y, Zhang Y, Li Q, Wang W, Chen L, Chen G, Ng WL, Islam MN, Punnarak P, Zheng H, Zhu X. A comparison of 25 complete chloroplast genomes between sister mangrove species Kandelia obovata and Kandelia candel geographically separated by the South China Sea. FRONTIERS IN PLANT SCIENCE 2023; 13:1075353. [PMID: 36684775 PMCID: PMC9845719 DOI: 10.3389/fpls.2022.1075353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
In 2003, Kandelia obovata was identified as a new mangrove species differentiated from Kandelia candel. However, little is known about their chloroplast (cp) genome differences and their possible ecological significance. In this study, 25 whole cp genomes, with seven samples of K. candel from Malaysia, Thailand, and Bangladesh and 18 samples of K. obovata from China, were sequenced for comparison. The cp genomes of both species encoded 128 genes, namely 83 protein-coding genes, 37 tRNA genes, and eight rRNA genes, but the cp genome size of K. obovata was ~2 kb larger than that of K. candle due to the presence of more and longer repeat sequences. Of these, tandem repeats and simple sequence repeats exhibited great differences. Principal component analysis based on indels, and phylogenetic tree analyses constructed with homologous protein genes from the single-copy genes, as well as 38 homologous pair genes among 13 mangrove species, gave strong support to the separation of the two species within the Kandelia genus. Homologous genes ndhD and atpA showed intraspecific consistency and interspecific differences. Molecular dynamics simulations of their corresponding proteins, NAD(P)H dehydrogenase chain 4 (NDH-D) and ATP synthase subunit alpha (ATP-A), predicted them to be significantly different in the functions of photosynthetic electron transport and ATP generation in the two species. These results suggest that the energy requirement was a pivotal factor in their adaptation to differential environments geographically separated by the South China Sea. Our results also provide clues for future research on their physiological and molecular adaptation mechanisms to light and temperature.
Collapse
Affiliation(s)
- Xiuming Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yuchen Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Qianying Li
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Wenqing Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Luzhen Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Guangcheng Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Wei Lun Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Selangor Darul Ehsan, Malaysia
| | - Md Nazrul Islam
- Forestry and Wood Technology Discipline, Khulna University, Khulna, Bangladesh
| | - Porntep Punnarak
- Aquatic Resources Research Institute, Chulalongkorn University, Bangkok, Thailand
| | - Hailei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Xueyi Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Geng Q, Wang Z, Tao J, Kimura MK, Liu H, Hogetsu T, Lian C. Ocean Currents Drove Genetic Structure of Seven Dominant Mangrove Species Along the Coastlines of Southern China. Front Genet 2021; 12:615911. [PMID: 33763110 PMCID: PMC7982666 DOI: 10.3389/fgene.2021.615911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
Mangrove forest ecosystems, which provide important ecological services for marine environments and human activities, are being destroyed worldwide at an alarming rate. The objective of our study was to use molecular data and analytical techniques to separate the effects of historical and contemporary processes on the distribution of mangroves and patterns of population genetic differentiation. Seven mangrove species (Acanthus ilicifolius, Aegiceras corniculatum, Avicennia marina, Bruguiera gymnorrhiza, Kandelia obovata, Lumnitzera racemosa, and Rhizophora stylosa), which are predominant along the coastlines of South China, were genotyped at nuclear (nSSR) and chloroplast (cpSSR) microsatellite markers. We estimated historical and contemporary gene flow, the genetic diversity and population structure of seven mangrove species in China. All of these seven species exhibited few haplotypes, low levels of genetic diversity (H E = 0.160-0.361, with the exception of K. obovata) and high levels of inbreeding (F IS = 0.104-0.637), which may be due to their marginal geographical distribution, human-driven and natural stressors on habitat loss and fragmentation. The distribution patterns of haplotypes and population genetic structures of seven mangrove species in China suggest historical connectivity between populations over a large geographic area. In contrast, significant genetic differentiation [F ST = 0.165-0.629 (nSSR); G ST = 0.173-0.923 (cpSSR)] indicates that populations of mangroves are isolated from one another with low levels of contemporary gene flow among populations. Our results suggest that populations of mangroves were historically more widely inter-connected and have recently been isolated, likely through a combination of ocean currents and human activities. In addition, genetic admixture in Beibu Gulf populations and populations surrounding Hainan Island and southern mainland China were attributed to asymmetric gene flow along prevailing oceanic currents in China in historical times. Even ocean currents promote genetic exchanges among mangrove populations, which are still unable to offset the effects of natural and anthropogenic fragmentation. The recent isolation and lack of gene flow among populations of mangroves may affect their long-term survival along the coastlines of South China. Our study enhances the understanding of oceanic currents contributing to population connectivity, and the effects of anthropogenic and natural habitat fragmentation on mangroves, thereby informing future conservation efforts and seascape genetics toward mangroves.
Collapse
Affiliation(s)
- Qifang Geng
- School of Life Sciences, Nanjing University, Nanjing, China
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo, Japan
| | | | - Jianmin Tao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Megumi K. Kimura
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Ibaraki, Japan
| | - Hong Liu
- Department of Earth and Environment, Florida International University, Miami, FL, United States
| | - Taizo Hogetsu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Chunlan Lian
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Vicariance and Oceanic Barriers Drive Contemporary Genetic Structure of Widespread Mangrove Species Sonneratia alba J. Sm in the Indo-West Pacific. FORESTS 2017. [DOI: 10.3390/f8120483] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Cheng S, Tam NFY, Li R, Shen X, Niu Z, Chai M, Qiu GY. Temporal variations in physiological responses of Kandelia obovata seedlings exposed to multiple heavy metals. MARINE POLLUTION BULLETIN 2017; 124:1089-1095. [PMID: 28442201 DOI: 10.1016/j.marpolbul.2017.03.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 03/21/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
A study was conducted to quantify temporal variations in physiological responses of Kandelia obovata under multiple heavy metal stress. The results showed that plant growth was not significantly affected by multiple heavy metal stress during the 120-days experiment. At the start, levels of net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) showed effects of "low-promotion, high-inhibition", but Pn and Gs reduced with increasing heavy metal stress at the end. Temporary lipid oxidation was shown by high levels of malondialdehyde (MDA) under high heavy metal stress at the start but was unaffected at the end of the experiment. MDA negatively correlated with biomass and photosynthetic parameters and acted as a sensitive indicator. Proline also shared similar trend and indicated its temporary role in osmotic adjustment. Negative correlations between osmotic adjustment matter and photosynthetic parameters further confirmed the significant role of osmotic adjustment under heavy metal stress.
Collapse
Affiliation(s)
- Shanshan Cheng
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, Guangdong, China
| | - Nora Fung Yee Tam
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Ruili Li
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, Guangdong, China.
| | - Xiaoxue Shen
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, Guangdong, China
| | - Zhiyuan Niu
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, Guangdong, China
| | - Minwei Chai
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, Guangdong, China
| | - Guo Yu Qiu
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
5
|
Yang Y, Li J, Yang S, Li X, Fang L, Zhong C, Duke NC, Zhou R, Shi S. Effects of Pleistocene sea-level fluctuations on mangrove population dynamics: a lesson from Sonneratia alba. BMC Evol Biol 2017; 17:22. [PMID: 28100168 PMCID: PMC5241957 DOI: 10.1186/s12862-016-0849-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/08/2016] [Indexed: 11/21/2022] Open
Abstract
Background A large-scale systematical investigation of the influence of Pleistocene climate oscillation on mangrove population dynamics could enrich our knowledge about the evolutionary history during times of historical climate change, which in turn may provide important information for their conservation. Results In this study, phylogeography of a mangrove tree Sonneratia alba was studied by sequencing three chloroplast fragments and seven nuclear genes. A low level of genetic diversity at the population level was detected across its range, especially at the range margins, which was mainly attributed to the steep sea-level drop and associated climate fluctuations during the Pleistocene glacial periods. Extremely small effective population size (Ne) was inferred in populations from both eastern and western Malay Peninsula (44 and 396, respectively), mirroring the fragility of mangrove plants and their paucity of robustness against future climate perturbations and human activity. Two major genetic lineages of high divergence were identified in the two mangrove biodiversity centres: the Indo-Malesia and Australasia regions. The estimated splitting time between these two lineages was 3.153 million year ago (MYA), suggesting a role for pre-Pleistocene events in shaping the major diversity patterns of mangrove species. Within the Indo-Malesia region, a subdivision was implicated between the South China Sea (SCS) and the remaining area with a divergence time of 1.874 MYA, corresponding to glacial vicariance when the emerged Sunda Shelf halted genetic exchange between the western and eastern coasts of the Malay Peninsula during Pleistocene sea-level drops. Notably, genetic admixture was observed in populations at the boundary regions, especially in the two populations near the Malacca Strait, indicating secondary contact between divergent lineages during interglacial periods. These interregional genetic exchanges provided ample opportunity for the re-use of standing genetic variation, which could facilitate mangrove establishment and adaptation in new habitats, especially in the context of global climate changes. Conclusion Phylogeogrpahic analysis in this study reveal that Pleistocene sea-level fluctuations had profound influence on population differentiation of the mangrove tree S. alba. Our study highlights the fragility of mangrove plants and offers a guide for the conservation of coastal mangrove communities experiencing ongoing changes in sea-level. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0849-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuchen Yang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianfang Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shuhuan Yang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xinnian Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lu Fang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China
| | - Cairong Zhong
- Hainan Dongzhai Harbor National Nature Reserve, Haikou, 571129, China
| | - Norman C Duke
- Trop WATER, James Cook University, Townsville, Quennsland, Australia
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
6
|
Li X, Duke NC, Yang Y, Huang L, Zhu Y, Zhang Z, Zhou R, Zhong C, Huang Y, Shi S. Re-Evaluation of Phylogenetic Relationships among Species of the Mangrove Genus Avicennia from Indo-West Pacific Based on Multilocus Analyses. PLoS One 2016; 11:e0164453. [PMID: 27716800 PMCID: PMC5055292 DOI: 10.1371/journal.pone.0164453] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/26/2016] [Indexed: 01/31/2023] Open
Abstract
Avicennia L. (Avicenniaceae), one of the most diverse mangrove genera, is distributed widely in tropical and subtropical intertidal zones worldwide. Five species of Avicennia in the Indo-West Pacific region have been previously described. However, their phylogenetic relationships were determined based on morphological and allozyme data. To enhance our understanding of evolutionary patterns in the clade, we carried out a molecular phylogenetic study using wide sampling and multiple loci. Our results support two monophyletic clades across all species worldwide in Avicennia: an Atlantic-East Pacific (AEP) lineage and an Indo-West Pacific (IWP) lineage. This split is in line with biogeographic distribution of the clade. Focusing on the IWP branch, we reconstructed a detailed phylogenetic tree based on sequences from 25 nuclear genes. The results identified three distinct subclades, (1) A. rumphiana and A. alba, (2) A. officinalis and A. integra, and (3) the A. marina complex, with high bootstrap support. The results strongly corresponded to two morphological traits in floral structure: stigma position in relation to the anthers and style length. Using Bayesian dating methods we estimated diversification of the IWP lineage was dated to late Miocene (c. 6.0 million years ago) and may have been driven largely by the fluctuating sea levels since that time.
Collapse
Affiliation(s)
- Xinnian Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Norman C. Duke
- Trop WATER, James Cook University, Townsville, Queensland, Australia
| | - Yuchen Yang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lishi Huang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuxiang Zhu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhang Zhang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cairong Zhong
- Hainan Dongzhai Harbor National Nature Reserve, Haikou, Hainan, China
| | - Yelin Huang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail: (YH); (SS)
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail: (YH); (SS)
| |
Collapse
|
7
|
Speciation and differentiation of the genus Opsariichthys (Teleostei: Cyprinidae) in East Asia. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Genetic divergence of the endangered seagrass Zostera japonica Ascherson & Graebner between temperate and subtropical coasts of China based on partial sequences of matK and ITS. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Szczecińska M, Sawicki J. Genomic Resources of Three Pulsatilla Species Reveal Evolutionary Hotspots, Species-Specific Sites and Variable Plastid Structure in the Family Ranunculaceae. Int J Mol Sci 2015; 16:22258-79. [PMID: 26389887 PMCID: PMC4613307 DOI: 10.3390/ijms160922258] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 11/25/2022] Open
Abstract
Background: The European continent is presently colonized by nine species of the genus Pulsatilla, five of which are encountered only in mountainous regions of southwest and south-central Europe. The remaining four species inhabit lowlands in the north-central and eastern parts of the continent. Most plants of the genus Pulsatilla are rare and endangered, which is why most research efforts focused on their biology, ecology and hybridization. The objective of this study was to develop genomic resources, including complete plastid genomes and nuclear rRNA clusters, for three sympatric Pulsatilla species that are most commonly found in Central Europe. The results will supply valuable information about genetic variation, which can be used in the process of designing primers for population studies and conservation genetics research. The complete plastid genomes together with the nuclear rRNA cluster can serve as a useful tool in hybridization studies. Methodology/principal findings: Six complete plastid genomes and nuclear rRNA clusters were sequenced from three species of Pulsatilla using the Illumina sequencing technology. Four junctions between single copy regions and inverted repeats and junctions between the identified locally-collinear blocks (LCB) were confirmed by Sanger sequencing. Pulsatilla genomes of 120 unique genes had a total length of approximately 161–162 kb, and 21 were duplicated in the inverted repeats (IR) region. Comparative plastid genomes of newly-sequenced Pulsatilla and the previously-identified plastomes of Aconitum and Ranunculus species belonging to the family Ranunculaceae revealed several variations in the structure of the genome, but the gene content remained constant. The nuclear rRNA cluster (18S-ITS1-5.8S-ITS2-26S) of studied Pulsatilla species is 5795 bp long. Among five analyzed regions of the rRNA cluster, only Internal Transcribed Spacer 2 (ITS2) enabled the molecular delimitation of closely-related Pulsatilla patens and Pulsatillavernalis. Conclusions/significance: The determination of complete plastid genome and nuclear rRNA cluster sequences in three species of the genus Pulsatilla is an important contribution to our knowledge of the evolution and phylogeography of those endangered taxa. The resulting data can be used to identify regions that are particularly useful for barcoding, phylogenetic and phylogeographic studies. The investigated taxa can be identified at each stage of development based on their species-specific SNPs. The nuclear and plastid genomic resources enable advanced studies on hybridization, including identification of parent species, including their roles in that process. The identified nonsynonymous mutations could play an important role in adaptations to changing environments. The results of the study will also provide valuable information about the evolution of the plastome structure in the family Ranunculaceae.
Collapse
Affiliation(s)
- Monika Szczecińska
- Department of Botany and Nature Protection, University of Warmia and Mazury, 10-728 Olsztyn, Poland.
| | - Jakub Sawicki
- Department of Botany and Nature Protection, University of Warmia and Mazury, 10-728 Olsztyn, Poland.
- Department of Biology and Ecology, University of Ostrava, 71000 Ostrava, Czech Republic.
| |
Collapse
|
10
|
Tsai CC, Chou CH, Wang HV, Ko YZ, Chiang TY, Chiang YC. Biogeography of the Phalaenopsis amabilis species complex inferred from nuclear and plastid DNAs. BMC PLANT BIOLOGY 2015; 15:202. [PMID: 26276316 PMCID: PMC4537552 DOI: 10.1186/s12870-015-0560-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/17/2015] [Indexed: 05/24/2023]
Abstract
BACKGROUND Phalaenopsis is one of the important commercial orchids in the world. Members of the P. amabilis species complex represent invaluable germplasm for the breeding program. However, the phylogeny of the P. amabilis species complex is still uncertain. The Phalaenopsis amabilis species complex (Orchidaceae) consists of subspecies amabilis, moluccana, and rosenstromii of P. amabilis, as well as P. aphrodite ssp. aphrodite, P. ap. ssp. formosana, and P. sanderiana. The aims of this study were to reconstruct the phylogeny and biogeographcial patterns of the species complex using Neighbor Joining (NJ), Maxinum Parsimony (MP), Bayesian Evolutionary Analysis Sampling Trees (BEAST) and Reconstruct Ancestral State in Phylogenies (RASP) analyses based on sequences of internal transcribed spacers 1 and 2 from the nuclear ribosomal DNA and the trnH-psbA spacer from the plastid DNA. RESULTS A pattern of vicariance, dispersal, and vicariance + dispersal among disjunctly distributed taxa was uncovered based on RASP analysis. Although two subspecies of P. aphrodite could not be differentiated from each other in dispersal state, they were distinct from P. amabilis and P. sanderiana. Within P. amabilis, three subspecies were separated phylogenetically, in agreement with the vicariance or vicariance + dispersal scenario, with geographic subdivision along Huxley's, Wallace's and Lydekker's Lines. Molecular dating revealed such subdivisions among taxa of P. amabilis complex dating back to the late Pleistocene. Population-dynamic analyses using a Bayesian skyline plot suggested that the species complex experienced an in situ range expansion and population concentration during the late Last Glacial Maximum (LGM). CONCLUSIONS Taxa of the P. amabilis complex with disjunct distributions were differentiated due to vicariance or vicariance + dispersal, with events likely occurring in the late Pleistocene. Demographic growth associated with the climatic oscillations in the Würm glacial period followed the species splits. Nevertheless, a subsequent population slowdown occurred in the late LGM due to extinction of regional populations. The reduction of suitable habitats resulted in geographic fragmenttation of the remaining taxa.
Collapse
Affiliation(s)
- Chi-Chu Tsai
- Crop Improvement Division, Kaohsiung District Agricultural Improvement Station, Pingtung, 900, Taiwan.
- Graduate Institute of Biotechnology, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
| | - Chang-Hung Chou
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.
- Research Center for Biodiversity, China Medical University, Taichung, 404, Taiwan.
| | - Hao-Ven Wang
- Department of Life Science, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Ya-Zhu Ko
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.
| | - Tzen-Yuh Chiang
- Department of Life Science, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
11
|
Applying Effective Population Size Estimates of Kandelia obovata Sheue, Liu and Yong to Conservation and Restoration Management. FORESTS 2015. [DOI: 10.3390/f6051439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Mori GM, Zucchi MI, Sampaio I, Souza AP. Species distribution and introgressive hybridization of two Avicennia species from the Western Hemisphere unveiled by phylogeographic patterns. BMC Evol Biol 2015; 15:61. [PMID: 25886804 PMCID: PMC4394560 DOI: 10.1186/s12862-015-0343-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 03/30/2015] [Indexed: 11/18/2022] Open
Abstract
Background Mangrove plants grow in the intertidal zone in tropical and subtropical regions worldwide. The global latitudinal distribution of the mangrove is mainly influenced by climatic and oceanographic features. Because of current climate changes, poleward range expansions have been reported for the major biogeographic regions of mangrove forests in the Western and Eastern Hemispheres. There is evidence that mangrove forests also responded similarly after the last glaciation by expanding their ranges. In this context, the use of genetic tools is an informative approach for understanding how historical processes and factors impact the distribution of mangrove species. We investigated the phylogeographic patterns of two Avicennia species, A. germinans and A. schaueriana, from the Western Hemisphere using nuclear and chloroplast DNA markers. Results Our results indicate that, although Avicennia bicolor, A. germinans and A. schaueriana are independent lineages, hybridization between A. schaueriana and A. germinans is a relevant evolutionary process. Our findings also reinforce the role of long-distance dispersal in widespread mangrove species such as A. germinans, for which we observed signs of transatlantic dispersal, a process that has, most likely, contributed to the breadth of the distribution of A. germinans. However, along the southern coast of South America, A. schaueriana is the only representative of the genus. The distribution patterns of A. germinans and A. schaueriana are explained by their different responses to past climate changes and by the unequal historical effectiveness of relative gene flow by propagules and pollen. Conclusions We observed that A. bicolor, A. germinans and A. schaueriana are three evolutionary lineages that present historical and ongoing hybridization on the American continent. We also inferred a new evidence of transatlantic dispersal for A. germinans, which may have contributed to its widespread distribution. Despite the generally wider distribution of A. germinans, only A. schaueriana is found in southern South America, which may be explained by the different demographic histories of these two species and the larger proportion of gene flow produced by propagules rather than pollen in A. schaueriana. These results highlight that these species responded in different ways to past events, indicating that such differences may also occur in the currently changing world. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0343-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gustavo M Mori
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, CEP 13083-875, CP 6010, Campinas, São Paulo, Brazil.
| | - Maria I Zucchi
- Pólo Centro Sul, Agência Paulista de Tecnologia dos Agronegócios. Piracicaba, CEP 13400-970, São Paulo, Brazil.
| | - Iracilda Sampaio
- Universidade Federal do Pará, Campus de Bragança, Instituto de Estudos Costeiros, CEP 68600-000, Bragança, Pará, Brazil.
| | - Anete P Souza
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, CEP 13083-875, CP 6010, Campinas, São Paulo, Brazil. .,Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, CEP 13083-862, Campinas, São Paulo, Brazil.
| |
Collapse
|
13
|
Multiple-geographic-scale genetic structure of two mangrove tree species: the roles of mating system, hybridization, limited dispersal and extrinsic factors. PLoS One 2015; 10:e0118710. [PMID: 25723532 PMCID: PMC4344226 DOI: 10.1371/journal.pone.0118710] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/07/2015] [Indexed: 12/05/2022] Open
Abstract
Mangrove plants comprise a unique group of organisms that grow within the intertidal zones of tropical and subtropical regions and whose distributions are influenced by both biotic and abiotic factors. To understand how these extrinsic and intrinsic processes influence a more fundamental level of the biological hierarchy of mangroves, we studied the genetic diversity of two Neotropical mangrove trees, Avicenniagerminans and A. schaueriana, using microsatellites markers. As reported for other sea-dispersed species, there was a strong differentiation between A. germinans and A. schaueriana populations sampled north and south of the northeastern extremity of South America, likely due to the influence of marine superficial currents. Moreover, we observed fine-scale genetic structures even when no obvious physical barriers were present, indicating pollen and propagule dispersal limitation, which could be explained by isolation-by-distance coupled with mating system differences. We report the first evidence of ongoing hybridization between Avicennia species and that these hybrids are fertile, although this interspecific crossing has not contributed to an increase in the genetic diversity the populations where A. germinans and A. schaueriana hybridize. These findings highlight the complex interplay between intrinsic and extrinsic factors that shape the distribution of the genetic diversity in these sea-dispersed colonizer species.
Collapse
|
14
|
Shaw J, Shafer HL, Leonard OR, Kovach MJ, Schorr M, Morris AB. Chloroplast DNA sequence utility for the lowest phylogenetic and phylogeographic inferences in angiosperms: the tortoise and the hare IV. AMERICAN JOURNAL OF BOTANY 2014; 101:1987-2004. [PMID: 25366863 DOI: 10.3732/ajb.1400398] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
PREMISE OF THE STUDY Noncoding chloroplast DNA (NC-cpDNA) sequences are the staple data source of low-level phylogeographic and phylogenetic studies of angiosperms. We followed up on previous papers (tortoise and hare II and III) that sought to identify the most consistently variable regions of NC-cpDNA. We used an exhaustive literature review and newly available whole plastome data to assess applicability of previous conclusions at low taxonomic levels. METHODS We aligned complete plastomes of 25 species pairs from across angiosperms, comparing the number of genetic differences found in 107 NC-cpDNA regions and matK. We surveyed Web of Science for the plant phylogeographic literature between 2007 and 2013 to assess how NC-cpDNA has been used at the intraspecific level. KEY RESULTS Several regions are consistently the most variable across angiosperm lineages: ndhF-rpl32, rpl32-trnL((UAG)), ndhC-trnV((UAC)), 5'rps16-trnQ((UUG)), psbE-petL, trnT((GGU))-psbD, petA-psbJ, and rpl16 intron. However, there is no universally best region. The average number of regions applied to low-level studies is ∼2.5, which may be too little to access the full discriminating power of this genome. CONCLUSIONS Plastome sequences have been used successfully at lower and lower taxonomic levels. Our findings corroborate earlier works, suggesting that there are regions that are most likely to be the most variable. However, while NC-cpDNA sequences are commonly used in plant phylogeographic studies, few of the most variable regions are applied in that context. Furthermore, it appears that in most studies too few NC-cpDNAs are used to access the discriminating power of the cpDNA genome.
Collapse
Affiliation(s)
- Joey Shaw
- Department of Biological and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, Tennessee 37403 USA Botanical Research Institute of Texas, Fort Worth, Texas USA
| | - Hayden L Shafer
- Department of Biological and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, Tennessee 37403 USA
| | - O Rayne Leonard
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee 37132 USA
| | - Margaret J Kovach
- Department of Biological and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, Tennessee 37403 USA
| | - Mark Schorr
- Department of Biological and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, Tennessee 37403 USA
| | - Ashley B Morris
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee 37132 USA
| |
Collapse
|
15
|
Tang J, Zhang F, Cui W, Ma J. Genetic structure of duckweed population of Spirodela, Landoltia and Lemna from Lake Tai, China. PLANTA 2014; 239:1299-1307. [PMID: 24663442 DOI: 10.1007/s00425-014-2053-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/04/2014] [Indexed: 06/03/2023]
Abstract
Duckweed is widely used in environmental biotechnology and has recently emerged as a potential feedstock for biofuels due to its high growth rate and starch content. The genetic diversity and composition of a natural duckweed population in genera Spirodela, Landoltia and Lemna from Lake Tai, China, were investigated using probabilistic analysis of multilocus sequence typing (MLST). The 78 strains were categorized into five lineages, among which strains representing L. aequinoctialis and S. polyrhiza were predominant. Among the five lineages, interlineage transfers of markers were infrequent and no recombination was statistically detected. Tajima's D tests determined that all loci are subject to population bottlenecks, which is likely one of the main reasons for the low genetic diversity observed within the lineages. Interestingly, strains of L. turionifera are found to contain small admixture from L. minor, providing rare evidence of transfer of genetic materials in duckweed. This was discussed with respect to the hypothesis that a cross of these two gave rise to L. japonica. Moreover, the conventional maximum-likelihood phylogenetic analysis clearly recognized all the species in the three genera with high bootstrap supports. In conclusion, this work offers a basic framework for using MLST to characterize Spirodela, Landoltia and in particular Lemna strains at the species level, and to study population genetics and evolution history of natural duckweed populations.
Collapse
Affiliation(s)
- Jie Tang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | | | | | | |
Collapse
|
16
|
Genetic diversity and population structure of Pyrus calleryana (Rosaceae) in Zhejiang province, China. BIOCHEM SYST ECOL 2012. [DOI: 10.1016/j.bse.2012.06.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Tnah LH, Lee SL, Ng KKS, Lee CT, Bhassu S, Othman RY. Phylogeographical pattern and evolutionary history of an important Peninsular Malaysian timber species, Neobalanocarpus heimii (Dipterocarpaceae). J Hered 2012; 104:115-26. [PMID: 23132907 DOI: 10.1093/jhered/ess076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tectonic movements, climatic oscillations, and marine transgressions during the Cenozoic have had a dramatic effect on the biota of the tropical rain forest. This study aims to reveal the phylogeography and evolutionary history of a Peninsular Malaysian endemic tropical timber species, Neobalanocarpus heimii (Dipterocarpaceae). A total of 32 natural populations of N. heimii, with 8 samples from each population were investigated. Fifteen haplotypes were identified from five noncoding chloroplast DNA (cpDNA) regions. Overall, two major genealogical cpDNA lineages of N. heimii were elucidated: a widespread southern and a northern region. The species is predicted to have survived in multiple refugia during climatic oscillations: the northwestern region (R1), the northeastern region (R2), and the southern region (R3). These putative glacial refugia exhibited higher levels of genetic diversity, population differentiation, and the presence of unique haplotypes. Recolonization of refugia R1 and R2 could have first expanded into the northern region and migrated both northeastwards and northwestwards. Meanwhile, recolonization of N. heimii throughout the southern region could have commenced from refugia R3 and migrated toward the northeast and northwest, respectively. The populations of Tersang, Pasir Raja, and Rotan Tunggal exhibited remarkably high haplotype diversity, which could have been the contact zones that have received an admixture of gene pools from the northerly and also southerly regions. As a whole, the populations of N. heimii derived from glacial refugia and contact zones should be considered in the conservation strategies in order to safeguard the long-term survival of the species.
Collapse
Affiliation(s)
- Lee H Tnah
- Forest Research Institute Malaysia, Kepong, Selangor Darul Ehsan 52109, Malaysia
| | | | | | | | | | | |
Collapse
|
18
|
Kono Y, Chung KF, Chen CH, Hoshi Y, Setoguchi H, Chou CH, Oginuma K, Peng CI. Intraspecific karyotypic polymorphism is highly concordant with allozyme variation in Lysimachia mauritiana (Primulaceae: Myrsinoideae) in Taiwan: implications for the colonization history and dispersal patterns of coastal plants. ANNALS OF BOTANY 2012; 110:1119-1135. [PMID: 23022678 PMCID: PMC3478052 DOI: 10.1093/aob/mcs192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/09/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND AIMS Investigating intraspecific karyotypic and genetic variations jointly can provide unique insights into how historical, ecological and cytogenetic factors influence microevolution. A coastal herb, Lysimachia mauritiana, exhibits extensive karyotypic polymorphism and displays a complex cytogeographic pattern across the Ryukyus. To explore whether a similar degree of chromosomal variation exists south of the Ryukyus, and in an attempt to ascertain the mechanisms that may have generated the patterns, comprehensive sampling was conducted in Taiwan. METHODS Karyotypes were analysed at mitotic metaphase for 550 individuals from 42 populations throughout Taiwan Proper and its adjacent islands. In addition, genetic variation was estimated using 12 allozymes (21 loci) of 314 individuals sampled from 12 localities. KEY RESULTS Four chromosome numbers and eight cytotypes, including four endemic cytotypes, were detected. Cytotype distributions were highly structured geographically, with single cytotypes present in most populations and four major cytotypes dominating the north, east and south of Taiwan and the Penghu Archipelago. Allozyme variation was very low and F-statistics indicated an extremely high level of population differentiation, implying limited gene flow among populations. Cluster analysis of allozyme variation uncovered four geographic groups, each corresponding perfectly to the four dominant cytotypes. The geographic structure of cytotype distribution and allozyme variation probably resulted from severe genetic drift triggered by genetic bottlenecks, suggesting that Taiwanese populations were likely to be derived from four independent founder events. In the few localities with multiple cytotypes, cytogeographic patterns and inferences of chromosomal evolution revealed a trend of northward dispersal, consistent with the course of the Kuroshio Current that has been influential in shaping the coastal biota of the region. CONCLUSIONS The data elucidate the patterns of colonization and the effects of the Kuroshio Current on the distribution of L. mauritiana in Taiwan. These inferences are highly relevant to other coastal plant species in the region and will stimulate further studies.
Collapse
Affiliation(s)
- Yoshiko Kono
- Herbarium (HAST), Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
- Graduate School of Human Health Science, University of Kochi, Kochi 780-8515, Japan
| | - Kuo-Fang Chung
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Hui Chen
- Taiwan Endemic Species Research Institute, Chichi, Nantou 55244, Taiwan
| | - Yoshikazu Hoshi
- Department of Plant Science, School of Agriculture, Tokai University, Kumamoto 869-1404, Japan
| | - Hiroaki Setoguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Chang-Hung Chou
- Research Center for Biodiversity, China Medical University, Taichung 40402, Taiwan
| | - Kazuo Oginuma
- Department of Environmental Science, Faculty of Human Life and Environmental Science, University of Kochi, Kochi 780-8515, Japan
| | - Ching-I Peng
- Herbarium (HAST), Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
19
|
Zaman A. Docking studies and network analyses reveal capacity of compounds from Kandelia rheedii to strengthen cellular immunity by interacting with host proteins during tuberculosis infection. Bioinformation 2012; 8:1012-20. [PMID: 23275699 PMCID: PMC3524883 DOI: 10.6026/97320630081012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 10/15/2012] [Indexed: 01/09/2023] Open
Abstract
Kandelia rheedii (locally known as Guria or Rasunia), widely found and used in Indian subcontinent, is a well-known herbal cure to tuberculosis. However, neither the mechanism nor the active components of the plant extract responsible for mediating this action has yet been confirmed. Here in this study, molecular interactions of three compounds (emodin, fusaric acid and skyrin) from the plant extract with the host protein targets (casein kinase (CSNK), estrogen receptor (ERBB), dopamine β-hydroxylase (DBH) and glucagon receptor (Gcgr)) has been found. These protein targets are known to be responsible for strengthening cellular immunity against Mycobacteria tuberculosis. The specific interactions of these three compounds with the respective protein targets have been discussed here. The insights from study should further help us designing molecular medicines against tuberculosis.
Collapse
Affiliation(s)
- Aubhishek Zaman
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology and Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka-1000, Bangladesh
| |
Collapse
|
20
|
Worth JRP, Marthick JR, Jordan GJ, Vaillancourt RE. Low but structured chloroplast diversity in Atherosperma moschatum (Atherospermataceae) suggests bottlenecks in response to the Pleistocene glacials. ANNALS OF BOTANY 2011; 108:1247-1256. [PMID: 21856633 PMCID: PMC3197450 DOI: 10.1093/aob/mcr220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 07/04/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS The cool temperate rainforests of Australia were much reduced in range during the cold and dry glacial periods, although genetic evidence indicates that two key rainforest species, Nothofagus cunninghamii and Tasmannia lanceolata, survived within multiple locations and underwent only local range expansions at the end of the Last Glacial. To better understand the glacial response of a co-occurring but wind-dispersed and less cold-tolerant rainforest tree species, Atherosperma moschatum, a chloroplast phylogeographic study was undertaken. METHODS A total of 3294 bp of chloroplast DNA sequence was obtained for 155 samples collected from across the species' range. KEY RESULTS The distribution of six haplotypes observed in A. moschatum was geographically structured with an inferred ancestral haplotype restricted to Tasmania, while three non-overlapping and endemic haplotypes were found on the mainland of south-eastern Australia. Last glacial refugia for A. moschatum are likely to have occurred in at least one location in western Tasmania and in Victoria and within at least two locations in the Great Dividing Range of New South Wales. Nucleotide diversity of A. moschatum was lower (π = 0·00021) than either N. cunninghamii (0·00101) or T. lanceolata (0·00073), and was amongst the lowest recorded for any tree species. CONCLUSIONS This study provides evidence for past bottlenecks having impacted the chloroplast diversity of A. moschatum as a result of the species narrower climatic niche during glacials. This hypothesis is supported by the star-like haplotype network and similar estimated rates of chloroplast DNA substitution for A. moschatum and the two more cold tolerant and co-occurring species that have higher chloroplast diversity, N. cunninghamii and T. lanceolata.
Collapse
Affiliation(s)
- James R P Worth
- School of Plant Science, Private Bag 55, University of Tasmania, Hobart 7001, Tasmania, Australia.
| | | | | | | |
Collapse
|
21
|
Gong X, Luan SS, Hung KH, Hwang CC, Lin CJ, Chiang YC, Chiang TY. Population structure of Nouelia insignis (Asteraceae), an endangered species in southwestern China, based on chloroplast DNA sequences: recent demographic shrinking. JOURNAL OF PLANT RESEARCH 2011; 124:221-230. [PMID: 20585828 DOI: 10.1007/s10265-010-0363-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 05/22/2010] [Indexed: 05/29/2023]
Abstract
Nouelia insignis, an endangered species, is distributed in the Jinsha and Nanpan drainage areas in southwestern China. In this study, we examined the genetic diversity and population structure based on the sequences of the cpDNA rpL 16 intron. Low levels of genetic variation were detected within all populations of the endemic species. A gene genealogy of 11 haplotypes recovered two major lineages I and II, with haplotypes H1 and H6 nested as interior nodes, respectively. Haplotype H1 was widespread in all populations, while haplotype H6 was restricted to populations southern of the Jinsha River. Low levels of genetic differentiation were detected, as most F (st) values between populations were zero. This result, however, contradicts previous studies based on allozymes and fingerprinting. Genetic analyses suggested that coancestry due to low evolutionary rates resulted in the lack of geographical subdivision. Molecular dating estimated that the two lineages split about 3.224 MYA (95% CI 1.070-6.089 MYA). Maintenance of ancestral polymorphisms was possibly attributable to a long-standing large effective population size until recently. Postglacial demographic expansion was supported by a unimodal mismatch distribution and star-like phylogenies.
Collapse
Affiliation(s)
- Xun Gong
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
22
|
Fang HL, Guo QS, Shen HJ, Shao QS. Phylogeography of Chrysanthemum indicum L. (Compositae) in China based on trnL-F sequences. BIOCHEM SYST ECOL 2010. [DOI: 10.1016/j.bse.2010.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Duminil J, Heuertz M, Doucet JL, Bourland N, Cruaud C, Gavory F, Doumenge C, Navascués M, Hardy OJ. CpDNA-based species identification and phylogeography: application to African tropical tree species. Mol Ecol 2010; 19:5469-83. [PMID: 21091558 DOI: 10.1111/j.1365-294x.2010.04917.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Despite the importance of the African tropical rainforests as a hotspot of biodiversity, their history and the processes that have structured their biodiversity are understood poorly. With respect to past demographic processes, new insights can be gained through characterizing the distribution of genetic diversity. However, few studies of this type have been conducted in Central Africa, where the identification of species in the field can be difficult. We examine here the distribution of chloroplast DNA (cpDNA) diversity in Lower Guinea in two tree species that are difficult to distinguish, Erythrophleum ivorense and Erythrophleum suaveolens (Fabaceae). By using a blind-sampling approach and comparing molecular and morphological markers, we first identified retrospectively all sampled individuals and determined the limits of the distribution of each species. We then performed a phylogeographic study using the same genetic data set. The two species displayed essentially parapatric distributions that were correlated well with the rainfall gradient, which indicated different ecological requirements. In addition, a phylogeographic structure was found for E. suaveolens and, for both species, substantially higher levels of diversity and allelic endemism were observed in the south (Gabon) than in the north (Cameroon) of the Lower Guinea region. This finding indicated different histories of population demographics for the two species, which might reflect different responses to Quaternary climate changes. We suggest that a recent period of forest perturbation, which might have been caused by humans, favoured the spread of these two species and that their poor recruitment at present results from natural succession in their forest formations.
Collapse
Affiliation(s)
- J Duminil
- Service Evolution Biologique et Ecologie, CP160/12, Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Inomata N, Wang XR, Changtragoon S, Szmidt AE. Levels and patterns of DNA variation in two sympatric mangrove species, Rhizophora apiculata and R. mucronata from Thailand. Genes Genet Syst 2010; 84:277-86. [PMID: 20057165 DOI: 10.1266/ggs.84.277] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In mangrove species the past geomorphic changes in coastal regions and reproductive systems are important factors of their distribution and genetic structure of populations. However, very little is known about the levels of genetic variation of Rhiozophora species in Southeast Asia. In this study, we surveyed levels and patterns of genetic variation as well as population structure of two sympatric mangrove species, Rhizophora apiculata and R. mucronata in Thailand, using five nuclear genes and two cpDNA regions. In all investigated DNA regions, nucleotide variation within species was low, while nucleotide divergence between the two species was considerable. The nuclear genes evolved 10 times faster than the cpDNA regions. In both R. apiculata and R. mucronata, significant positive F(IS) values were found, indicating deviation from Hardy-Weinberg proportions and a deficiency of heterozygotes. In both species, we found significant genetic differentiation between populations. However, the pattern of population differentiation (F(ST)) of R. apiculata differed from that of R. mucronata. Our results suggest that the two investigated species have different demographic history, even though they are sympatric and have similar reproductive systems.
Collapse
Affiliation(s)
- Nobuyuki Inomata
- Department of Biology, Graduate School of Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
25
|
Lin CJ, Lin HD, Wang JP, Chao SC, Chiang TY. Phylogeography ofHemibarbus labeo(Cyprinidae): secondary contact of ancient lineages of mtDNA. ZOOL SCR 2010. [DOI: 10.1111/j.1463-6409.2009.00407.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Chiang YC, Hung KH, Moore SJ, Ge XJ, Huang S, Hsu TW, Schaal BA, Chiang T. Paraphyly of organelle DNAs in Cycas Sect. Asiorientales due to ancient ancestral polymorphisms. BMC Evol Biol 2009; 9:161. [PMID: 19589178 PMCID: PMC3224665 DOI: 10.1186/1471-2148-9-161] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 07/10/2009] [Indexed: 11/30/2022] Open
Abstract
Background This study addresses the apportionment of genetic diversity between Cycas revoluta and C. taitungensis, species that constitute the section Asiorientales and represent a unique, basal lineage of the Laurasian genus Cycas. Fossil evidence indicates divergence of the section from the rest of Cycas at least 30 million years ago. Geographically, C. taitungensis is limited to Taiwan whereas C. revoluta is found in the Ryukyu Archipelago and on mainland China. Results The phylogenies of ribosomal ITS region of mtDNA and the intergenic spacer between atpB and rbcL genes of cpDNA were reconstructed. Phylogenetic analyses revealed paraphyly of both loci in the two species and also in the section Asiorientales. The lack of reciprocal monophyly between these long isolated sections is likely due to persistent shared ancestral polymorphisms. Molecular dating estimated that mt- and cp DNA lineages coalesced to the most recent common ancestors (TMRCA) about 327 (mt) and 204 MYA (cp), corresponding with the divergence of cycad sections in the Mesozoic. Conclusion Fates of newly derived mutations of cycads follow Klopfstein et al.'s surfing model where the majority of new mutations do not spread geographically and remain at low frequencies or are eventually lost by genetic drift. Only successful 'surfing mutations' reach very high frequencies and occupy a large portion of a species range. These mutations exist as dominant cytotypes across populations and species. Geographical subdivision is lacking in both species, even though recurrent gene flow by both pollen and seed is severely limited. In total, the contrasting levels between historical and ongoing gene flow, large population sizes, a long lifespan, and slow mutation rates in both organelle DNAs have all likely contributed to the unusually long duration of paraphyly in cycads.
Collapse
Affiliation(s)
- Yu-Chung Chiang
- 1Department of Life Sciences, Pingtung University of Science and Technology, Pingtung, Taiwan, 912, Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Geng Q, Lian C, Goto S, Tao J, Kimura M, Islam MS, Hogetsu T. Mating system, pollen and propagule dispersal, and spatial genetic structure in a high-density population of the mangrove tree Kandelia candel. Mol Ecol 2009; 17:4724-39. [PMID: 19140988 DOI: 10.1111/j.1365-294x.2008.03948.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mangrove tree species form ecologically and economically important forests along the tropical and subtropical coastlines of the world. Although low intrapopulation genetic diversity and high interpopulation genetic differentiation have been detected in most mangrove tree species, no direct investigation of pollen and propagule dispersal through paternity and/or parentage analysis and spatial genetic structure within populations has been conducted. We surveyed the mating system, pollen and propagule dispersal, and spatial genetic structure in a natural population of Kandelia candel, one of the typical viviparous mangrove tree species, using nuclear and chloroplast microsatellite markers. High diversity and outcrossing rates were observed. Paternity and parentage analysis and modelling estimations revealed the presence of an extremely short-distance component of pollen and propagule dispersal (pollen: 15.2+/-14.9 m (SD) by paternity analysis and 34.4 m by modelling; propagule: 9.4+/-13.8 m (SD) by parentage analysis, and 18.6 m by modelling). Genetic structure was significant at short distances, and a clumped distribution of chloroplast microsatellite genotypes was seen in K. candel adults. We conclude that the K. candel population was initiated by limited propagule founders from outside by long-distance dispersal followed by limited propagule dispersal from the founders, resulting in a half-sib family structure.
Collapse
Affiliation(s)
- Qifang Geng
- Asian Natural Environmental Science Center, University of Tokyo, Midori-cho 1-1-8, Nishitokyo, Tokyo 188-0002, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Huang Y, Tan F, Su G, Deng S, He H, Shi S. Population genetic structure of three tree species in the mangrove genus Ceriops (Rhizophoraceae) from the Indo West Pacific. Genetica 2007; 133:47-56. [PMID: 17690989 DOI: 10.1007/s10709-007-9182-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 07/18/2007] [Indexed: 11/24/2022]
Abstract
Ceriops is a viviparous mangrove with widespread species Ceriops decandra and C. tagal, and an endemic species C. australis. Genetic diversity of the three species was screened in 30 populations collected from 23 locations in the Indo West Pacific (IWP) using Inter-simple sequence repeats (ISSR) and sequences of partial nuclear gene (G3pdh) and chloroplast DNA (trnV-trnM). At the species level, the total gene diversity (Ht) revealed by ISSRs was 0.270, 0.118, and 0.089 in C. decandra, C. tagal, and C. australis, respectively. A total of six haplotypes of G3pdh and five haplotypes of trnV-trnM were recognized among the three species. Only C. decandra was detected containing more than one haplotype from each sequence data set (four G3pdh haplotypes and three trnV-trnM haplotypes). At the population level, genetic diversity of Ceriops was relatively low inferred from ISSRs (He = 0.028, 0.023, and 0.053 in C. decandra, C. tagal, and C. australis, respectively). No haplotype diversity within population was detected from any of the three species. Cluster analysis based on ISSRs identified three major geographical groups in correspond to the East Indian Ocean (EIO), South China Sea (SCS), and North Australia (NA) in both C. decandra and C. tagal. The cladogram from DNA sequences also detected the same three geographical groups in C. decandra. Analysis of molecular variance (AMOVA) revealed that most of the total variation was accounted for by differentiation between the three major geographical regions of both C. decandra and C. tagal. The significant genetic structure may result from the geological events in these regions during the recent Pleistocene glaciations. This study also provided insights into the phylogenetics of Ceriops.
Collapse
Affiliation(s)
- Yelin Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | | | | | | | | | | |
Collapse
|
29
|
Bänfer G, Moog U, Fiala B, Mohamed M, Weising K, Blattner FR. A chloroplast genealogy of myrmecophytic Macaranga species (Euphorbiaceae) in Southeast Asia reveals hybridization, vicariance and long-distance dispersals. Mol Ecol 2006; 15:4409-24. [PMID: 17107473 DOI: 10.1111/j.1365-294x.2006.03064.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Macaranga (Euphorbiaceae) includes about 280 species with a palaeotropic distribution. The genus not only comprises some of the most prominent pioneer tree species in Southeast Asian lowland dipterocarp forests, it also exhibits a substantial radiation of ant-plants (myrmecophytes). Obligate ant-plant mutualisms are formed by about 30 Macaranga species and 13 ant species of the genera Crematogaster or Camponotus. To improve our understanding of the co-evolution of the ants and their host plants, we aim at reconstructing comparative organellar phylogeographies of both partners across their distributional range. Preliminary evidence indicated that chloroplast DNA introgression among closely related Macaranga species might occur. We therefore constructed a comprehensive chloroplast genealogy based on DNA sequence data from the noncoding ccmp2, ccmp6, and atpB-rbcL regions for 144 individuals from 41 Macaranga species, covering all major evolutionary lineages within the three sections that contain myrmecophytes. A total of 88 chloroplast haplotypes were identified, and grouped into a statistical parsimony network that clearly distinguished sections and well-defined subsectional groups. Within these groups, the arrangement of haplotypes followed geographical rather than taxonomical criteria. Thus, up to six chloroplast haplotypes were found within single species, and up to seven species shared a single haplotype. The spatial distribution of the chloroplast types revealed several dispersals between the Malay Peninsula and Borneo, and a deep split between Sabah and the remainder of Borneo. Our large-scale chloroplast genealogy highlights the complex history of migration, hybridization, and speciation in the myrmecophytes of the genus Macaranga. It will serve as a guideline for adequate sampling and data interpretation in phylogeographic studies of individual Macaranga species and species groups.
Collapse
Affiliation(s)
- Gudrun Bänfer
- Plant Molecular Systematics, University of Kassel, D-34109 Kassel, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Setoguchi H, Yukawa T, Tokuoka T, Momohara A, Sogo A, Takaso T, Peng CI. Phylogeography of the genus Cardiandra based on genetic variation in cpDNA sequences. JOURNAL OF PLANT RESEARCH 2006; 119:401-5. [PMID: 16718434 DOI: 10.1007/s10265-006-0283-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 03/08/2006] [Indexed: 05/09/2023]
Abstract
We investigated the phylogenetic relationships within the genus Cardiandra based on plastid DNA sequences. The phylogenetic tree showed that Cardiandra populations from the Ryukyu Islands (Japan) and Taiwan were monophyletic (Ryukyu-Taiwan clade), whereas taxa from China and mainland Japan were sisters to this clade. The divergence time between the Ryukyu-Taiwan clade and the other species was estimated to be 0.082 MYA, i.e., the late Pleistocene. The infrageneric and/or infraspecific differentiation of Cardiandra is estimated to have depended largely on allopatric differentiation caused by the presence or division of the past landbridge of the Ryukyu Islands, which connected mainland Japan to the Asian Continent during the Quaternary.
Collapse
Affiliation(s)
- Hiroaki Setoguchi
- Department of Biology, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Phylogeography of Ceriops tagal (Rhizophoraceae) in Southeast Asia: the land barrier of the Malay Peninsula has caused population differentiation between the Indian Ocean and South China Sea. CONSERV GENET 2006. [DOI: 10.1007/s10592-006-9151-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Chiang YC, Hung KH, Schaal BA, Ge XJ, Hsu TW, Chiang TY. Contrasting phylogeographical patterns between mainland and island taxa of the Pinus luchuensis complex. Mol Ecol 2006; 15:765-79. [PMID: 16499701 DOI: 10.1111/j.1365-294x.2005.02833.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Species whose geographical distribution encompasses both mainland and island populations provide an ideal system for examining isolation and genetic divergence. In this study, paternally transmitted chloroplast DNA (cpDNA) and maternally transmitted mitochondrial DNA (mtDNA) were used to estimate population structure and phylogeography of Pinus luchuensis, a species found in eastern China (ssp. hwangshanensis), Taiwan (ssp. taiwanensis), and the Ryukyu Archipelago (ssp. luchuensis). Gene genealogies of both mtDNA and cpDNA reveal two major lineages. Molecular dating indicates that these lineages diverged before the colonization of P. luchuensis subspecies in Taiwan and the Ryukyu Archipelago. Both mtDNA and cpDNA show a lack of correspondence between molecular phylogeny and subspecies designation. Phylogeographical analysis suggests that paraphyly of the subspecies is the result of recent divergence rather than secondary contacts. In spite of the short divergence history of P. luchuensis on islands, the island populations show the same degree of genetic divergence as mainland populations. Low levels of genetic diversity in the mainland ssp. hwangshanensis suggest demographic bottlenecks. In contrast, the high heterogeneity of genetic composition for island populations is likely to be associated with a history of multiple colonization from the mainland. The spatial apportionment of organelle DNA polymorphisms is consistent with a pattern of stepwise colonization on island populations.
Collapse
Affiliation(s)
- Y-C Chiang
- Department of Life Sciences, Pingtung University of Science and Technology, Taiwan.
| | | | | | | | | | | |
Collapse
|
33
|
Ge XJ, Liu MH, Wang WK, Schaal BA, Chiang TY. Population structure of wild bananas, Musa balbisiana, in China determined by SSR fingerprinting and cpDNA PCR-RFLP. Mol Ecol 2006; 14:933-44. [PMID: 15773926 DOI: 10.1111/j.1365-294x.2005.02467.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Both demographic history and dispersal mechanisms influence the apportionment of genetic diversity among plant populations across geographical regions. In this study, phylogeography and population structure of wild banana, Musa balbisiana, one of the progenitors of cultivated bananas and plantains in China were investigated by an analysis of genetic diversity of simple sequence repeat (SSR) fingerprint markers and cpDNA PCR-RFLP. A chloroplast DNA (cpDNA) genealogy of 21 haplotypes identified two major clades, which correspond to two geographical regions separated by the Beijiang and Xijiang rivers, suggesting a history of vicariance. Significant genetic differentiation was detected among populations with cpDNA markers, a result consistent with limited seed dispersal in wild banana mediated by foraging of rodents. Nuclear SSR data also revealed significant geographical structuring in banana populations. In western China, however, there was no detected phylogeograpahical pattern, possibly due to frequent pollen flow via fruit bats. In contrast, populations east of the Beijiang River and the population of Hainan Island, where long-range soaring pollinators are absent, are genetically distinct. Colonization-extinction processes may have influenced the evolution of Musa populations, which have a metapopulation structure and are connected by migrating individuals. Effective gene flow via pollen, estimated from the nuclear SSR data, is 3.65 times greater than gene flow via seed, estimated from cpDNA data. Chloroplast and nuclear DNAs provide different insights into phylogeographical patterns of wild banana populations and, taken together, can inform conservation practices.
Collapse
Affiliation(s)
- X J Ge
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PRC
| | | | | | | | | |
Collapse
|
34
|
Huang JC, Wang WK, Peng CI, Chiang TY. Phylogeography and conservation genetics of Hygrophila pogonocalyx (Acanthaceae) based on atpB-rbcL noncoding spacer cpDNA. JOURNAL OF PLANT RESEARCH 2005; 118:1-11. [PMID: 15647887 DOI: 10.1007/s10265-004-0185-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Accepted: 11/02/2004] [Indexed: 05/24/2023]
Abstract
Genetic variation in the atpB-rbcL intergenic spacer region of chloroplast DNA (cpDNA) was investigated in Hygrophila pogonocalyx Hayata (Acanthaceae), an endangered and endemic species in Taiwan. In this aquatic species, seed dispersal from capsules via elasticity is constrained by gravity and is thereby confined within populations, resulting in limited gene flow between populations. In this study, a total of 849 bp of the cpDNA atpB-rbcL spacer were sequenced from eight populations of H. pogonocalyx. Nucleotide diversity in the cpDNA is low (theta = 0.00343+/-0.00041). The distribution of genetic variation among populations agrees with an "isolation-by-distance" model. Two geographically correlated groups, the western and eastern regions, were identified in a neighbor-joining tree and a minimum-spanning network. Phylogeographical analyses based on the cpDNA network suggest that the present-day differentiation between western and eastern groups of H. pogonocalyx resulted from past fragmentation. The differentiation between eastern and western populations may be ascribed to isolation since the formation of the Central Mountain Range about 5 million years ago, which is consistent with the rate estimates based on a molecular clock of cpDNA.
Collapse
Affiliation(s)
- Jao-Ching Huang
- Division of Botany, Taiwan Endemic Species Research Institute, Chi-Chi, Taiwan, 551
| | | | | | | |
Collapse
|
35
|
Su YJ, Wang T, Zheng B, Jiang Y, Chen GP, Ouyang PY, Sun YF. Genetic differentiation of relictual populations of Alsophila spinulosa in southern China inferred from cpDNA trnL–F noncoding sequences. Mol Phylogenet Evol 2005; 34:323-33. [PMID: 15619445 DOI: 10.1016/j.ympev.2004.10.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 09/13/2004] [Accepted: 10/19/2004] [Indexed: 10/26/2022]
Abstract
The genetic differentiation and phylogeographical pattern of 11 relictual populations of Alsophila spinulosa distributed across Hainan, Guangdong, and Guangxi in southern China were inferred from sequence variations of trnL-F noncoding regions of chloroplast DNA (cpDNA). The length of trnL-F noncoding sequences varied from 863 to 940 bp. The A + T content was 62.23-63.36%. Sequences were neutral in terms of evolution (Tajima's criterion D=-0.62417, P>0.10 and Fu and Li's test D*=-1.45455, P>0.10; F*=-1.32798, P>0.10). Thirty-four haplotypes were identified based on nucleotide variation. Relatively high levels of haplotype diversity (h=0.929) and nucleotide diversity (Dij=0.022263) were detected in A. spinulosa, probably associated with its long evolutionary history which allowed the accumulation of genetic variation within lineages. Both the minimum spanning network and the strict consensus tree of the most parsimonious trees generated for haplotypes demonstrated that the investigated populations of A. spinulosa were subdivided into two geographical groups: Hainan and Guangdong-Guangxi. An analysis of molecular variance (AMOVA) indicated that most of the genetic variation (87.48%, P<0.001) was partitioned among regions. Spatial structure measurements revealed that population genetic structure was not related to geographical distance. This research suggests that blocked gene flow by Qiongzhou strait and an inbreeding system might result in the geographical subdivision between Hainan and Guangdong-Guangxi (F(ST)=0.92, Nm=0.09). Within each region, the "star like" pattern of phylogeography of haplotypes implied a population expansion process during evolutionary history. Gene genealogies together with coalescent theory were useful tools for uncovering the phylogeography of A. spinulosa.
Collapse
Affiliation(s)
- Ying-Juan Su
- School of Life Sciences, Zhongshan (Sun Yat-Sen) University, Guangzhou 510275, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Chen CN, Chiang YC, Ho THD, Schaal BA, Chiang TY. Coalescent processes and relaxation of selective constraints leading to contrasting genetic diversity at paralogs AtHVA22d and AtHVA22e in Arabidopsis thaliana. Mol Phylogenet Evol 2005; 32:616-26. [PMID: 15223042 DOI: 10.1016/j.ympev.2004.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Revised: 01/19/2004] [Indexed: 11/24/2022]
Abstract
Duplicate loci offer a very powerful system for understanding the complicated genome structure and adaptive evolution of a gene family. In this study, the genetic variation at paralogs AtHVA22d and AtHVA22e, members of an ABA- and stress-inducible gene family, is examined in the selfing Arabidopsis thaliana. Population genetic analysis indicates contrasting levels of nucleotide diversity at overall exon sequence and nonsynonymous sites between AtHVA22d (pi = 0.00337, pi(rep) = 0.00158) and AtHVA22e (pi = 0.00054, pi(rep) = 0.00023). The fact of Ka/Ks ratios significantly less than 1 in all sequences indicates that both genes are functional and subjected to purifying selection. In addition, rooted at barley HVA22, accelerated evolution is detected at replacement changes in the AtHVA22d locus, indicating relaxation of purifying selection after gene duplication. However, relative rate tests reveal no deviation from the neutrality at synonymous sites between the two paralogs. Based on clock-like evolution, the rate of synonymous substitution is estimated at 1.83 x 10(-9) substitutions per site per year; and the divergence of the two paralogs is traced to 90 MYA, coinciding with a period of the diversification of angiosperms. Given no codon usage bias in both genes, natural selection alone cannot account for the 6.4-fold differences in the nucleotide variation at synonymous sites between the two paralogs. Random processes resulting in different coalescence times, 3.65 MYA at AtHVA22d vs. 1.20 MYA at AtHVA22e, may have predominantly contributed to the evident differences of the genetic diversity. Partially nonoverlapping modes of expression between the two functional paralogs suggest a subfunctionalization hypothesis for explaining the fates of duplicate loci.
Collapse
Affiliation(s)
- Ching-Nen Chen
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | | | | | | |
Collapse
|
37
|
Su Y, Wang T, Zheng B, Jiang Y, Chen G, Gu H. Population genetic structure and phylogeographical pattern of a relict tree fern, Alsophila spinulosa (Cyatheaceae), inferred from cpDNA atpB- rbcL intergenic spacers. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 109:1459-1467. [PMID: 15309303 DOI: 10.1007/s00122-004-1761-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Accepted: 06/16/2004] [Indexed: 05/24/2023]
Abstract
Sequences of chloroplast DNA (cpDNA) atpB- rbcL intergenic spacers of individuals of a tree fern species, Alsophila spinulosa, collected from ten relict populations distributed in the Hainan and Guangdong provinces, and the Guangxi Zhuang region in southern China, were determined. Sequence length varied from 724 bp to 731 bp, showing length polymorphism, and base composition was with high A+T content between 63.17% and 63.95%. Sequences were neutral in terms of evolution (Tajima's criterion D=-1.01899, P>0.10 and Fu and Li's test D*=-1.39008, P>0.10; F*=-1.49775, P>0.10). A total of 19 haplotypes were identified based on nucleotide variation. High levels of haplotype diversity (h=0.744) and nucleotide diversity (Dij=0.01130) were detected in A. spinulosa, probably associated with its long evolutionary history, which has allowed the accumulation of genetic variation within lineages. Both the minimum spanning network and neighbor-joining trees generated for haplotypes demonstrated that current populations of A. spinulosa existing in Hainan, Guangdong, and Guangxi were subdivided into two geographical groups. An analysis of molecular variance indicated that most of the genetic variation (93.49%, P<0.001) was partitioned among regions. Wright's isolation by distance model was not supported across extant populations. Reduced gene flow by the Qiongzhou Strait and inbreeding may result in the geographical subdivision between the Hainan and Guangdong + Guangxi populations (FST=0.95, Nm=0.03). Within each region, the star-like pattern of phylogeography of haplotypes implied a population expansion process during evolutionary history. Gene genealogies together with coalescent theory provided significant information for uncovering phylogeography of A. spinulosa.
Collapse
Affiliation(s)
- Yingjuan Su
- School of Life Sciences, Zhongshan (Sun Yat-sen) University, Guangzhou, 510275, China
| | | | | | | | | | | |
Collapse
|
38
|
Kamiya M. Speciation and biogeography of the Caloglossa leprieurii complex (Delesseriaceae, Rhodophyta). JOURNAL OF PLANT RESEARCH 2004; 117:421-428. [PMID: 15309639 DOI: 10.1007/s10265-004-0166-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Accepted: 06/20/2004] [Indexed: 05/24/2023]
Abstract
Studies on the morphology, reproductive compatibility, life cycle and molecular phylogeny of the euryhaline red alga Caloglossa provide insights into the speciation events and biogeographic patterns. The C. leprieurii complex is separated into three morphotypes based on the number of cell rows at nodes and the blade width. The three morphotypes are reproductively incompatible with each other, and furthermore many mating groups are recognized within the morphotypes. Incomplete reproductive isolation is occasionally seen between geographically distant mating groups, whereas no sexual compatibility occurs between sympatrically or parapatrically distributed mating groups. In the molecular phylogenetic analyses, the C. leprieurii complex is resolved as two clusters that phenotypically correspond to the single and multiple cell row types, respectively. The strains belonging to the same mating group are closely related to each other, without exception, while the mating groups showing incomplete reproductive reactions do not always make a clade. The genetic distance is generally not correlative to the geographic distance, and this is also suggested by the morphological data and crossability. These results indicate that allopatric speciation has frequently occurred in this species complex, although there is some evidence of long-distance dispersal.
Collapse
|
39
|
Chiang YC, Schaal BA, Ge XJ, Chiang TY. Range expansion leading to departures from neutrality in the nonsymbiotic hemoglobin gene and the cpDNA trnL–trnF intergenic spacer in Trema dielsiana (Ulmaceae). Mol Phylogenet Evol 2004; 31:929-42. [PMID: 15120391 DOI: 10.1016/j.ympev.2003.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2003] [Revised: 09/23/2003] [Indexed: 10/26/2022]
Abstract
The population genetics and phylogeography of Trema dielsiana in Taiwan were inferred from genetic diversity at the nonsymbiotic hemoglobin gene and the trnL-trnF intergenic spacer of cpDNA. Reduced genetic variation was detected in these two unlinked genes. The gene genealogy of the hemoglobin locus recovered two lineages corresponding to the western and eastern regions of Taiwan. This pattern is compatible with a past fragmentation event revealed by phylogeographical analyses. To distinguish between selective departures from neutrality (i.e., heterogeneous processes) and demographic (homogeneous) processes, Hahn et al.'s heterogeneity test was conducted on the hemoglobin gene. Lack of significant differences in Tajima's D statistics between synonymous and nonsynonymous mutations indicates that homogeneous processes may have played a key role in governing the evolution of the functional locus. Significantly negative Tajima's D estimates for both overall exons and introns of the hemoglobin gene as well as for the cpDNA intergenic spacer support a phylogeographical hypothesis of range expansion after genetic bottlenecks. High level of genetic variation and a negative Tajima's D statistic suggests a possible northern refugium that may have harbored populations during the glacial maximum.
Collapse
Affiliation(s)
- Yu-Chung Chiang
- Department of Biology, Washington University, St. Louis, MO 63139, USA
| | | | | | | |
Collapse
|
40
|
Wang T, Su YJ, Li XY, Zheng B, Chen GP, Zeng QL. Genetic structure and variation in the relict populations of Alsophila spinulosa from southern China based on RAPD markers and cpDNA atpB-rbcL sequence data. Hereditas 2004; 140:8-17. [PMID: 15032942 DOI: 10.1111/j.1601-5223.2004.01659.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
RAPD markers and sequences of chloroplast DNA (cpDNA) atpB-rbcL intergenic spacers were used to characterize the pattern of genetic variation and the phylogenetic relationships of the relict populations of Alsophila spinulosa located in Jian Feng Ling (JFL) and Diao Luo Shan (DLS), Hainan, and Tang Lang Shan (TLS), Ding Hu Shan (DHS), and Da Xi Shan (DXS), Guangdong, of southern China. 28 random primers generated 118 bands, out of which 26 (22.03%) were polymorphic loci, distinguishing 17 different RAPD phenotypes. Percentage of polymorphic loci, Shannon phenotypic diversity and Nei's gene diversity comprehensively indicated that JFL possessed the highest diversity, TLS and DHS in intermediate and DLS or DXS the least; the corresponding values of the population appeared correlated with the population size. Differentiation was detected among populations of A. spinulosa (1-Hpop/Hsp=0.7453, GST=0.7763, and phist=0.8145). AMOVA showed that 47.44% of the variance was partitioned among regions (Hainan and Guangdong), 34.01% attributed among populations within regions, whereas only 18.55% occurring within populations. Low level of intra-specific diversity was maintained in A. spinulosa with Shannon diversity and gene diversity merely 0.0560 and 0.0590, repectively. Sequence length of atpB-rbcL intergenic spacer varied from 724 bp to 730 bp. Base composition was with A+T content between 63.17% and 63.70%. 13 haplotypes of atpB-rbcL noncoding spacers were identified. UPGMA dendrogram of RAPD phenotypes, principal components analysis based on RAPD patterns, minimum spanning network and neighbour-joining (NJ) tree established on atpB-rbcL haplotypes consistently suggested the geographical subdivision of populations of A. spinulosa between Hainan and Guangdong. Breeding system and conservation strategy of A. spinulosa was discussed based on the information of population genetic structure and variation.
Collapse
Affiliation(s)
- Ting Wang
- School of Life Sciences, Zhongshan (Sun Yat-sen) University, Guangzhou, PR China.
| | | | | | | | | | | |
Collapse
|
41
|
Song BH, Wang XQ, Wang XR, Ding KY, Hong DY. Cytoplasmic composition in Pinus densata and population establishment of the diploid hybrid pine. Mol Ecol 2004; 12:2995-3001. [PMID: 14629380 DOI: 10.1046/j.1365-294x.2003.01962.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sequence and restriction site analyses of the paternally inherited chloroplast rbcL gene and maternally inherited mitochondrial nad1 fragments from the same set of populations and individuals were used to investigate cytoplasmic composition and population establishment of Pinus densata, a diploid pine that originated through hybridization between P. tabuliformis and P. yunnanensis. Two variable sites and three chlorotypes (TT, TC and GC) were detected on the rbcL gene of the three pines. P. densata harboured the three chlorotypes, two of which (TT, GC) were characteristic of the parental species, respectively. The third chlorotype (TC) was distributed extensively in seven of the 10 P. densata populations analysed, and might represent a mutation type or have been derived from an extinct parent. The distribution of chlorotypes, together with that of mitotypes, indicated that significant founder effect and backcross happened during the population establishment of the hybrid pine. P. tabuliformis and P. yunnanensis had acted as both mother and father donors, i.e. bi-directional gene flow existed between the two parental species in the past. Population differentiation of P. densata is high, as detected from the cytoplasmic genomes: GST = 0.533 for cpDNA and GST = 0.905 for mtDNA. The differences in cytoplasmic composition among the hybrid populations suggest that the local populations have undergone different evolutionary histories.
Collapse
Affiliation(s)
- Bao-Hua Song
- Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
| | | | | | | | | |
Collapse
|
42
|
Ohi T, Kajita T, Murata J. Distinct geographic structure as evidenced by chloroplast DNA haplotypes and ploidy level in Japanese Aucuba (Aucubaceae). AMERICAN JOURNAL OF BOTANY 2003; 90:1645-1652. [PMID: 21653340 DOI: 10.3732/ajb.90.11.1645] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The geographic distribution of diploid and tetraploid cytotypes and cpDNA haplotypes throughout the entire range of Aucuba japonica was investigated. We measured relative genome size using flow cytometry and sequenced two cpDNA intergenic regions, atpB-rbcL and psbA-trnH (GUG). Two haplotypes include both diploids and tetraploids; four others are all tetraploids. Based on the combination of these haplotypes and cytotypes, eight "haplo-cytotypes" can be defined, which show a distinct geographic structure. Two diploid haplo-cytotypes are distributed in the southwestern part and six tetraploid ones in the northeastern part of the Japanese archipelago. Diploid and tetraploid haplo-cytotypes with the same haplotype are, in one case, disjunctively distributed, and in another case, in contact. The phylogenetic relationships of haplo-cytotypes indicate that the traditional circumscription of A. japonica is paraphyletic. One lineage consists of four tetraploid haplo-cytotypes and another of diploid and tetraploid haplo-cytotypes plus A. chinensis. Tetraploidization occurred independently at least three times, once at the base of the former lineage and twice in the latter. Taking the geographic, cytological, and phylogenetic evidence into account, the formation of the present geographic differentiation pattern of haplo-cytotypes through postglacial expansion from glacial refugia is discussed.
Collapse
Affiliation(s)
- Tetsuo Ohi
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo 112-0001, Japan
| | | | | |
Collapse
|
43
|
Hwang SY, Lin TP, Ma CS, Lin CL, Yang JC. Postglacial population growth of Cunninghamia konishii (Cupressaceae) inferred from phylogeographical and mismatch analysis of chloroplast DNA variation. Mol Ecol 2003; 12:2689-95. [PMID: 12969472 DOI: 10.1046/j.1365-294x.2003.01935.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phylogeographical and mismatch analysis of chloroplast DNA (cpDNA) variation were used to infer the temporal dynamics of distributional and demographic history of Taiwan fir (Cunninghamia konishii). We examined 64 and 52 trees from 17 populations of C. konishii and 14 provenances of C. lanceolata, respectively, by sequencing three intergenic spacers and one intron using cpDNA universal primers. Of the aligned 1888 base pairs (bp) sequence, 30 varied among 28 haplotypes, which consisted of three transitions, 14 transversions and 13 indels. One ancestral haplotype was found in 86 individuals across the surveyed range of both species, C. konishii and C. lanceolata, which was distributed in all populations and provenances. The 28 haplotypes also included 15 C. konishii specific and 12 C. lanceolata-specific haplotypes. Ancestral haplotype was found fixed in five populations of C. konishii and five provenances of C. lanceolata. Other haplotypes occurred mainly as singletons. The levels of population differentiation studied are relatively low in both Cunninghamia species. The nucleotide diversity (theta) of chloroplast DNA sequences within C. konishii was slightly higher than that of C. lanceolata. Excess in singletons as well as star-like phylogeny of haplotypes suggested no clearcut migration patterns of C. konishii after glacial maximum. One probable demographic history of C. konishii is the postglacial population growth of C. konishii after a glacial bottleneck event. This inference is supported by the combined results of fossil pollen record, low nucleotide diversity, significant Tajima's d-value, phylogeographical analysis and unimodal mismatch distribution. Similarities and discrepancies between our results and those of Lu et al. (2001) are discussed.
Collapse
Affiliation(s)
- Shih-Ying Hwang
- Graduate Institute of Biotechnology, Chinese Culture University, Hwagan Road, Yangmingshan, Taipei, Taiwan 111.
| | | | | | | | | |
Collapse
|
44
|
Huang SSF, Hwang SY, Lin TP. Spatial pattern of chloroplast DNA variation of Cyclobalanopsis glauca in Taiwan and East Asia. Mol Ecol 2002; 11:2349-58. [PMID: 12406245 DOI: 10.1046/j.1365-294x.2002.01624.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study examined the spatial pattern of chloroplast DNA (cpDNA) variation in Cyclobalanopsis glauca (Thunb. ex Murray) Oerst. (Fagaceae) in 140 trees from Taiwan (25 populations), Japan (three), Ryukyus (two), Hong Kong (one) and Mainland China (one). By sequencing three cpDNA intergenic spacer fragments using universal primers (trnT-trnL, trnV-trnM, including the trnV intron, and petG-trnP), we found a total of 1,980 bp and 15 polymorphic sites. Among them, 12 sites were caused by point mutation, and three resulted from insertion. This gives rise to a total of 13 cpDNA haplotypes. The level of differentiation among the populations studied is relatively high (GST = 0.612). Two ancestral haplotypes (A and B) are distributed widely in East Asia. Interestingly, all the derived cpDNA variations are found only in Taiwan but not in other areas. The Central Mountain Ridge (CMR) of Taiwan creates an unsurpassed barrier to the east-west gene flow of C. glauca. Among the populations on the west of CMR, only three separated populations, Yangmingshan, Wushe and Chinshuiying, have high haplotype diversity, each consisting of sister haplotypes all mutated from the same ancestral haplotype. Thus, they have probably originated from de novo mutation after the last glaciation. This inference agrees with the observation that no spatial autocorrelation existed on the west side. Two unrelated dominant lineages on the east of the CMR (haplotypes D and F) showed significant spatial genetic structure. Estimate of NST - GST was -0.090 and differed significantly from zero. Thus at the local scale, the phylogeographical component of the genetic structure is significant on the east of the CMR. Accompanied by published palynological records of the last glaciation, this study suggests the possibility that these two types were colonized northward from the southeastern part of Taiwan. 'Star-like' genealogy is characterized, with all the haplotypes coalescing rapidly and as a general outcome of population expansion (Page & Holmes 1998). A neutrality test also suggested a demographic expansion recovered from a bottleneck. We therefore inferred that the southeastern part of Taiwan might be a potential refugium for C. glauca.
Collapse
Affiliation(s)
- Sophie S F Huang
- National Taiwan University, Department of Botany, Roosevelt Road, Section 4, Taipei, Taiwan 106
| | | | | |
Collapse
|
45
|
Chiang YC, Ge XJ, Chou CH, Wu WL, Chiang TY. Nucleotide sequence diversity at the methionine synthase locus in endangered Dunnia sinensis (Rubiaceae): an evaluation of the positive selection hypothesis. Mol Biol Evol 2002; 19:1367-75. [PMID: 12140249 DOI: 10.1093/oxfordjournals.molbev.a004198] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Methionine synthase is a key enzyme for the synthesis of the aspartate-derived methionine, the immediate precursor of S-adenosyl-methionine, which has been illustrated to be associated with plant growth and pathogen interactions. In this study we tested the positive selection hypothesis of molecular evolution of the methionine synthase gene in Dunnia sinensis. In the entire sample of 87 sequences, 22 haplotypes of introns and 16 haplotypes of exons were identified. An excess of polymorphism over the neutral expectation for the class of unique nucleotide polymorphisms was observed in both exon and intron sequences. Ten replacement substitutions versus six synonymous substitutions among lineages, although nonsignificant, revealed that some advantageous mutants might have been favored. The distribution of d(N)/d(S) > 1 at nodes between closely related haplotypes in the gene network also indicated weak and variable positive selection. Nevertheless, low levels of genetic diversity in exons (theta; = 0.0052) and introns (theta; = 0.0070) of the methionine synthase gene of the outcrossing Dunnia were also attributed to the endangered status of the species. The atpB-rbcL intergenic spacer of cpDNA and the ribosomal internal transcribed spacer of mtDNA were used to discern the relative effectiveness of natural selection from intrinsic evolutionary forces. The low levels of nucleotide polymorphisms in both organelle spacers and the significant population differentiation reflected the effect of population-species history and demography. Two major lineages of the methionine synthase gene genealogy were recovered corresponding to two geographic regions, a result that was consistent with organelle phylogenies. Both past fragmentation and recent habitat disturbance causing complete bottlenecks may have resulted in population decline and geographic isolation and may have led to the depletion of genetic variation at loci in nuclear and organelle genomes.
Collapse
Affiliation(s)
- Yu-Chung Chiang
- Department of Biology, Taiwan Normal University, Taipei, Taiwan, ROC.
| | | | | | | | | |
Collapse
|