1
|
Magboul AM, Nour BYM, Tamomh AG, Abdul-Ghani R, Albushra SM, Eltahir HB. Unraveling Key Chloroquine Resistance-Associated Alleles Among Plasmodium falciparum Isolates in South Darfur State, Sudan Twelve Years After Drug Withdrawal. Infect Drug Resist 2024; 17:221-227. [PMID: 38283109 PMCID: PMC10822104 DOI: 10.2147/idr.s439875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/17/2024] [Indexed: 01/30/2024] Open
Abstract
Background Due to the increasing resistance of Plasmodium falciparum to chloroquine (CQ) in Sudan, a shift from CQ to artesunate combined with sulfadoxine/pyrimethamine as a first-line treatment for uncomplicated falciparum malaria was adopted in 2004. This study aimed to determine the frequency distribution of K76T and N86Y mutations in P. falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes as key markers of resistance to CQ among P. falciparum isolates from patients in Nyala district of South Darfur state, west of Sudan. Methods A descriptive, cross-sectional study was conducted among 75 P. falciparum isolates from Sudanese patients diagnosed with falciparum malaria mono-infection. Parasite DNA was extracted from dried blood spots and amplified using a nested polymerase chain reaction (PCR). Then, restriction fragment length polymorphism (RFLP) was used to detect the genetic polymorphisms in codons 76 of pfcrt and 86 of pfmdr1. PCR-RFLP products were analyzed using 1.5% gel electrophoresis to identify the genetic polymorphisms in the studied codons. The wild-type (pfcrt K76 and pfmdr1 N86), mutant (pfcrt 76T and pfmdr1 86Y) and mixed-type (pfcrt K76T and pfmdr1 N86Y) alleles were expressed as frequencies and proportions. Results The wild-type pfcrt K76 allele was observed among 34.7% of isolates and the mutant 76T allele among 20% of isolates, while the mixed-type K76T allele was observed among 45.3% of isolates. On the other hand, 54.7% of isolates harbored the wild-type pfmdr1 N86 allele and 5.3% of isolates had the mutant 86Y allele, while the mixed-type N86Y allele was observed among 40% of isolates. Conclusion The key molecular markers associated with CQ resistance (pfcrt 76T and pfmdr1 86Y) are still circulating in high frequency among P. falciparum isolates in South Darfur state, about twelve years after the official withdrawal of the drug as a treatment for uncomplicated falciparum malaria.
Collapse
Affiliation(s)
- Abdalmoneim M Magboul
- Department of Parasitology & Medical Entomology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, Sudan
| | - Bakri Y M Nour
- Department of Parasitology, Faculty of Medical Laboratory Sciences, University of Gezira, Wad Madani, Sudan
| | - Abdelhakam G Tamomh
- Department of Parasitology & Medical Entomology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, Sudan
| | - Rashad Abdul-Ghani
- Department of Medical Parasitology, Faculty of Medicine and Health Sciences, Sana’a University, Sana’a, Yemen
- Tropical Disease Research Center, Faculty of Medicine and Health Sciences, University of Science and Technology, Sana’a, Yemen
| | - Sayed Mustafa Albushra
- Department of Internal Medicine, Faculty of Medicine, University of Gezira, Wad Madani, Sudan
| | - Hanan Babiker Eltahir
- Department of Biochemistry, Faculty of Medicine, University of El Imam El Mahdi, Kosti, Sudan
| |
Collapse
|
2
|
Hussien M, Abdel Hamid MM, Elamin EA, Hassan AO, Elaagip AH, Salama AHA, Abdelraheem MH, Mohamed AO. Antimalarial drug resistance molecular makers of Plasmodium falciparum isolates from Sudan during 2015-2017. PLoS One 2020; 15:e0235401. [PMID: 32817665 PMCID: PMC7446868 DOI: 10.1371/journal.pone.0235401] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 06/16/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Current malaria control and elimination strategies rely mainly on efficacious antimalarial drugs. However, drug resistance is a major threat facing malaria control programs. Determination of drug resistance molecular markers is useful in the monitoring and surveillance of malaria drug efficacy. This study aimed to determine the mutations and haplotypes frequencies of different genes linked with antimalarial drug resistance in certain areas in Sudan. METHODS A total of 226 dried blood spots (DBS) of microscopically diagnosed P. falciparum isolates were collected from Khartoum and three other areas in Sudan during 2015-2017. Plasmodium falciparum confirmation and multiplicity of infection was assessed using the Sanger's 101 SNPs-barcode and speciation was confirmed using regions of the parasite mitochondria. Molecular genotyping of drug resistance genes (Pfcrt, Pfmdr1, Pfdhfr, Pfdhps, exonuclease, Pfk13, parasite genetic background (PGB) (Pfarps10, ferredoxin, Pfcrt, Pfmdr2)) was also performed. All genotypes were generated by selective regions amplicon sequencing of the parasite genome using the Illumina MiSeq platform at the Wellcome Sanger Institute, UK then genotypes were translated into drug resistance haplotypes and species determination. FINDINGS In total 225 samples were confirmed to be P. falciparum. A higher proportion of multiplicity of infection was observed in Gezira (P<0.001) based on the Sanger 101 SNPs -barcode. The overall frequency of mutant haplotype Pfcrt 72-76 CVIET was 71.8%. For Pfmdr1, N86Y was detected in 53.6%, Y184F was observed in 88.1% and D1246Y was detected in 1.5% of the samples. The most frequently observed haplotype was YFD 47.4%. For Pfdhfr (codons 51, 59,108,164), the ICNI haplotype was the most frequent (80.7%) while for Pfdhps (codons 436, 437, 540, 581, 613) the (SGEAA) was most frequent haplotype (41%). The Quadruple mutation (dhfr N51I, S108N + dhps A437G, K540E) was the highest frequent combined mutation (33.9%). In Pfkelch13 gene, 18 non-synonymous mutations were detected, 7 of them were detected in other African countries. The most frequent Pfk13 mutation was E433D detected in four samples. All of the Pfk13 mutant alleles have not been reported to belong to mutations associated with delayed parasite clearance in Southeast Asia. PGB mutations were detected only in Pfcrt N326S\I (46.3%) and Pfcrt I356T (8.2%). The exonuclease mutation was not detected. There was no significant variation in mutant haplotypes between study areas. CONCLUSIONS There was high frequency of mutations in Pfcrt, Pfdhfr and Pfdhps in this study. These mutations are associated with chloroquine and sulfadoxine-pyrimethamine (SP) resistance. Many SNPs in Pfk13 not linked with delayed parasite clearance were observed. The exonuclease E415G mutation which is linked with piperaquine resistance was not reported.
Collapse
Affiliation(s)
- Maazza Hussien
- Department of Medical Parasitology and Entomology, Faculty of Medical Laboratory Sciences, Al Neelain University, Khartoum, Sudan
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | | | - Elamin Abdelkarim Elamin
- Department of Medical Parasitology and Entomology, Faculty of Medical Laboratory Sciences, Al Neelain University, Khartoum, Sudan
| | - Abdalla O. Hassan
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Arwa H. Elaagip
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | | | - Mohammed H. Abdelraheem
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Abdelrahim O. Mohamed
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
3
|
Mohamed AO, Hussien M, Mohamed A, Suliman A, Elkando NS, Abdelbagi H, Malik EM, Abdelraheem MH, Hamid MMA. Assessment of Plasmodium falciparum drug resistance molecular markers from the Blue Nile State, Southeast Sudan. Malar J 2020; 19:78. [PMID: 32070355 PMCID: PMC7029593 DOI: 10.1186/s12936-020-03165-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/13/2020] [Indexed: 12/03/2022] Open
Abstract
Background Plasmodium falciparum malaria is a public health problem worldwide. Malaria treatment policy has faced periodic changes due to emergence of drug resistant parasites. In Sudan chloroquine has been replaced by artesunate and sulfadoxine/pyrimethamine (AS/SP) in 2005 and to artemether–lumefantrine (AL) in 2017, due to the development of drug resistance. Different molecular markers have been used to monitor the status of drug resistant P. falciparum. This study aimed to determine the frequency of malaria drug resistance molecular markers in Southeast Sudan. Methods The samples of this study were day zero dried blood spot samples collected from efficacy studies in the Blue Nile State from November 2015 to January 2016. A total of 130 samples were amplified and sequenced using illumina Miseq platform. The molecular markers included were Pfcrt, Pfmdr1, Pfdhfr, Pfdhps, Pfk13, exonuclease and artemisinin resistant (ART‐R) genetic background (Pfmdr2, ferroredoxine, Pfcrt and Pfarps10). Results Resistance markers for chloroquine were detected in 25.8% of the samples as mutant haplotype Pfcrt 72-76 CVIET and 21.7% Pfmdr1 86Y. Pfdhfr mutations were detected in codons 51, 59 and 108. The ICNI double-mutant haplotype was the most prevalent (69%). Pfdhps mutations were detected in codons 436, 437, 540, 581 and 613. The SGEGA triple-mutant haplotype was the most prevalent (43%). In Pfdhfr/Pfdhps combined mutation, quintuple mutation ICNI/SGEGA is the most frequent one (29%). Six of the seven treatment failure samples had quintuple mutation and the seventh was quadruple. This was significantly higher from the adequately responsive group (P < 0.01). Pfk13 novel mutations were found in 7 (8.8%) samples, which were not linked to artemisinin resistance. Mutations in ART‐R genetic background genes ranged from zero to 7%. Exonuclease mutation was not detected. Conclusion In this study, moderate resistance to chloroquine and high resistance to SP was observed. Novel mutations of Pfk13 gene not linked to treatment failure were described. There was no resistance to piperaquine the partner drug of dihydroartemisinin/piperaquine (DHA-PPQ).
Collapse
Affiliation(s)
- Abdelrahim O Mohamed
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan.
| | - Maazza Hussien
- Department of Medical Parasitology and Entomology, Faculty of Medical Laboratory Sciences, Al Neelain University, Khartoum, Sudan.,Institute of Endemic Diseases, Medical Campus, University of Khartoum, P. O. Box 102, Khartoum, Sudan
| | - Amal Mohamed
- Department of Accreditation, General Directorate of Quality, Development and Accreditation, Khartoum, Sudan
| | | | - Nuha S Elkando
- State Ministry of Health, Blue Nile State, Damazin, Sudan
| | - Hanadi Abdelbagi
- Institute of Endemic Diseases, Medical Campus, University of Khartoum, P. O. Box 102, Khartoum, Sudan
| | - Elfatih M Malik
- Department of Community Medicine Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mohammed H Abdelraheem
- Institute of Endemic Diseases, Medical Campus, University of Khartoum, P. O. Box 102, Khartoum, Sudan
| | - Muzamil Mahdi Abdel Hamid
- Department of Medical Parasitology and Entomology, Faculty of Medical Laboratory Sciences, Al Neelain University, Khartoum, Sudan. .,Institute of Endemic Diseases, Medical Campus, University of Khartoum, P. O. Box 102, Khartoum, Sudan.
| |
Collapse
|
4
|
Cañón M, Diaz H, Olarte A. Mathematical model for the spread of drug resistance in Plasmodium falciparum parasite considering transmission conditions. J Theor Biol 2017; 435:1-11. [PMID: 28888945 DOI: 10.1016/j.jtbi.2017.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 07/21/2017] [Accepted: 09/01/2017] [Indexed: 10/18/2022]
Abstract
Antimalarial drugs have been used as one of the main strategies for controlling this disease. However, the spread of drug resistance in the Plasmodium falciparum parasite has generated major challenges for the control of malaria. For this reason, it is necessary to develop an efficient policy considering the parasite behavior in relation to drug treatment and epidemiological parameters. To achieve this goal, we propose a mathematical model that describes the dynamics of parasite population considering the transmission effects between mosquitoes and humans. In order to quantify the drug treatment effect on humans and the generation of new parasite genotypes within the mosquito, the parasite population was divided into those found in humans and mosquitoes. To test the model, we simulate several parasite populations, related with pyrimethamine resistance, in high and low transmission conditions. Simulation results show the dynamics of different parasite populations depending on drug coverage and the effect of epidemiological parameters. These results show that disease elimination may not be possible by using only pyrimethamine treatment, so we include different control strategies and we observe that reducing contacts between mosquitoes and humans helped the drug coverage to reduce the prevalence of disease. Finally, this model is used to propose an optimal policy that minimizes disease prevalence; the principal result is that the most effective coverage of the drug is around middle coverage. The model can also be used to evaluate not only pyrimethamine treatments, but it can be adapted for the study of resistance to other drugs.
Collapse
Affiliation(s)
- Mario Cañón
- Universidad Nacional de Colombia, Department of Electrical and Electronics Engineering, Carrera 45 No. 26-85, Bogotá, Colombia.
| | - Hernando Diaz
- Universidad Nacional de Colombia, Department of Electrical and Electronics Engineering, Carrera 45 No. 26-85, Bogotá, Colombia.
| | - Andrés Olarte
- Universidad Nacional de Colombia, Department of Electrical and Electronics Engineering, Carrera 45 No. 26-85, Bogotá, Colombia.
| |
Collapse
|
5
|
Ould Ahmedou Salem MS, Mint Lekweiry K, Bouchiba H, Pascual A, Pradines B, Ould Mohamed Salem Boukhary A, Briolant S, Basco LK, Bogreau H. Characterization of Plasmodium falciparum genes associated with drug resistance in Hodh Elgharbi, a malaria hotspot near Malian-Mauritanian border. Malar J 2017; 16:140. [PMID: 28381273 PMCID: PMC5382448 DOI: 10.1186/s12936-017-1791-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/26/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND A malaria hotspot in the southeastern region of Mauritania, near the Malian border, may hamper malaria control strategies. The objectives were to estimate the prevalence of genetic polymorphisms associated with drug resistance in Plasmodium falciparum isolates and establish baseline data. METHODS The study was conducted in two malaria-endemic areas in Hodh Elgharbi, situated in the Malian-Mauritanian border area. Blood samples were collected from symptomatic patients. Single nucleotide polymorphisms in Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps were genotyped using PCR-restriction fragment length polymorphism, DNA sequencing and primer extension. The Pfmdr1 gene copy number was determined by real-time PCR. RESULTS Of 280 P. falciparum-infected patients, 193 (68.9%) carried the Pfcrt 76T mutant allele. The Pfmdr1 86Y and 184F mutations were found in 61 (23.1%) of 264 isolates and 167 (67.6%) of 247 samples that were successfully genotyped, respectively. Pfmdr1 mutant alleles 1034C, 1042D and 1246Y were rarely observed. Of 102 P. falciparum isolates analysed, ten (9.8%) had more than one copy of Pfmdr1 gene. The prevalence of isolates harbouring at least triple mutant Pfdhfr 51I, 59R, 108 N/T was 42% (112/268), of which 42 (37.5%) had an additional Pfdhps 437G mutation. The Pfdhps 540E mutation was observed in four isolates (1.5%), including three associated with Pfdhfr triple mutant. Only two quintuple mutants (Pfdhfr-51I-59R-108N Pfdhps-437G-540E) were observed. CONCLUSIONS The observed mutations in Pfdhfr, Pfdhps, Pfmdr1, and Pfcrt may jeopardize the future of seasonal malaria chemoprevention based on amodiaquine-sulfadoxine-pyrimethamine, intermittent preventive treatment for pregnant women using sulfadoxine-pyrimethamine, and treatment with artesunate-amodiaquine. Complementary studies should be carried out to document the distribution, origin and circulation of P. falciparum populations in this region and more widely in the country to assess the risk of the spread of resistance.
Collapse
Affiliation(s)
- Mohamed Salem Ould Ahmedou Salem
- Unité de Recherche «Génomes et Milieux», Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouveau campus universitaire, BP 5026, Nouakchott, Mauritania.
| | - Khadijetou Mint Lekweiry
- Unité de Recherche «Génomes et Milieux», Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouveau campus universitaire, BP 5026, Nouakchott, Mauritania
| | - Houssem Bouchiba
- Unité Parasitologie et entomologie, Département des maladies infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille Université, UM 63, CNRS 7278, IRD 198, Inserm 1095, AP-HM, Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Aurelie Pascual
- Unité Parasitologie et entomologie, Département des maladies infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille Université, UM 63, CNRS 7278, IRD 198, Inserm 1095, AP-HM, Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Bruno Pradines
- Unité Parasitologie et entomologie, Département des maladies infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille Université, UM 63, CNRS 7278, IRD 198, Inserm 1095, AP-HM, Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Centre national de référence pour le paludisme, Marseille, France
| | - Ali Ould Mohamed Salem Boukhary
- Unité de Recherche «Génomes et Milieux», Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouveau campus universitaire, BP 5026, Nouakchott, Mauritania
| | - Sébastien Briolant
- Unité Parasitologie et entomologie, Département des maladies infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille Université, UM 63, CNRS 7278, IRD 198, Inserm 1095, AP-HM, Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Leonardo K Basco
- Unité Parasitologie et entomologie, Département des maladies infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille Université, UM 63, CNRS 7278, IRD 198, Inserm 1095, AP-HM, Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Hervé Bogreau
- Unité Parasitologie et entomologie, Département des maladies infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille Université, UM 63, CNRS 7278, IRD 198, Inserm 1095, AP-HM, Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| |
Collapse
|
6
|
Ogbunugafor CB, Wylie CS, Diakite I, Weinreich DM, Hartl DL. Adaptive Landscape by Environment Interactions Dictate Evolutionary Dynamics in Models of Drug Resistance. PLoS Comput Biol 2016; 12:e1004710. [PMID: 26808374 PMCID: PMC4726534 DOI: 10.1371/journal.pcbi.1004710] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022] Open
Abstract
The adaptive landscape analogy has found practical use in recent years, as many have explored how their understanding can inform therapeutic strategies that subvert the evolution of drug resistance. A major barrier to applications of these concepts is a lack of detail concerning how the environment affects adaptive landscape topography, and consequently, the outcome of drug treatment. Here we combine empirical data, evolutionary theory, and computer simulations towards dissecting adaptive landscape by environment interactions for the evolution of drug resistance in two dimensions-drug concentration and drug type. We do so by studying the resistance mediated by Plasmodium falciparum dihydrofolate reductase (DHFR) to two related inhibitors-pyrimethamine and cycloguanil-across a breadth of drug concentrations. We first examine whether the adaptive landscapes for the two drugs are consistent with common definitions of cross-resistance. We then reconstruct all accessible pathways across the landscape, observing how their structure changes with drug environment. We offer a mechanism for non-linearity in the topography of accessible pathways by calculating of the interaction between mutation effects and drug environment, which reveals rampant patterns of epistasis. We then simulate evolution in several different drug environments to observe how these individual mutation effects (and patterns of epistasis) influence paths taken at evolutionary "forks in the road" that dictate adaptive dynamics in silico. In doing so, we reveal how classic metrics like the IC50 and minimal inhibitory concentration (MIC) are dubious proxies for understanding how evolution will occur across drug environments. We also consider how the findings reveal ambiguities in the cross-resistance concept, as subtle differences in adaptive landscape topography between otherwise equivalent drugs can drive drastically different evolutionary outcomes. Summarizing, we discuss the results with regards to their basic contribution to the study of empirical adaptive landscapes, and in terms of how they inform new models for the evolution of drug resistance.
Collapse
Affiliation(s)
- C. Brandon Ogbunugafor
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - C. Scott Wylie
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
| | - Ibrahim Diakite
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel M. Weinreich
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
| | - Daniel L. Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
7
|
Abdul-Ghani R, Farag HF, Allam AF. Sulfadoxine-pyrimethamine resistance in Plasmodium falciparum: a zoomed image at the molecular level within a geographic context. Acta Trop 2013; 125:163-90. [PMID: 23131424 DOI: 10.1016/j.actatropica.2012.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022]
Abstract
Antimalarial chemotherapy is one of the main pillars in the prevention and control of malaria. Following widespread resistance of Plasmodium falciparum to chloroquine, sulfadoxine-pyrimethamine came to the scene as an alternative to the cheap and well-tolerated chloroquine. However, widespread resistance to sulfadoxine-pyrimethamine has been documented. In vivo efficacy tests are the gold standard for assessing drug resistance and treatment failure. However, they have many disadvantages, such as influence of host immunity and drug pharmacokinetics. In vitro tests of antimalarial drug efficacy also have many technical difficulties. Molecular markers of resistance have emerged as epidemiologic tools to investigate antimalarial drug resistance even before becoming clinically evident. Mutations in P. falciparum dihydrofolate reductase and dihydrofolate synthase have been extensively studied as molecular markers for resistance to pyrimethamine and sulfadoxine, respectively. This review highlights the resistance of P. falciparum at the molecular level presenting both supporting and opposing studies on the utility of molecular markers.
Collapse
|
8
|
Rebaudet S, Bogreau H, Silaï R, Lepere JF, Bertaux L, Pradines B, Delmont J, Gautret P, Parola P, Rogier C. Genetic structure of Plasmodium falciparum and elimination of malaria, Comoros archipelago. Emerg Infect Dis 2011; 16:1686-94. [PMID: 21029525 PMCID: PMC3294527 DOI: 10.3201/eid1611.100694] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Elimination interventions should be implemented simultaneously throughout the entire archipelago. The efficacy of malaria control and elimination on islands may depend on the intensity of new parasite inflow. On the Comoros archipelago, where falciparum malaria remains a major public health problem because of spread of drug resistance and insufficient malaria control, recent interventions for malaria elimination were planned on Moheli, 1 of 4 islands in the Comoros archipelago. To assess the relevance of such a local strategy, we performed a population genetics analysis by using multilocus microsatellite and resistance genotyping of Plasmodium falciparum sampled from each island of the archipelago. We found a contrasted population genetic structure explained by geographic isolation, human migration, malaria transmission, and drug selective pressure. Our findings suggest that malaria elimination interventions should be implemented simultaneously on the entire archipelago rather than restricted to 1 island and demonstrate the necessity for specific chemoresistance surveillance on each of the 4 Comorian islands.
Collapse
|
9
|
Menegon M, Talha AA, Severini C, Elbushra SM, Mohamedani AA, Malik EM, Mohamed TA, Wernsdorfer WH, Majori G, Nour BYM. Frequency distribution of antimalarial drug resistance alleles among Plasmodium falciparum isolates from Gezira State, central Sudan, and Gedarif State, eastern Sudan. Am J Trop Med Hyg 2010; 83:250-7. [PMID: 20682863 DOI: 10.4269/ajtmh.2010.09-0514] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In 2004, Sudan adopted artesunate + sulfadoxine/pyrimethamine (SP) combination as the first-line drug, in response to the high level of falciparum resistance to antimalarials. In 2007, a molecular study on antimalarial resistance linked genes, pfcrt, pfmdr1, pfdhfr, pfdhps, and pfATPase6, was conducted on 198 isolates from central and eastern Sudan. We observed a high frequency of point mutations at almost all loci analyzed, mainly of pfcrt 76T (72.7%), pfdhfr 51I (75.3%), and pfdhfr 108N (72.7%) alleles. The MARK III in vitro test for chloroquine sensitivity in 45 P. falciparum isolates showed that 37.8% of the isolates were low resistant and 6.7% were fully resistant. This study represents the most recent molecular investigation on antimalarial resistance in this area after the adoption of artemisinin-based combination therapy (ACT), and underlines the importance of the analysis of SP resistance evolution to monitor the efficacy of ACT therapy in endemic areas.
Collapse
Affiliation(s)
- Michela Menegon
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Multiple origins and regional dispersal of resistant dhps in African Plasmodium falciparum malaria. PLoS Med 2009; 6:e1000055. [PMID: 19365539 PMCID: PMC2661256 DOI: 10.1371/journal.pmed.1000055] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 02/13/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although the molecular basis of resistance to a number of common antimalarial drugs is well known, a geographic description of the emergence and dispersal of resistance mutations across Africa has not been attempted. To that end we have characterised the evolutionary origins of antifolate resistance mutations in the dihydropteroate synthase (dhps) gene and mapped their contemporary distribution. METHODS AND FINDINGS We used microsatellite polymorphism flanking the dhps gene to determine which resistance alleles shared common ancestry and found five major lineages each of which had a unique geographical distribution. The extent to which allelic lineages were shared among 20 African Plasmodium falciparum populations revealed five major geographical groupings. Resistance lineages were common to all sites within these regions. The most marked differentiation was between east and west African P. falciparum, in which resistance alleles were not only of different ancestry but also carried different resistance mutations. CONCLUSIONS Resistant dhps has emerged independently in multiple sites in Africa during the past 10-20 years. Our data show the molecular basis of resistance differs between east and west Africa, which is likely to translate into differing antifolate sensitivity. We have also demonstrated that the dispersal patterns of resistance lineages give unique insights into recent parasite migration patterns.
Collapse
|
11
|
Alker AP, Kazadi WM, Kutelemeni AK, Bloland PB, Tshefu AK, Meshnick SR. dhfr and dhps genotype and sulfadoxine-pyrimethamine treatment failure in children with falciparum malaria in the Democratic Republic of Congo. Trop Med Int Health 2009; 13:1384-91. [PMID: 19055622 DOI: 10.1111/j.1365-3156.2008.02150.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To determine the relationship between mutations in dhfr and dhps and SP treatment failure in Plasmodium falciparum malaria in the Democratic Republic of the Congo (DRC). METHODS Therapeutic efficacy trial was conducted in Rutshuru, Eastern DRC, between June and September 2002, comparing sulfadoxine-pyrimethamine (SP), SP plus amodiaquine (AQSP) and artesunate plus SP (ASSP) regimens for treating malaria in children under 5 years old. We genotyped 212 samples for mutations associated with SP resistance and investigated their association with treatment failure. RESULTS In the SP arm, 61% of the subjects experienced treatment failure after 14 days. The failure rate was lower in the combination arms (AQSP: 32%, ASSP: 21%). The dhfr-108 and dhfr-51 mutations were nearly universal while 89% of the samples had at least one additional mutation at dhfr-59, dhps-437 or dhps-540. Dhps mutations had a bigger impact on treatment failure in children with high parasite density: for children with a parasite density <45 000 parasites/microl, the risk of treatment failure was 37% for mutations at dhps-437 and dhps-540 mutation and 21% for neither mutation [risk difference (RD) = 17%, 95% CI: -3%, 36%]. In children with a parasite density >45 000 parasites/microl, the treatment failure risk was 58% and 8% for children with both mutations or neither mutation, respectively (RD = 51%, 95% CI: 34%, 67%). CONCLUSIONS Dhps-437 and dhps-540 are strongly associated with SP treatment failure and should be evaluated further as a method for surveillance of SP-based therapy in DRC.
Collapse
Affiliation(s)
- Alisa P Alker
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Lynch C, Pearce R, Pota H, Cox J, Abeku TA, Rwakimari J, Naidoo I, Tibenderana J, Roper C. Emergence of a dhfr mutation conferring high-level drug resistance in Plasmodium falciparum populations from southwest Uganda. J Infect Dis 2008; 197:1598-604. [PMID: 18471065 DOI: 10.1086/587845] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The S108N, C59R, and N51I mutations in the Plasmodium falciparum gene that encodes dihydrofolate reductase, dhfr, confer resistance to pyrimethamine and are common in Africa. However, the I164L mutation, which confers high-level resistance, is rarely seen. We found a 14% prevalence of the I164L mutation among a sample of 51 patients with malaria in Kabale District in southwest Uganda in 2005 and a 4% prevalence among 72 patients with malaria in the neighboring district of Rukungiri during the same year. Surveillance at 6 sites across Uganda during 2002-2004 reported a single case of infection involving an I164L mutant, also in the southwest, suggesting that this is a regional hot spot. The spatial clustering and increasing prevalence of the I164L mutation is indicative of local transmission of the mutant. Targeted surveillance is needed to confirm the extent of the spread of the I164L mutation and to monitor the impact of I164L on the efficacy of antifolates for intermittent preventive treatment of pregnant women and/or infants with falciparum malaria.
Collapse
Affiliation(s)
- Caroline Lynch
- Disease Control and Vector Biology Unit, Department of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Plasmodium falciparum strains harboring dihydrofolate reductase with the I164L mutation are absent in Malawi and Zambia even under antifolate drug pressure. Antimicrob Agents Chemother 2008; 52:3883-8. [PMID: 18725445 DOI: 10.1128/aac.00431-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Plasmodium falciparum dihydrofolate reductase (PfDHFR) enzyme is the target of pyrimethamine, a component of the antimalarial pyrimethamine-sulfadoxine. Resistance to this drug is associated primarily with mutations in the Pfdhfr gene. The I164L mutant allele is of particular interest, because strains possessing this mutation are highly resistant to pyrimethamine and to chlorproguanil, a component of chlorproguanil-dapsone. A recent study from Malawi reported this mutation at a prevalence of 4.7% in parasites from human immunodeficiency virus-positive pregnant women by using a real-time PCR method. These observations have huge implications for the use of pyrimethamine-sulfadoxine, chlorproguanil-dapsone, and future antifolate-artemisinin combinations in Africa. It was imperative that this finding be rigorously tested. We identified a number of critical limitations in the original genotyping strategy. Using a refined and validated real-time PCR strategy, we report here that this mutation was absent in 158 isolates from Malawi and 42 isolates from Zambia collected between 2003 and 2005.
Collapse
|
14
|
High frequency of Plasmodium falciparum CICNI/SGEAA and CVIET haplotypes without association with resistance to sulfadoxine/pyrimethamine and chloroquine combination in the Daraweesh area, in Sudan. Eur J Clin Microbiol Infect Dis 2008; 27:725-32. [PMID: 18373107 DOI: 10.1007/s10096-008-0499-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 02/18/2008] [Indexed: 10/22/2022]
Abstract
Estimation of the prevalence of the molecular markers of sulfadoxine/pyrimethamine (SP) and chloroquine (CQ) resistance and validation of the association of mutations with resistance in different settings is needed for local policy guidance and for contributing to a global map for anti-malarial drug resistance. In this study, malaria patients treated with SP alone (60) and SP with CQ (194) had a total treatment failure (TF) of 35.4%, with no difference between the two arms. The polymerase chain reaction-enzyme-linked immunosorbent assay (PCR-ELISA) method was used to identify polymorphisms in 15 loci in the dhfr, dhps and pfcrt genes in a subset of 168 infections. The results revealed a similar frequency of all single nucleotide polymorphisms (SNPs) in the two arms, except dhps 581G, which was over-represented in infections that failed to respond to SP alone (TF). In all infections, a high frequency of dhfr CICNI haplotype (51I and 108N) was found, but without discrimination between the adequate clinical and parasitological response (ACPR, 75.6%) and TF (82.9%). Similarly, the dhps SGEAA haplotype (437G and 540E) (ACPR, 60.5%; TF, 65.9%) and the combined CICNI/SGEAA haplotype (ACPR, 50%; TF 55%) were not associated with TF. In contrast to other studies in Africa, the triple 51I/59R/108N mutation was rare (0.6%). In addition, the pfcrt CVIET haplotype (93%) was found to be associated with the CICNI/SGEAA haplotype. Finally, these data represent a baseline for SP resistance molecular markers needed before the deployment of SP/artesunate combination therapy in the Sudan.
Collapse
|
15
|
Abstract
Malaria persists as an undiminished global problem, but the resources available to address it have increased. Many tools for understanding its biology and epidemiology are well developed, with a particular richness of comparative genome sequences. Targeted genetic manipulation is now effectively combined with in vitro culture assays on the most important human parasite, Plasmodium falciparum, and with in vivo analysis of rodent and monkey malaria parasites in their laboratory hosts. Studies of the epidemiology, prevention, and treatment of human malaria have already been influenced by the availability of molecular methods, and analyses of parasite polymorphisms have long had useful and highly informative applications. However, the molecular epidemiology of malaria is currently undergoing its most substantial revolution as a result of the genomic information and technologies that are available in well-resourced centers. It is a challenge for research agendas to face the real needs presented by a disease that largely exists in extremely resource-poor settings, but it is one that there appears to be an increased willingness to undertake. To this end, developments in the molecular epidemiology of malaria are reviewed here, emphasizing aspects that may be current and future priorities.
Collapse
Affiliation(s)
- David J Conway
- Medical Research Council Laboratories, Fajara, P.O. Box 273, Banjul, The Gambia.
| |
Collapse
|
16
|
Checchi F, Cox J, Balkan S, Tamrat A, Priotto G, Alberti KP, Guthmann JP. Malaria epidemics and interventions, Kenya, Burundi, southern Sudan, and Ethiopia, 1999-2004. Emerg Infect Dis 2007; 12:1477-85. [PMID: 17176560 PMCID: PMC3290957 DOI: 10.3201/eid1210.060540] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Effectiveness was reduced by delays and other factors. Quantitative data on the onset and evolution of malaria epidemics are scarce. We review case studies from recent African Plasmodium falciparum epidemics (Kisii and Gucha Districts, Kenya, 1999; Kayanza Province, Burundi, 2000–2001; Aweil East, southern Sudan, 2003; Gutten and Damot Gale, Ethiopia, 2003–2004). We highlight possible epidemic risk factors and review delays in epidemic detection and response (up to 20 weeks), essentially due to poor case reporting and analysis or low use of public facilities. Epidemics lasted 15–36 weeks, and patients' age profiles suggested departures from classical notions of epidemic malaria everywhere but Burundi. Although emergency interventions were mounted to expand inpatient and outpatient treatment access, we believe their effects were lessened because of delays, insufficient evaluation of disease burden, lack of evidence on how to increase treatment coverage in emergencies, and use of ineffective drugs.
Collapse
Affiliation(s)
- Francesco Checchi
- Department of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
17
|
Noranate N, Durand R, Tall A, Marrama L, Spiegel A, Sokhna C, Pradines B, Cojean S, Guillotte M, Bischoff E, Ekala MT, Bouchier C, Fandeur T, Ariey F, Patarapotikul J, Bras JL, Trape JF, Rogier C, Mercereau-Puijalon O. Rapid dissemination of Plasmodium falciparum drug resistance despite strictly controlled antimalarial use. PLoS One 2007; 2:e139. [PMID: 17206274 PMCID: PMC1764034 DOI: 10.1371/journal.pone.0000139] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Accepted: 12/06/2006] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Inadequate treatment practices with antimalarials are considered major contributors to Plasmodium falciparum resistance to chloroquine, pyrimethamine and sulfadoxine. The longitudinal survey conducted in Dielmo, a rural Senegalese community, offers a unique frame to explore the impact of strictly controlled and quantified antimalarial use for diagnosed malaria on drug resistance. METHODOLOGY/PRINCIPAL FINDINGS We conducted on a yearly basis a retrospective survey over a ten-year period that included two successive treatment policies, namely quinine during 1990-1994, and chloroquine (CQ) and sulfadoxine/pyrimethamine (SP) as first and second line treatments, respectively, during 1995-1999. Molecular beacon-based genotyping, gene sequencing and microsatellite analysis showed a low prevalence of Pfcrt and Pfdhfr-ts resistance alleles of Southeast Asian origin by the end of 1994 and their effective dissemination within one year of CQ and SP implementation. The Pfcrt resistant allele rose from 9% to 46% prevalence during the first year of CQ reintroduction, i.e., after a mean of 1.66 CQ treatment courses/person/year. The Pfdhfr-ts triple mutant rose from 0% to 20% by end 1996, after a mean of 0.35 SP treatment courses/person in a 16-month period. Both resistance alleles were observed at a younger age than all other alleles. Their spreading was associated with enhanced in vitro resistance and rapidly translated in an increased incidence of clinical malaria episodes during the early post-treatment period. CONCLUSION/SIGNIFICANCE In such a highly endemic setting, selection of drug-resistant parasites took a single year after drug implementation, resulting in a rapid progression of the incidence of clinical malaria during the early post-treatment period. Controlled antimalarial use at the community level did not prevent dissemination of resistance haplotypes. This data pleads against reintroduction of CQ in places where resistant allele frequency has dropped to a very low level after CQ use has been discontinued, unless drastic measures are put in place to prevent selection and spreading of mutants during the post-treatment period.
Collapse
Affiliation(s)
- Nitchakarn Noranate
- Unité d'Immunologie Moléculaire des Parasites, Centre National de la Recherche Scientifique URA 2581, Institut Pasteur, Paris, France
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rémy Durand
- Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Adama Tall
- Unité d'Epidémiologie, Institut Pasteur de Dakar, Dakar, Senegal
| | - Laurence Marrama
- Unité d'Epidémiologie, Institut Pasteur de Dakar, Dakar, Senegal
| | - André Spiegel
- Unité d'Epidémiologie, Institut Pasteur de Dakar, Dakar, Senegal
| | - Cheikh Sokhna
- Laboratoire de Paludologie/Zoologie Médicale, IRD, Dakar, Senegal
| | - Bruno Pradines
- Institut de Médecine Tropicale du Service de Santé des Armées, Marseille, France
| | - Sandrine Cojean
- Transports Membranaires et Chimiorésistance du Paludisme, Université R. Descartes and Hôpital Bichat Claude Bernard, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Micheline Guillotte
- Unité d'Immunologie Moléculaire des Parasites, Centre National de la Recherche Scientifique URA 2581, Institut Pasteur, Paris, France
| | - Emmanuel Bischoff
- Unité d'Immunologie Moléculaire des Parasites, Centre National de la Recherche Scientifique URA 2581, Institut Pasteur, Paris, France
| | - Marie-Thérèse Ekala
- Unité d'Immunologie Moléculaire des Parasites, Centre National de la Recherche Scientifique URA 2581, Institut Pasteur, Paris, France
| | - Christiane Bouchier
- Pasteur Génopole-Ile de France, Plateforme Genomique, Institut Pasteur, Paris, France
| | | | | | | | - Jacques Le Bras
- Transports Membranaires et Chimiorésistance du Paludisme, Université R. Descartes and Hôpital Bichat Claude Bernard, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Christophe Rogier
- Unité d'Epidémiologie, Institut Pasteur de Dakar, Dakar, Senegal
- Institut de Médecine Tropicale du Service de Santé des Armées, Marseille, France
| | - Odile Mercereau-Puijalon
- Unité d'Immunologie Moléculaire des Parasites, Centre National de la Recherche Scientifique URA 2581, Institut Pasteur, Paris, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
18
|
Nash D, Nair S, Mayxay M, Newton PN, Guthmann JP, Nosten F, Anderson TJ. Selection strength and hitchhiking around two anti-malarial resistance genes. Proc Biol Sci 2005; 272:1153-61. [PMID: 16024377 PMCID: PMC1559806 DOI: 10.1098/rspb.2004.3026] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neutral mutations may hitchhike to high frequency when they are situated close to sites under positive selection, generating local reductions in genetic diversity. This process is thought to be an important determinant of levels of genomic variation in natural populations. The size of genome regions affected by genetic hitchhiking is expected to be dependent on the strength of selection, but there is little empirical data supporting this prediction. Here, we compare microsatellite variation around two drug resistance genes (chloroquine resistance transporter (pfcrt), chromosome 7, and dihydrofolate reductase (dhfr), chromosome 4) in malaria parasite populations exposed to strong (Thailand) or weak selection (Laos) by anti-malarial drugs. In each population, we examined the point mutations underlying resistance and length variation at 22 (chromosome 4) or 25 (chromosome 7) microsatellite markers across these chromosomes. All parasites from Thailand carried the K76T mutation in pfcrt conferring resistance to chloroquine (CQ) and 2-4 mutations in dhfr conferring resistance to pyrimethamine. By contrast, we found both wild-type and resistant alleles at both genes in Laos. There were dramatic differences in the extent of hitchhiking in the two countries. The size of genome regions affected was smaller in Laos than in Thailand. We observed significant reduction in variation relative to sensitive parasites for 34-64 kb (2-4 cM) in Laos on chromosome 4, compared with 98-137 kb (6-8 cM) in Thailand. Similarly, on chromosome 7, we observed reduced variation for 34-69 kb (2-4 cM) around pfcrt in Laos, but for 195-268 kb (11-16 cM) in Thailand. Reduction in genetic variation was also less extreme in Laos than in Thailand. Most loci were monomorphic in a 12 kb region surrounding both genes on resistant chromosomes from Thailand, whereas in Laos, even loci immediately proximal to selective sites showed some variation on resistant chromosomes. Finally, linkage disequilibrium (LD) decayed more rapidly around resistant pfcrt and dhfr alleles from Laos than from Thailand. These results demonstrate that different realizations of the same selective sweeps may vary considerably in size and shape, in a manner broadly consistent with selection history. From a practical perspective, genomic regions containing resistance genes may be most effectively located by genome-wide association in populations exposed to strong drug selection. However, the lower levels of LD surrounding resistance alleles in populations under weak selection may simplify identification of functional mutations.
Collapse
Affiliation(s)
- Denae Nash
- Southwest Foundation for Biomedical Research (SFBR)PO Box 760549, San Antonio, TX 78245, USA
- Our Lady of the Lake UniversitySan Antonio, TX 78207, USA
| | - Shalini Nair
- Southwest Foundation for Biomedical Research (SFBR)PO Box 760549, San Antonio, TX 78245, USA
| | - Mayfong Mayxay
- Faculty of MedicineNational University of LaosVientiane, Lao PDR
- Wellcome Trust-Mahosot-Oxford Tropical Medicine Research CollaborationMahosot HospitalVientiane, Lao PDR
| | - Paul N Newton
- Wellcome Trust-Mahosot-Oxford Tropical Medicine Research CollaborationMahosot HospitalVientiane, Lao PDR
| | - Jean-Paul Guthmann
- Epicentre (Médecins Sans Frontières-France)8 rue Saint Sabin, 75011 Paris, France
| | - François Nosten
- 6 Shoklo Malaria Research Unit (SMRU)Mae Sot, Tak, Thailand
- Faculty of Tropical MedicineMahidol UniversityBangkok, Thailand
- Centre for Clinical Vaccinology and Tropical MedicineChurchill HospitalOxford OX3 7LJ, UK
| | - Tim J.C Anderson
- Southwest Foundation for Biomedical Research (SFBR)PO Box 760549, San Antonio, TX 78245, USA
- Author for correspondence ()
| |
Collapse
|
19
|
Wilson PE, Alker AP, Meshnick SR. Real-time PCR methods for monitoring antimalarial drug resistance. Trends Parasitol 2005; 21:278-83. [PMID: 15922249 DOI: 10.1016/j.pt.2005.04.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 02/24/2005] [Accepted: 04/12/2005] [Indexed: 11/25/2022]
Abstract
Drug-resistant Plasmodium falciparum is a challenge to malaria control programs. Policy makers currently depend on in vivo (and, sometimes, in vitro) resistance testing to set treatment guidelines. Molecular markers such as mutations in dhfr, dhps, pfcrt and pfmdr1 represent potential surveillance tools. In this article, we describe newer high-throughput methods for detecting these molecular markers. One method, 5' nuclease real-time polymerase chain reaction, is discussed in detail.
Collapse
Affiliation(s)
- Paul E Wilson
- University of North Carolina School of Medicine, Department of Microbiology and Immunology, CB 7290, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
20
|
Anderson TJC, Nair S, Sudimack D, Williams JT, Mayxay M, Newton PN, Guthmann JP, Smithuis FM, Tran TH, van den Broek IVF, White NJ, Nosten F. Geographical distribution of selected and putatively neutral SNPs in Southeast Asian malaria parasites. Mol Biol Evol 2005; 22:2362-74. [PMID: 16093566 DOI: 10.1093/molbev/msi235] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Loci targeted by directional selection are expected to show elevated geographical population structure relative to neutral loci, and a flurry of recent papers have used this rationale to search for genome regions involved in adaptation. Studies of functional mutations that are known to be under selection are particularly useful for assessing the utility of this approach. Antimalarial drug treatment regimes vary considerably between countries in Southeast Asia selecting for local adaptation at parasite loci underlying resistance. We compared the population structure revealed by 10 nonsynonymous mutations (nonsynonymous single-nucleotide polymorphisms [nsSNPs]) in four loci that are known to be involved in antimalarial drug resistance, with patterns revealed by 10 synonymous mutations (synonymous single-nucleotide polymorphisms [sSNPs]) in housekeeping genes or genes of unknown function in 755 Plasmodium falciparum infections collected from 13 populations in six Southeast Asian countries. Allele frequencies at known nsSNPs underlying resistance varied markedly between locations (F(ST) = 0.18-0.66), with the highest frequencies on the Thailand-Burma border and the lowest frequencies in neighboring Lao PDR. In contrast, we found weak but significant geographic structure (F(ST) = 0-0.14) for 8 of 10 sSNPs. Importantly, all 10 nsSNPs showed significantly higher F(ST) (P < 8 x 10(-5)) than simulated neutral expectations based on observed F(ST) values in the putatively neutral sSNPs. This result was unaffected by the methods used to estimate allele frequencies or the number of populations used in the simulations. Given that dense single-nucleotide polymorphism (SNP) maps and rapid SNP assay methods are now available for P. falciparum, comparing genetic differentiation across the genome may provide a valuable aid to identifying parasite loci underlying local adaptation to drug treatment regimes or other selective forces. However, the high proportion of polymorphic sites that appear to be under balancing selection (or linked to selected sites) in the P. falciparum genome violates the central assumption that selected sites are rare, which complicates identification of outlier loci, and suggests that caution is needed when using this approach.
Collapse
Affiliation(s)
- Tim J C Anderson
- Southwest Foundation for Biomedical Research, San Antonio, Texas, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hamour S, Melaku Y, Keus K, Wambugu J, Atkin S, Montgomery J, Ford N, Hook C, Checchi F. Malaria in the Nuba Mountains of Sudan: baseline genotypic resistance and efficacy of the artesunate plus sulfadoxine–pyrimethamine and artesunate plus amodiaquine combinations. Trans R Soc Trop Med Hyg 2005; 99:548-54. [PMID: 15869770 DOI: 10.1016/j.trstmh.2004.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 10/25/2004] [Accepted: 10/26/2004] [Indexed: 10/25/2022] Open
Abstract
Both northern and southern Sudan are deploying artemisinin-based combinations against uncomplicated Plasmodium falciparum malaria (artesunate+sulfadoxine-pyrimethamine [AS+SP] in the north, artesunate+amodiaquine [AS+AQ] in the south). In 2003, we tested the efficacy of 3 day AS+SP and AS+AQ regimens in vivo in the isolated, seasonally endemic Nuba Mountains region (the first study of AS combinations in southern Sudan). We also analysed pre-treatment blood samples for mutations at the P. falciparum chloroquine transporter (Pfcrt) gene (associated with CQ resistance), and at the dihydrofolate reductase (Dhfr) gene (associated with pyrimethamine resistance). Among 161 randomized children under 5 years, PCR-corrected cure rates after 28 days were 91.2% (52/57, 95% CI 80.7-97.1) for AS+SP and 92.7% (51/55, 95% CI 82.4-98.0) for AS+AQ, with equally rapid parasite and fever clearance. The Pfcrt K76T mutation occurred in 90.0% (144/160) of infections, suggesting CQ would work poorly in this region. Overall, 82.5% (132/160) carried mutations at Dhfr (N51I, C59R or S108N, but not I164L), but triple mutants (more predictive of in vivo SP failure) were rare (3.1%). CQ use should be rapidly discontinued in this region. SP resistance may propagate rapidly, and AS+AQ is likely to be a better long-term option, provided AQ use is limited to the combination.
Collapse
Affiliation(s)
- Sally Hamour
- Médecins Sans Frontières, Plantage Middenlaan 14, 1018 DD Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Babiker HA, Satti G, Ferguson H, Bayoumi R, Walliker D. Drug resistant Plasmodium falciparum in an area of seasonal transmission. Acta Trop 2005; 94:260-8. [PMID: 15857801 DOI: 10.1016/j.actatropica.2005.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Eastern Sudan lies at the edge of the malaria endemicity stratum, where transmission intensity is low and seasonal. The main malaria parasite in the region, Plasmodium falciparum, survives the long dry and transmission-free season as asymptomatic sub-patent infections, and resurges following annual rains. The short-lived annual transmission in this area precipitates cyclical malaria epidemics among the semi-immune inhabitants who resort to excessive anti-malarial drugs usage at this time of the year. Chloroquine resistance (CQR) first emerged in this area in the mid 1980s; however, subsequent surveys demonstrated that the rate of parasitological failure to CQ remained stable over a period of 8 years (1986-1993). Nevertheless, the CQR level varied between years in association with the amount of annual rain. Detailed molecular surveys revealed significant temporal fluctuations in the frequency of resistant P. falciparum genotypes, increasing during the dry season but dwindling at the start of the next transmission season. The pattern of spread of drug resistance in the area is discussed in the context of parasite biology and malaria epidemiology of this region.
Collapse
Affiliation(s)
- Hamza A Babiker
- School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, Scotland, UK.
| | | | | | | | | |
Collapse
|
23
|
van den Broek I, Amsalu R, Balasegaram M, Hepple P, Alemu E, Hussein EB, Al-Faith M, Montgomery J, Checchi F. Efficacy of two artemisinin combination therapies for uncomplicated falciparum malaria in children under 5 years, Malakal, Upper Nile, Sudan. Malar J 2005; 4:14. [PMID: 15730557 PMCID: PMC554764 DOI: 10.1186/1475-2875-4-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 02/24/2005] [Indexed: 11/21/2022] Open
Abstract
Background The treatment for Plasmodium falciparum malaria in Sudan has been in process of change since 2003. Preceding the change, this study aimed to determine which artemisinin-based combination therapies is more effective to treat uncomplicated malaria in Malakal, Upper Nile, Sudan. Methods Clinical trial to assess the efficacy of 2 antimalarial therapies to treat P. falciparum infections in children aged 6–59 months, in a period of 42 days after treatment. Results A total of 269 children were followed up to 42 days. Artesunate plus Sulfadoxine/Pyrimethamine (AS+SP) and Artesunate plus Amodiaquine (AS+AQ) were both found to be efficacious in curing malaria infections by rapid elimination of parasites and clearance of fever, in preventing recrudescence and suppressing gametocytaemia. The combination of AS+SP appeared slightly more efficacious than AS+AQ, with 4.4% (4/116) versus 15% (17/113) of patients returning with malaria during the 6-week period after treatment (RR = 0.9, 95% CI 0.81–0.96). PCR analysis identified only one recrudescence which, together with one other early treatment failure, gave efficacy rates of 99.0% for AS+AQ (96/97) and 99.1% for AS+SP (112/113). However, PCR results were incomplete and assuming part of the indeterminate samples were recrudescent infections leads to an estimated efficacy ranging 97–98% for AS+SP and 88–95% for AS+AQ. Conclusion These results lead to the recommendation of ACT, and specifically AS+SP, for the treatment of uncomplicated falciparum malaria in this area of Sudan. When implemented, ACT efficacy should be monitored in sentinel sites representing different areas of the country.
Collapse
Affiliation(s)
- Ingrid van den Broek
- Manson's Unit, MSF -UK, 67–74 Saffron Hill, London EC1N, UK
- Epicentre, 8 rue Saint-Sabin, 75011 Paris, France
| | | | - Manica Balasegaram
- Manson's Unit, MSF -UK, 67–74 Saffron Hill, London EC1N, UK
- MSF-Holland, Khartoum, Sudan
| | | | | | | | | | - Jacqui Montgomery
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, PO Box 30096, Chichiri, Blantyre 3, Malawi
| | | |
Collapse
|
24
|
van den Broek IVF, van der Wardt S, Talukder L, Chakma S, Brockman A, Nair S, Anderson TC. Drug resistance in Plasmodium falciparum from the Chittagong Hill Tracts, Bangladesh. Trop Med Int Health 2004; 9:680-7. [PMID: 15189458 DOI: 10.1111/j.1365-3156.2004.01249.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To assess the efficacy of antimalarial treatment and molecular markers of Plasmodium falciparum resistance in the Chittagong Hill Tracts of Bangladesh. METHODS A total of 203 patients infected with P. falciparum were treated with quinine 3 days plus sulphadoxine/pyrimethamine (SP) combination therapy, and followed up during a 4-week period. Blood samples collected before treatment were genotyped for parasite mutations related to chloroquine (pfcrt and pfmdr1 genes) or SP resistance (dhfr and dhps). RESULTS Of 186 patients who completed follow-up, 32 patients (17.2%) failed to clear parasitaemia or became positive again within 28 days after treatment. Recurring parasitaemia was related to age (chi(2) = 4.8, P < 0.05) and parasite rates on admission (t = 3.1, P < 0.01). PCR analysis showed that some of these cases were novel infections. The adjusted recrudescence rate was 12.9% (95% CI 8.1-17.7) overall, and 16.6% (95% CI 3.5-29.7), 15.5% (95% CI 8.3-22.7) and 6.9% (95% CI 0.4-13.4) in three age groups (<5 years, 5-14, > or =15). The majority of infections carried mutations associated with chloroquine resistance: 94% at pfcrt and 70% at pfmdr. Sp-resistant genotypes were also frequent: 99% and 73% of parasites carried two or more mutations at dhfr and dhps, respectively. The frequency of alleles at dhfr, dhps and pfmdr was similar in cases that were successfully treated and those that recrudesced. CONCLUSIONS The clinical trial showed that quinine 3-days combined to SP is still relatively effective in the Chittagong Hill Tracts. However, if this regimen is continued to be widely used, further development of SP resistance and reduced quinine sensitivity are to be expected. The genotyping results suggest that neither chloroquine nor SP can be considered a reliable treatment for P. falciparum malaria any longer in this area of Bangladesh.
Collapse
|